README 350 KB
Newer Older
1

2
x11vnc README file                         Date: Sun Jul 17 21:27:25 EDT 2005
3 4 5 6 7 8 9 10 11 12 13 14 15

The following information is taken from these URLs:

	http://www.karlrunge.com/x11vnc/index.html
	http://www.karlrunge.com/x11vnc/x11vnc_opts.html

they contain the most up to date info.

=======================================================================
http://www.karlrunge.com/x11vnc/index.html:

     _________________________________________________________________

16 17
x11vnc: a VNC server for real X displays
                (to [1]FAQ)    (to [2]Downloads)    (to [3]Building)    (to
18
[4]Donations)    (to [5]Beta Test)
19 20 21 22 23 24 25 26 27

   x11vnc allows one to remotely view and interact with real X displays
   (i.e. a display corresponding to a physical monitor, keyboard, and
   mouse) with any VNC viewer. In this way it plays the role for Unix/X11
   that WinVNC plays for Windows.

   I wrote x11vnc because x0rfbserver was basically impossible to build
   on Solaris and had poor performance. The primary x0rfbserver build
   problems centered around esoteric C++ toolkits. x11vnc is written in
28
   plain C and uses only standard libraries. I also added a some
29
   enhancements to improve the interactive response, add esoteric
30
   features, etc. The [6]FAQ contains a lot of information and solutions
31
   to many problems, but please feel free to [7]contact me if you have
32
   problems or questions.
33 34 35

    Background:

36
   VNC (Virtual Network Computing) is a very useful network graphics
37 38 39 40
   protocol (applications running on one computer but displaying their
   windows on another) in the spirit of X, however, unlike X, the
   viewing-end is very simple and maintains no state. It is a remote
   framebuffer (RFB) protocol
41 42

   Some VNC links:
43 44 45
     * [8]http://www.uk.research.att.com/vnc/
     * [9]http://www.realvnc.com
     * [10]http://www.tightvnc.com
46

47 48 49 50 51 52
   For Unix, the traditional VNC implementation includes a virtual X11
   server Xvnc (usually launched via the vncserver command) that is not
   associated with a physical display, but provides a "fake" one X11
   clients (xterm, mozilla, etc.) can attach to. A remote user then
   connects to Xvnc via the VNC client vncviewer from anywhere on the
   network to view and interact with the whole virtual X11 desktop.
53 54

   The VNC protocol is in most cases better suited for remote connections
55 56 57 58
   with low bandwidth and high latency than is the X11 protocol (the
   exception is cached pixmap data on the viewing-end). Also, with no
   state maintained the viewing-end can crash, be rebooted, or relocated
   and the applications and desktop continue running. Not so with X11.
59

60 61 62 63
   So the standard Xvnc/vncserver program is very useful, I use it for
   things like:
     * Desktop conferencing with other users (e.g. codereviews).
     * Long running apps/tasks I want to be able to view from many
64 65 66 67 68 69 70 71 72
       places.
     * Motif, GNOME, and similar applications that would yield very poor
       performance over a high latency link.

   However, sometimes one wants to connect to a real X11 display (i.e.
   one attached to a physical monitor, keyboard, and mouse: a Workstation
   or a SunRay session) from far away. Maybe you want to close down an
   application cleanly rather than using kill, or want to work a bit in
   an already running application, or would like to help a distant
73 74
   colleague solve a problem with their desktop, or would just like to
   work out on your deck for a while. This is where x11vnc is useful.
75 76 77 78
     _________________________________________________________________

    How to use x11vnc:

79 80 81
   In this basic example let's assume the remote machine with the X
   display you wish to view is "far-away.east:0" and the workstation you
   are presently working at is "sitting-here.west".
82

83
   Step 0. Download x11vnc ([11]see below) and have it available to run
84
   on far-away.east. Similarly, have a VNC viewer (e.g. vncviewer) ready
85
   to run on sitting-here.west. We recommend [12]TightVNC Viewers.
86 87 88 89

   Step 1. By some means log in to far-away.east and get a command shell
   running there. You can use ssh, rlogin, telnet, or any other method to
   do this. x11vnc needs to be run on the same machine the X server
90
   process is running on (otherwise things would be extremely slow).
91 92

   Step 2. In that far-away.east shell (with command prompt "far-away>"
93 94
   in this example) run x11vnc directed at the far-away.east X session
   display:
95 96 97

  far-away> x11vnc -display :0

98 99
   You could have also set the environment variable DISPLAY=:0 instead of
   using -display. This step attaches x11vnc to the far-away.east:0 X
100
   display (i.e. no viewer clients yet).
101

102
   To get X11 permissions right, you may also need to set the XAUTHORITY
103
   environment variable (or use the [13]-auth option) to point to the
104
   correct MIT-MAGIC-COOKIE file (e.g. /home/joe/.Xauthority). More on
105
   this [14]below.
106

107 108 109 110 111 112 113 114 115
   If you suspect an X11 permissions problem do this simple test: while
   sitting at the physical X display open a terminal window
   (gnome-terminal, xterm, etc). You should be able to start x11vnc
   without any need for command line options in that terminal. If that
   works OK then you know X11 permissions are the only thing preventing
   it from working when you try to start x11vnc via a remote shell.

   When x11vnc starts up there will then be much chatter printed out,
   until it finally says something like:
116 117 118 119
  .
  .
  13/05/2004 14:59:54 Autoprobing selected port 5900
  13/05/2004 14:59:54 screen setup finished.
120
  13/05/2004 14:59:54
121 122 123 124 125 126 127 128 129
  13/05/2004 14:59:54 The VNC desktop is far-away:0
  PORT=5900

   which means all is OK, and we are ready for the final step.

   Step 3. At the place where you are sitting (sitting-here.west in this
   example) you now want to run a VNC viewer program. There are VNC
   viewers for Unix, Windows, MacOS, Java-enabled web browsers, and even
   for PDA's like the Palm Pilot! You can use any of them to connect to
130
   x11vnc (see the above VNC links under "Background:" on how to obtain a
131 132
   viewer for your platform or see [15]this FAQ. For Solaris, vncviewer
   is available in the [16]Companion CD package SFWvnc ).
133 134 135 136 137 138 139 140 141

   In this example we'll use the Unix vncviewer program on sitting-here
   by typing the following command in a second terminal window:

  sitting-here> vncviewer far-away.east:0

   That should pop up a viewer window on sitting-here.west showing and
   allowing interaction with the far-away.east:0  X11 desktop. Pretty
   nifty! When finished, exit the viewer: the remote x11vnc process will
142
   shutdown automatically (or you can use the [17]-forever option to have
143 144
   it wait for additional viewer connections).

145
   Shortcut: Of course if you left x11vnc running on far-away.east:0 in a
146
   terminal window with the [18]-forever option or as a [19]service,
147
   you'd only have to do Step 3 as you moved around. Be sure to use a VNC
148
   [20]Password or [21]other measures if you do that.
149

150

151
   Desktop Sharing: The above more or less assumed nobody was sitting at
152
   the workstation display "far-away.east:0". This is often the case: a
153
   user wants to access her workstation remotely. Another usage pattern
154 155 156
   has the user sitting at "far-away.east:0" and invites one or more
   other people to view and interact with his desktop. Perhaps the user
   gives a demo or presentation this way (using the telephone for vocal
157 158 159 160 161 162 163
   communication). A "Remote Help Desk" mode would be similar: a
   technician remotely connects to the user's desktop to interactively
   solve a problem the user is having.

   For these cases it should be obvious how it is done. The above steps
   will work, but more easily the user sitting at far-away.east:0 simply
   starts up x11vnc from a terminal window, after which the guests would
164
   start their VNC viewers. For this usage mode the "[22]-connect
165 166
   host1,host2" option may be of use automatically connect to vncviewers
   in "-listen" mode on the list of hosts.
167 168 169 170 171 172 173 174
     _________________________________________________________________

    Tunnelling x11vnc via ssh:

   The above example had no security or privacy at all. When logging into
   remote machines (certainly when going over the internet) it is best to
   use ssh, or use a VPN. For x11vnc one can tunnel the VNC protocol
   through the encrypted ssh channel. It would look something like this:
175 176
  sitting-here> ssh -L 5900:localhost:5900 far-away.east 'x11vnc -localhost -di
splay :0'
177 178 179 180

   (you will likely have to provide passwords/passphrases for the ssh
   login) and then in another terminal window on sitting-here run the
   command:
181
  sitting-here> vncviewer -encodings "copyrect tight zrle hextile" localhost:0
182

183 184
   Note: The -encodings option is very important: vncviewer will default
   to "raw" encoding if it thinks the connection is to the local machine,
185 186 187 188
   and so vncviewer gets tricked this way by the ssh redirection. "raw"
   encoding will be extremely slow over a networked link, so you need to
   force the issue with -encodings "copyrect tight ...".

189 190 191 192 193
   Note that "x11vnc -localhost ..." limits incoming vncviewer
   connections to only those from the same machine. This is very natural
   for ssh tunnelling (the redirection appears to come from the same
   machine). Use of a [23]VNC password is also strongly recommended.

194 195 196
   Some VNC viewers will do the ssh tunnelling for you automatically, the
   TightVNC vncviewer does this when the "-via far-away.east" option is
   supplied to it (this requires x11vnc to be already running on
197 198
   far-away.east or having it started by [24]inetd(1)). See the 3rd
   script example [25]below for more info.
199

200 201
   If the machine you SSH into is not the same machine with the X display
   you wish to view (e.g. your company provides incoming SSH access to a
202 203
   gateway machine), then you need to change the above to, e.g.: "-L
   5900:otherhost:5900". Once logged in, you'll need to do a second login
204
   (ssh, rsh, etc.) to the workstation machine 'otherhost' and then start
205 206
   up x11vnc on it (if it isn't already running). For an automatic way to
   use a gateway and have all the network traffic encrypted (including
207
   inside the firewall) see [26]chaining ssh's below
208

209
     _________________________________________________________________
210

211 212 213
   Scripts to automate ssh tunneling: As discussed below, there may be
   some problems with port 5900 being available. If that happens, the
   above port and display numbers may change a bit (e.g. -> 5901 and :1).
214 215
   However, if you "know" port 5900 will be free on the local and remote
   machines, you can easily automate the above two steps by using the
216
   x11vnc option [27]-bg (forks into background after connection to the
217 218
   display is set up) or using the -f option of ssh. Some example scripts
   are shown below.
219
     _________________________________________________________________
220

221
   #1. A simple example script, assuming no problems with port 5900 being
222
   taken on the local or remote sides, looks like:
223 224 225 226 227 228 229 230
#!/bin/sh
# usage: x11vnc_ssh <host>:<xdisplay>
#  e.g.: x11vnc_ssh snoopy.peanuts.com:0

host=`echo $1 | awk -F: '{print $1}'`
disp=`echo $1 | awk -F: '{print $2}'`
if [ "x$disp" = "x" ]; then disp=0; fi

231 232
cmd="x11vnc -display :$disp -localhost -rfbauth .vnc/passwd"
enc="copyrect tight zrle hextile zlib corre rre raw"
233 234 235 236 237 238 239 240 241 242

ssh -f -L 5900:localhost:5900 $host "$cmd"

for i in 1 2 3
do
        sleep 2
        if vncviewer -encodings "$enc" :0; then break; fi
done

   See also rx11vnc.pl below.
243
     _________________________________________________________________
244

245 246
   #2. Another method is to start the VNC viewer in listen mode
   "vncviewer -listen" and have x11vnc initiate a reverse connection
247
   using the [28]-connect option:
248 249 250 251 252 253 254 255
#!/bin/sh
# usage: x11vnc_ssh <host>:<xdisplay>
#  e.g.: x11vnc_ssh snoopy.peanuts.com:0

host=`echo $1 | awk -F: '{print $1}'`
disp=`echo $1 | awk -F: '{print $2}'`
if [ "x$disp" = "x" ]; then disp=0; fi

256
cmd="x11vnc -display :$disp -localhost -connect localhost"   # <== note new opt
257 258
ion
enc="copyrect tight zrle hextile zlib corre rre raw"
259 260 261 262 263

vncviewer -encodings "$enc" -listen &
pid=$!
ssh -R 5500:localhost:5500 $host "$cmd"
kill $pid
264

265
   Note the use of the ssh option "-R" instead of "-L" to set up a remote
266
   port redirection.
267
     _________________________________________________________________
268

269 270 271 272 273
   #3. A third way is specific to the TightVNC vncviewer special option
   -via for gateways. The only tricky part is we need to start up x11vnc
   and give it some time (5 seconds in this example) to start listening
   for connections (so we cannot use the TightVNC default setting for
   VNC_VIA_CMD):
274 275 276 277 278 279 280 281
#!/bin/sh
# usage: x11vnc_ssh <host>:<xdisplay>
#  e.g.: x11vnc_ssh snoopy.peanuts.com:0

host=`echo $1 | awk -F: '{print $1}'`
disp=`echo $1 | awk -F: '{print $2}'`
if [ "x$disp" = "x" ]; then disp=0; fi

282 283
VNC_VIA_CMD="ssh -f -L %L:%H:%R %G x11vnc -localhost -rfbport 5900 -display :$d
isp; sleep 5"
284 285 286 287 288
export VNC_VIA_CMD

vncviewer -via $host localhost:0      # must be TightVNC vncviewer.

   Of course if you already have the x11vnc running waiting for
289
   connections (or have it started out of [29]inetd(1)), you can simply
290 291
   use the TightVNC "vncviewer -via gateway host:port" in its default
   mode to provide secure ssh tunnelling.
292 293
     _________________________________________________________________

294

295

296
   VNC password file: Also note in the #1. example script that the
297
   [30]option "-rfbauth .vnc/passwd" provides additional protection by
298
   requiring a VNC password for every VNC viewer that connects. The
299
   vncpasswd or storepasswd programs, or the x11vnc [31]-storepasswd
300
   option can be used to create the password file. x11vnc also has the
301
   slightly less secure [32]-passwdfile and "-passwd XXXXX" [33]options
302
   to specify passwords.
303

304 305 306 307 308
   Very Important: It is up to YOU to tell x11vnc to use password
   protection (-rfbauth or -passwdfile), it will NOT do it for you
   automatically or force you to. The same goes for encrypting the
   channel between the viewer and x11vnc: it is up to you to use ssh,
   stunnel, VPN, etc. For additional safety, also look into the -allow
309
   and -localhost [34]options and building x11vnc with [35]tcp_wrappers
310
   support to limit host access.
311 312


313 314
     _________________________________________________________________

315
   Chaining ssh's: Note that for use of a ssh gateway and -L redirection
316
   to an internal host (e.g. "-L 5900:otherhost:5900") the VNC traffic
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
   inside the firewall is not encrypted and you have to manually log into
   otherhost to start x11vnc. Kyle Amon shows a method where you chain
   two ssh's together that encrypts all network traffic and also
   automatically starts up x11vnc on the internal workstation:
#!/bin/sh
#
gateway="example.com"   # or "user@example.com"
host="labyrinth"        # or "user@hostname"
user="kyle"

# Need to sleep long enough for all of the passwords and x11vnc to start up.
# The </dev/null below makes the vncviewer prompt for passwd via popup window.
#
(sleep 10; vncviewer -encodings "copyrect tight zrle zlib hextile" \
    localhost:0 </dev/null >/dev/null) &

# Chain the vnc connection thru 2 ssh's, and connect x11vnc to user's display:
#
exec /usr/bin/ssh -t -L 5900:localhost:5900 $gateway \
     /usr/bin/ssh -t -L 5900:localhost:5900 $host \
     sudo /usr/bin/x11vnc -localhost -auth /home/$user/.Xauthority \
         -rfbauth .vnc/passwd -display :0

   Also note the use of sudo(1) to switch to root so that the different
   user's .Xauthority file can be accessed. See the visudo(8) manpage for
   details on how to set this up. One can also chain together ssh's for
   reverse connections with vncviewers using the -listen option. For this
   case -R would replace the -L (and 5500 the 5900, see the #2 example
   script above). If the gateway machine's sshd is configured with
   GatewayPorts=no (the default) then the double chaining of "ssh -R ..."
   will be required for reverse connections to work.

349 350 351 352
     _________________________________________________________________

    Downloading x11vnc:

353
   x11vnc is a contributed program to the [36]LibVNCServer project at
354 355 356
   SourceForge.net. I use libvncserver for all of the VNC aspects; I
   couldn't have done without it. The full source code may be found and
   downloaded (either file-release tarball or CVS tree) from the above
357 358
   link. As of Jul 2005, the [37]x11vnc-0.7.2.tar.gz source package is
   released (recommended download) . The [38]x11vnc 0.7.2 release notes.
359

360
   The x11vnc package is the subset of the libvncserver package needed to
361
   build the x11vnc program. Also, you can get a copy of my latest,
362
   bleeding edge [39]x11vnc-0.7.3.tar.gz tarball to build the most up to
363
   date one.
364

365
   Precompiled Binaries/Packages:  See the [40]FAQ below for information
366 367
   about where you might obtain a precompiled x11vnc binary from 3rd
   parties and some ones I create.
368

369
   To obtain VNC viewers for the viewing side (Windows, Mac OS, or Unix)
370
   try these links:
371 372 373
     * [41]http://www.tightvnc.com/download.html
     * [42]http://www.realvnc.com/download-free.html
     * [43]http://sourceforge.net/projects/cotvnc/
374

375

376 377 378
   More tools: Here is a rsh/ssh wrapper script rx11vnc that attempts to
   automatically do the above Steps 1-3 for you (provided you have
   rsh/ssh login permission on the machine x11vnc is to be run on). The
379 380 381
   above example would be: "rx11vnc far-away.east:0" typed into a shell
   on sitting-here.west. Also included is an experimental script
   rx11vnc.pl that attempts to tunnel the vnc traffic through an ssh port
382 383
   redirection (and does not assume port 5900 is free). Have a look at
   them to see what they do and customize as needed:
384 385
     * [44]rx11vnc wrapper script
     * [45]rx11vnc.pl wrapper script to tunnel traffic thru ssh
386

387 388 389 390 391
     _________________________________________________________________

    Building x11vnc:

   If your OS has libjpeg.so and libz.so in standard locations you can
392
   build as follows (example given for the 0.7.2 release of x11vnc:
runge's avatar
runge committed
393
   replace with the version you downloaded):
394
(un-tar the x11vnc+libvncserver tarball)
395
# gzip -dc x11vnc-0.7.2.tar.gz | tar -xvf -
396 397

(cd to the source directory)
398
# cd x11vnc-0.7.2
399 400 401 402 403 404 405 406 407 408

(run configure and then run make)
# ./configure
# make

(if all went OK, copy x11vnc to the desired destination, e.g. $HOME/bin)
# cp ./x11vnc/x11vnc $HOME/bin

   Or do make install, it will probably install to /usr/local/bin (run
   ./configure --help for information on customizing your configuration).
409 410
   You can now run it via typing "x11vnc", "x11vnc -help", "x11vnc
   -forever -shared -display :0", etc.
411

412 413
   Note: Currently gcc is required to build libvncserver. In some cases
   it will build with non-gcc compilers, but the resulting binary often
414
   fails to run properly. For Solaris pre-built gcc binaries are at
415
   [46]http://www.sunfreeware.com/   However, one user reports it does
416
   work fine when built with Sun Studio 10, so YMMV.
417 418

     _________________________________________________________________
419

420 421
   Misc. Build problems:   We collect here rare build problems some users
   have reported and the corresponding workarounds. See also the
422
   [47]FAQ's on building.
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

   One user had a problem where the build script below was failing
   because his work environment had the ENV variable set to a script that
   was resetting his PATH so that gcc could no longer be found. Make sure
   you do not have any ENV or BASH_ENV in your environment doing things
   like that. Typing "unset ENV", etc. before configuring and building
   should clear it.

   One user had his bash shell compiled with --enable-xpg-echo-default
   that causes some strange behavior with things like echo "\\1 ..." the
   configure script executes. In particular instead of getting "\1" the
   non-printable character "^A" is produced, and causes failures at
   compile time like:
  ../rfb/rfbconfig.h:9:22: warning: extra tokens at end of #ifndef directive

   The workaround is to configure like this:
  env CONFIG_SHELL=/bin/sh /bin/sh ./configure

   i.e. avoid using the bash with the misbehavior. A bug has been filed
   against autoconf to guard against this.

     _________________________________________________________________

446 447 448
   Building on Solaris, FreeBSD, etc:   Depending on your version of
   Solaris or other Unix OS the jpeg and/or zlib libraries may be in
   non-standard places (e.g. /usr/local, /usr/sfw, /opt/sfw, etc).
449

450
   Note: If configure cannot find these two libraries then TightVNC and
451
   ZRLE encoding support will be disabled, and you don't want that!!! The
452
   TightVNC encoding gives very good compression and performance, it even
453 454
   makes a noticeable difference over a fast LAN.

455

456 457 458
   Shortcuts: On Solaris 10 you can pick up almost everything just by
   insuring that your PATH has /usr/sfw/bin (for gcc) and /usr/ccs/bin
   (for other build tools), e.g.:
459 460
  env PATH=/usr/sfw/bin:/usr/ccs/bin:$PATH sh -c './configure; make'

461 462 463
   (The only thing this misses is /usr/X11/lib/libXrandr.so.2, which is
   for the little used -xrandr option, see the script below to pick it up
   as well).
464

465

466 467
   libjpeg is included in Solaris 9 and later (/usr/sfw/include and
   /usr/sfw/lib), and zlib in Solaris 8 and later (/usr/include and
468 469 470 471 472
   /usr/lib). So on Solaris 9 you can pick up everything with something
   like this:
  env PATH=/usr/local/bin:/usr/ccs/bin:$PATH sh -c './configure --with-jpeg=/us
r/sfw; make'

473
   assuming your gcc is in /usr/local/bin and x11vnc 0.7.1 or later.
474 475
   These are getting pretty long, see those assignments split up in the
   build script below.
476

477 478 479

   If your system does not have these libraries at all you can get the
   source for the libraries to build them: libjpeg is available at
480 481 482
   [48]ftp://ftp.uu.net/graphics/jpeg/ and zlib at
   [49]http://www.gzip.org/zlib/. See also
   [50]http://www.sunfreeware.com/ for Solaris binary packages of these
483
   libraries as well as for gcc. Normally they will install into
runge's avatar
runge committed
484 485
   /usr/local but you can install them anywhere with the
   --prefix=/path/to/anywhere, etc.
486

487

488
   Here is a build script that indicates one way to pass the library
489
   locations information to the libvncserver configuration via the
490
   CPPFLAGS and LDFLAGS environment variables.
491 492
#!/bin/sh

493
# Build script for Solaris, etc, with gcc, libjpeg and libz in
494 495
# non-standard locations.

496
# set to get your gcc, etc:
497
#
498
PATH=/path/to/gcc/bin:/usr/ccs/bin:/usr/sfw/bin:$PATH
499

500 501
JPEG=/path/to/jpeg      # set to maybe "/usr/local", "/usr/sfw", or "/opt/sfw"
ZLIB=/path/to/zlib      # set to maybe "/usr/local", "/usr/sfw", or "/opt/sfw"
502 503 504 505

# Below we assume headers in $JPEG/include and $ZLIB/include and the
# shared libraries are in $JPEG/lib and $ZLIB/lib.  If your situation
# is different change the locations in the two lines below.
506
#
507 508 509 510
CPPFLAGS="-I $JPEG/include -I $ZLIB/include"
LDFLAGS="-L $JPEG/lib -R $JPEG/lib -L $ZLIB/lib -R $ZLIB/lib"

# These two lines may not be needed on more recent Solaris releases:
511
#
512 513 514
CPPFLAGS="$CPPFLAGS -I /usr/openwin/include"
LDFLAGS="$LDFLAGS -L /usr/openwin/lib -R /usr/openwin/lib"

515
# These are for libXrandr.so on Solaris 10:
516
#
517 518 519
CPPFLAGS="$CPPFLAGS -I /usr/X11/include"
LDFLAGS="$LDFLAGS -L /usr/X11/lib -R /usr/X11/lib"

520
# Everything needs to built with _REENTRANT for thread safe errno:
521
#
522 523
CPPFLAGS="$CPPFLAGS -D_REENTRANT"

524 525 526 527 528 529 530
export PATH CPPFLAGS LDFLAGS

./configure
make

ls -l ./x11vnc/x11vnc

531 532 533 534 535 536
   Then do make install or copy the x11vnc binary to your desired
   destination.

   BTW, To run a shell script, just cut-and-paste the above into a file,
   say "myscript", then modify the "/path/to/..." items to correspond to
   your system/environment, and then type: "sh myscript" to run it.
537 538

   Note that on Solaris make is /usr/ccs/bin/make, so that is why the
539
   above puts /usr/ccs/bin in PATH. Other important build utilities are
540 541 542
   there too: ld, ar, etc. Also, it is probably a bad idea to have
   /usr/ucb in your PATH while building.

543 544 545 546 547
   Starting with the 0.7.1 x11vnc release the "configure --with-jpeg=DIR
   --with-zlib=DIR" options are handy if you want to avoid making a
   script.

   If you need to build on Solaris 2.5.1 or earlier or other older Unix
548
   OS's, see [51]this workaround FAQ.
549

550

551 552 553 554 555 556
   Building on FreeBSD, OpenBSD, ...:   The jpeg libraries seem to be in
   /usr/local or /usr/pkg on these OS's. You won't need the openwin stuff
   in the above script (but you may need /usr/X11R6/...). Also starting
   with the 0.7.1 x11vnc release, this usually works:
  ./configure --with-jpeg=/usr/local
  make
557

558

559 560
   Building on HP-UX:   For jpeg and zlib you will need to do the same
   sort of thing as described above for Solaris. You set CPPFLAGS and
runge's avatar
runge committed
561 562 563 564 565 566
   LDFLAGS to find them (see below for an example). You do not need to do
   any of the above /usr/openwin stuff. Also, HP-UX does not seem to
   support -R, so get rid of the -R items in LDFLAGS. Because of this, at
   runtime you may need to set LD_LIBRARY_PATH or SHLIB_PATH to indicate
   the directory paths so the libraries can be found. It is a good idea
   to have static archives, e.g. libz.a and libjpeg.a for the nonstandard
567 568 569 570 571
   libraries so that they get bolted into the x11vnc binary (and so won't
   get "lost").

   Here is what we recently did to build x11vnc 0.7.2 on HP-UX 11.11
./configure --with-jpeg=$HOME/hpux/jpeg --with-zlib=$HOME/hpux/zlib
runge's avatar
runge committed
572 573
make

574 575
   Where we had static archives (libjpeg.a, libz.a) only and header files
   in the $HOME/hpux/... directories as discussed for the build script.
576 577
     _________________________________________________________________

578 579 580 581 582
    Beta Testing:

   I don't have any formal beta-testers for the releases of x11vnc, so
   I'd appreciate any additional testing very much!

583 584
   Since 0.7.2 is released Jul/2005, there are no plans when 0.7.3 will
   be released. In any event I'll keep the current tarball here:
585

586
      [52]x11vnc-0.7.3.tar.gz
587

588
   There are also some Linux, Solaris, and other OS test binaries
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
   [53]here. Please kick the tires and report bugs, performance
   regressions, undesired behavior, etc. to [54]me.

   Here are some notes about features added in 0.7.2. Checking them is
   still useful and appreciated:

   Note that the [55]X DAMAGE feature will be on by default and so I am
   interested if that causes any problems. I'd also like to have the new
   [56]wireframe move/resize, the [57]wireframe copyrect translation, and
   the [58]scroll detection+copyrect features all on by default as well
   since when they work they give a great speedup! (CopyRect is a VNC
   encoding and is very fast because the viewer already has the image
   data that needs to be copied: e.g. it just moves it to another part of
   its screen). The scroll copyrect is currently the least stable, you
   can toggle it off via "-noscr" or via the gui (all of the other new
   features can also be toggled by cmdline option or gui, see -help
   output for more info).
606

607 608
     _________________________________________________________________

609 610
    Some Notes:

611 612 613 614
   Both a client and a server:   It is sometimes confusing to people that
   x11vnc is both a client and a server at the same time. It is an X
   client because it connects to the running X server to do the screen
   polls. Think of it as a rather efficient "screenshot" program running
615 616 617
   continuously. It is a server in the sense that it is a VNC server that
   VNC viewers on the network can connect to and view the screen
   framebuffer it manages.
618

619 620
   When trying to debug problems, remember to think of both roles. E.g.
   "how is x11vnc connecting to the X server?", "how is the vncviewer
621 622
   connecting to x11vnc?", "what permits/restricts the connection?". Both
   links may have reachability, permission, and other issues.
623

624 625 626 627
   Network performance:   Whether you are using Xvnc or x11vnc it is
   always a good idea to have a solid background color instead of a
   pretty background image. Each and every re-exposure of the background
   must be resent over the network: better to have that background be a
628 629 630 631 632
   solid color that compresses very well compared to a photo image. (This
   is one place where the X protocol has an advantage over the VNC
   protocol.) I suggest using xsetroot, dtstyle or similar utility to set
   a solid background while using x11vnc. You can turn the pretty
   background image back on when you are using the display directly.
633
   Update: As of Feb/2005 in the libvncserver CVS, x11vnc has the
634
   [59]-solid [color] option that works on recent GNOME, KDE, and CDE and
635
   also on classic X (background image is on the root window).
636

637
   I also find the [60]TightVNC encoding gives the best response for my
638 639 640 641 642 643 644 645 646 647 648
   usage (Unix <-> Unix over cable modem). One needs a tightvnc-aware
   vncviewer to take advantage of this encoding.

   TCP port issues:   Notice the lines
  18/07/2003 14:36:31 Autoprobing selected port 5900
  PORT=5900

   in the output. 5900 is the default VNC listening port (just like 6000
   is X11's default listening port). Had port 5900 been taken by some
   other application, x11vnc would have next tried 5901. That would mean
   the viewer command above should be changed to vncviewer
649
   far-away.east:1. You can force the port with the "[61]-rfbport NNNN"
650 651 652
   option where NNNN is the desired port number. If that port is already
   taken, x11vnc will exit immediately.   (also see the "SunRay Gotcha"
   note below)
653 654

   Options:   x11vnc has (far too) many features that may be activated
655
   via its [62]command line options. Useful options are, e.g., -scale to
656 657
   do server-side scaling, and -rfbauth passwd-file to use VNC password
   protection (the vncpasswd or storepasswd programs, or the x11vnc
658
   [63]-storepasswd option can be used to create the password file).
659 660 661 662 663 664 665

   Algorithm:   How does x11vnc do it? Rather brute-forcedly: it
   continuously polls the X11 framebuffer for changes using
   XShmGetImage(). When changes are discovered, it instructs libvncserver
   which rectangular regions of the framebuffer have changed, and
   libvncserver compresses the changes and sends them off to any
   connected VNC viewers. A number of applications do similar things,
666 667 668 669 670 671 672 673 674 675 676 677
   such as x0rfbserver, krfb, x0vncserver, vino. x11vnc uses a 32 x 32
   pixel tile model (the desktop is decomposed into roughly 1000 such
   tiles), where changed tiles are found by pseudo-randomly polling 1
   pixel tall horizontal scanlines. This is a surprisingly effective
   algorithm for finding changed regions. For keyboard and mouse user
   input the XTEST extension is used to pass the input events to the X
   server. To detect XBell "beeps" the XKEYBOARD extension is used. If
   available, the XFIXES extension is used to retrieve the current mouse
   cursor shape. Also, if available the X DAMAGE extension is used to
   receive hints from the X server where modified regions on the screen
   are. This greatly reduces the system load when not much is changing on
   the screen and also improves how quickly the screen is updated.
678 679 680 681

   Barbershop mirrors effect:   What if x11vnc is started up, and
   vncviewer is then started up on the same machine and displayed on the
   same display x11vnc is polling? One might "accidentally" do this when
682 683 684
   first testing out the programs. You get an interesting
   recursive/feedback effect where vncviewer images keep popping up each
   one contained in the previous one and slightly shifted a bit by the
685
   window manager decorations. There will be an [64]even more interesting
686 687 688 689
   effect if -scale is used. Also, if the XKEYBOARD is supported and the
   XBell "beeps" once, you get an infinite loop of beeps going off.
   Although all of this is mildly exciting it is not much use: you will
   normally run and display the viewer on a different machine!
690 691

   SunRay notes:   You can run x11vnc on your (connected or disconnected)
692 693
   [65]SunRay session (Please remember to use [66]-nap and maybe
   [67]-wait 200 to avoid being a resource hog! It also helps to have a
694
   solid background color). You have to know the name of the machine your
695 696 697 698 699 700 701 702 703
   SunRay session X server is running on. You also need to know the X11
   DISPLAY number for the session: on a SunRay it could be a large
   number, e.g. :137, since there are many people with X sessions (Xsun
   processes) on the same machine. If you don't know it, you can get it
   by running who(1) in a shell on the SunRay server and looking for the
   dtlocal entry with your username (and if you don't even know which
   server machine has your session, you could login to all possible ones
   looking at the who output for your username...).

704 705 706 707 708
   I put some code in my ~/.xsession script that stores $DISPLAY in my
   ~/.sunray_current file at session startup and deletes it when the
   session ends to make it easy to get at the hostname and X11 display
   number info for my current X sessions.

709
   SunRay Gotcha #1:   Note that even though your SunRay X11 DISPLAY is
710
   something like :137, x11vnc still tries for port 5900 as its listening
711 712 713 714 715
   port if it can get it, in which case the VNC display (i.e. the
   information you supply to the VNC viewer) is something like
   sunray-server:0   (note the :0 corresponding to port 5900, it is not
   :137). If it cannot get 5900, it tries for 5901, and so on. You can
   also try to force the port (and thereby the VNC display) using the
716
   [68]-rfbport NNNN option.
717 718 719 720 721 722 723 724 725 726 727 728

   SunRay Gotcha #2:   If you get an error like:
        shmget(tile) failed.
        shmget: No space left on device

   when starting up x11vnc that most likely means all the shared memory
   (shm) slots are filled up on your machine. The Solaris default is only
   100, and that can get filled up in a week or so on a SunRay server
   with lots of users. If the shm slot is orphaned (e.g. creator process
   dies) the slot is not reclaimed. You can view the shm slots with the
   "ipcs -mA" command. If there are about 100 then you've probably hit
   this problem. They can be cleaned out (by the owner or by root) using
729
   the ipcrm command. I wrote a script [69]shm_clear that finds the
730 731 732 733
   orphans and lists or removes them. Longer term, have your SunRay
   sysadmin add something like this to /etc/system:
        set shmsys:shminfo_shmmax = 0x2000000
        set shmsys:shminfo_shmmni = 0x1000
734 735 736 737 738 739 740 741

    Limitations:

     * Due to the polling nature, some activities (opaque window moves,
       scrolling), can be pretty choppy/ragged and others (exposures of
       large areas) slow. Experiment with interacting a bit differently
       than you normally do to minimize the effects (e.g. do fullpage
       paging rather than line-by-line scrolling, and move windows in a
742
       single, quick motion). Recent work has provided the
743
       [70]-scrollcopyrect and [71]-wireframe speedups using the CopyRect
744 745
       VNC encoding and other things, but they only speed up certain
       activities, not all.
746 747 748
     * A rate limiting factor for x11vnc performance is that video
       hardware is optimized for writing, not reading (x11vnc reads the
       video framebuffer for the screen image data). The difference can
749 750
       be a factor of 10 to 1000, and so it usually takes about 0.5-1 sec
       to read in the whole video hardware framebuffer (e.g. 5MB for
751 752 753 754
       1280x1024 at depth 24 with a read rate of 5-10MB/sec). So whenever
       activity changes most of the screen (e.g. moving or iconifying a
       large window) there is a delay of 0.5-1 sec while x11vnc reads the
       changed regions in.
755 756 757
       Note: A quick way to get a 2X speedup for x11vnc is to switch from
       depth 24 (32bpp) to depth 16 (16bpp). You get a 4X speedup going
       to 8bpp, but the lack of color cells is usually unacceptable.
758
       To get a sense of the read and write speeds of your video card,
759
       you can run benchmarks like: x11perf -getimage500,  x11perf
760 761
       -putimage500,  x11perf -shmput500 and for XFree86 displays with
       direct graphics access the dga command (press "b" to run the
762
       benchmark and then after a few seconds press "q" to quit). Even
763 764 765 766 767 768
       this "dd if=/dev/fb0 of=/dev/null" often gives a good estimate. We
       have seen a few cases where the hardware fb read speed is greater
       than 65 MB/sec: on high end graphics workstations from SGI and
       Sun, and also from a Linux user using nvidia proprietary drivers
       for his nvidia video card. If you have a card with a fast read
       speed please send us the details.
769 770 771 772 773 774 775 776 777 778 779 780 781
       On XFree86/Xorg it is actually possible to increase the
       framebuffer read speed considerably (5-100 times) by using the
       Shadow Framebuffer (a copy of the framebuffer is kept in main
       memory and this can be read much more quickly). To do this one
       puts the line Option "ShadowFB" "true" (and depending on video
       card driver, Option "NoAccel" "true" may be needed too) in the
       Device section of the /etc/X11/XF86Config or /etc/X11/xorg.conf
       file. Note that this disables 2D acceleration at the physical
       display and so likely defeats the purpose. Nevertheless this could
       be handy in some circumstances, e.g. if the slower speed while
       sitting at the physical display was acceptable (this seems to be
       true for most video cards these days). Unfortunately it does not
       seem shadowfb can be turned on and off dynamically...
782 783 784 785 786 787
       Another amusing thing one can do is use Xvfb as the X server, e.g.
       "xinit $HOME/.xinitrc -- /usr/X11R6/bin/Xvfb :1 -screen 0
       1024x768x16" x11vnc can poll Xvfb efficiently via main memory.
       It's not exactly clear why one would want to do this (perhaps to
       take advantage of an x11vnc feature, such as framebuffer scaling),
       instead of using vncserver/Xvnc, but we mention it because it may
788 789
       be of use for special purpose applications. Also, a faster and
       more accurate way is to use the "dummy" XFree86/Xorg device
790
       driver. See [72]this FAQ for details.
791
     * Somewhat surprisingly, the X11 mouse (cursor) shape is write-only
792 793
       and cannot be queried from the X server. So traditionally in
       x11vnc the cursor shape stays fixed at an arrow. (see the "-cursor
794
       X" and "-cursor some" [73]options, however, for a partial hack for
795 796
       the root window, etc.). However, on Solaris using the SUN_OVL
       overlay extension, x11vnc can show the correct mouse cursor when
797
       the [74]-overlay option is also supplied. A similar thing is done
798 799 800 801 802 803
       on IRIX as well when -overlay is supplied.
       More generally, as of Dec/2004 x11vnc supports the new XFIXES
       extension (in Xorg and Solaris 10) to query the X server for the
       exact cursor shape, this works pretty well except that cursors
       with transparency (alpha channel) need to approximated to solid
       RGB values (some cursors look worse than others).
804 805 806 807 808
     * Audio from applications is of course not redirected (separate
       redirectors do exist, e.g. esd). The XBell() "beeps" will work if
       the X server supports the XKEYBOARD extension. (Note that on
       Solaris XKEYBOARD is disabled by default. Passing +kb to Xsun
       enables it).
809
     * The scroll detection algorithm for the [75]-scrollcopyrect option
810 811
       can give choppy or bunched up transient output and occasionally
       painting errors.
812 813 814 815
     * Occasionally a patch of tiles will not get updated correctly.
       Evidently a timing related bug and difficult to reproduce...
     * Using -threads can expose some bugs in libvncserver.

816
   Please feel free to [76]contact me if you have any questions,
817
   problems, or comments about x11vnc, etc.
818
   Also, some people ask if they can make a donation, see [77]this link
runge's avatar
runge committed
819
   for that.
820 821 822 823 824
     _________________________________________________________________

    x11vnc FAQ:


825
   [Building and Starting]
826

827
   [78]Q-1: I can't get x11vnc to start up. It says "XOpenDisplay failed
828 829
   (null)" or "Xlib: connection to ":0.0" refused by server Xlib: No
   protocol specified" and then exits. What do I need to do? 
830

831
   [79]Q-2: I can't get x11vnc and/or libvncserver to compile. 
832

833
   [80]Q-3: I just built x11vnc successfully, but when I use it my
834 835 836
   keystrokes and mouse button clicks are ignored  (I am able to move the
   mouse though). 

837
   [81]Q-4: Help, I need to run x11vnc on Solaris 2.5.1 (or other old
838
   Unix/Linux) and it doesn't compile! 
839

840
   [82]Q-5: Where can I get a precompiled x11vnc binary for my Operating
841 842
   System? 

843
   [83]Q-6: Where can I get a VNC Viewer binary (or source code) for the
844 845
   Operating System I will be viewing from? 

846
   [84]Q-7: How can I see all of x11vnc's command line options and
847 848
   documentation on how to use them? 

849
   [85]Q-8: I don't like typing arcane command line options every time I
850
   start x11vnc. What can I do? Is there a config file? Or a GUI? 
851

852
   [86]Q-9: How can I get the GUI to run in the System Tray, or at least
853 854
   be a smaller, simpler icon? 

855
   [87]Q-10: Can I make x11vnc more quiet and also go into the background
856 857
   after starting up? 

858
   [88]Q-11: Sometimes when a VNC viewer dies abruptly, x11vnc also dies
859 860
   with the error message like: "Broken pipe". I'm using the -forever
   mode and I want x11vnc to keep running. 
861

862
   [89]Q-12: Are there any build-time customizations possible, e.g.
863 864
   change defaults, create a smaller binary, etc? 

865 866
   [Win2VNC Related]

867
   [90]Q-13: I have two separate machine displays in front of me, one
868 869 870 871
   Windows the other X11: can I use x11vnc in combination with Win2VNC in
   dual-screen mode to pass the keystrokes and mouse motions to the X11
   display? 

872
   [91]Q-14: I am running Win2VNC on my Windows machine and "x11vnc
873 874
   -nofb" on Unix to pass keyboard and mouse to the Unix monitor.
   Whenever I start Win2VNC it quickly disconnects and x11vnc says:
875
   rfbProcessClientNormalMessage: read: Connection reset by peer 
876

877 878
   [Color Issues]

879
   [92]Q-15: The X display I run x11vnc on is only 8 bits per pixel (bpp)
880
   PseudoColor (i.e. only 256 distinct colors). The x11vnc colors may
881 882
   start out OK, but after a while they are incorrect in certain windows.
   
883
   [93]Q-16: Color problems: Why are the colors for some windows
884 885 886
   incorrect in x11vnc? BTW, my X display has nice overlay/multi-depth
   visuals of different color depths: e.g. there are both depth 8 and 24
   visuals available at the same time. 
887

888
   [94]Q-17: How do I figure out the window id to supply to the -id
889 890
   windowid option? 

891
   [95]Q-18: Why don't menus or other transient windows come up when I am
892 893
   using the -id windowid option to view a single application window? 

894
   [96]Q-19: My X display is depth 24 at 24bpp (instead of the normal
895
   depth 24 at 32bpp). I'm having lots of color and visual problems with
runge's avatar
runge committed
896
   x11vnc and/or vncviewer. What's up? 
897 898 899

   [Xterminals]

900
   [97]Q-20: Can I use x11vnc to view and interact with an Xterminal
901 902 903
   (e.g. NCD) that is not running UNIX and so x11vnc cannot be run on it
   directly? 

904
   [98]Q-21: How do I get my X permissions (MIT-MAGIC-COOKIE file)
905
   correct for a Unix/Linux machine acting as an Xterminal? 
906

907
   [Remote Control]
908

909
   [99]Q-22: How do I stop x11vnc once it is running in the background? 
910

911
   [100]Q-23: Can I change settings in x11vnc without having to restart
912
   it? Can I remote control it? 
913

914 915
   [Security and Permissions]

916
   [101]Q-24: How do I create a VNC password for use with x11vnc? 
917

918
   [102]Q-25: Can I have two passwords for VNC viewers, one for full
919 920
   access and the other for view-only access to the display? 

921
   [103]Q-26: Can I fine tune what types of user input are allowed? E.g.
922 923 924
   have some users just be able to move the mouse, but not click or type
   anything? 

925
   [104]Q-27: Why does x11vnc exit as soon as the VNC viewer disconnects?
926 927 928
   And why doesn't it allow more than one VNC viewer to connect at the
   same time? 

929
   [105]Q-28: Can I limit which machines incoming VNC clients can connect
930 931
   from? 

932
   [106]Q-29: How do I build x11vnc/libvncserver with libwrap
933 934
   (tcp_wrappers) support? 

935
   [107]Q-30: Can I have x11vnc only listen on one network interface
936 937
   (e.g. internal LAN) rather than having it listen on all network
   interfaces and relying on -allow to filter unwanted connections out? 
runge's avatar
runge committed
938

939
   [108]Q-31: Now that -localhost implies listening only on the loopback
940
   interface, how I can occasionally allow in a non-localhost via the -R
runge's avatar
runge committed
941 942
   allowonce remote control command? 

943
   [109]Q-32: How can I tunnel my connection to x11vnc via an encrypted
944 945
   SSH channel between two Unix machines? 

946
   [110]Q-33: How can I tunnel my connection to x11vnc via an encrypted
947 948
   SSH channel from Windows using an SSH client like Putty? 

949
   [111]Q-34: Can I prompt the user at the local X display whether the
950 951 952 953
   incoming VNC client should be accepted or not? Can I decide to make
   some clients view-only? How about running an arbitrary program to make
   the decisions? 

954
   [112]Q-35: Does x11vnc support Unix usernames and passwords? Can I
955 956 957
   further limit the set of Unix usernames who can connect to the VNC
   desktop? 

958
   [113]Q-36: I start x11vnc as root because it is launched via inetd(1)
959 960
   or a display manager like gdm(1). Can I have x11vnc later switch to a
   different user? 
961

962
   [114]Q-37: I use a screen-lock when I leave my workstation (e.g.
963 964 965 966 967
   xscreensaver or xlock). When I remotely access my workstation desktop
   via x11vnc I can unlock the desktop fine, but I am worried people will
   see my activities on the physical monitor. What can I do to prevent
   this, or at least make it more difficult? 

968
   [115]Q-38: Can I have x11vnc automatically lock the screen when I
969 970
   disconnect the VNC viewer? 

971 972
   [Display Managers and Services]

973
   [116]Q-39: How can I run x11vnc as a "service" that is always
974
   available? 
975

976
   [117]Q-40: How can I use x11vnc to connect to an X login screen like
977 978
   xdm, GNOME gdm, KDE kdm, or CDE dtlogin? (i.e. nobody is logged into
   an X session yet). 
979

980
   [118]Q-41: Can I run x11vnc out of inetd(1)? How about xinetd(1)? 
981

982
   [119]Q-42: How do I make x11vnc work with the Java VNC viewer applet
runge's avatar
runge committed
983
   in a web browser? 
984

985
   [120]Q-43: Are reverse connections (i.e. the VNC server connecting to
986 987
   the VNC viewer) using "vncviewer -listen" and vncconnect(1) supported?
   
988
   [121]Q-44: Can I use x11vnc as a replacement for Xvnc? (i.e. not for a
989 990
   real display, but for a virtual one I keep around). 

991
   [122]Q-45: How can I use x11vnc on "headless" machines? Why might I
992 993
   want to? 

994 995
   [Resource Usage and Performance]

996
   [123]Q-46: I have lots of memory, but why does x11vnc fail with
997 998 999
   shmget: No space left on device    or    Minor opcode of failed
   request: 1 (X_ShmAttach)? 

1000
   [124]Q-47: How can I make x11vnc use less system resources? 
1001

1002
   [125]Q-48: How can I make x11vnc use MORE system resources? 
1003

1004
   [126]Q-49: I use x11vnc over a slow link with high latency (e.g.
1005
   dialup modem), is there anything I can do to speed things up? 
1006

1007
   [127]Q-50: Does x11vnc support the X DAMAGE Xserver extension to find
1008 1009
   modified regions of the screen quickly and efficiently? 

1010
   [128]Q-51: When I drag windows around with the mouse or scroll up and
1011 1012 1013
   down things really bog down (unless I do the drag in a single, quick
   motion). Is there anything to do to improve things? 

1014
   [129]Q-52: Why not do something like wireframe animations to avoid the
1015 1016
   windows "lurching" when being moved or resized? 

1017
   [130]Q-53: Can x11vnc try to apply heuristics to detect when an window
1018 1019
   is scrolling its contents and use the CopyRect encoding for a speedup?
   
1020 1021
   [Mouse Cursor Shapes]

1022
   [131]Q-54: Why isn't the mouse cursor shape (the little icon shape
1023 1024
   where the mouse pointer is) correct as I move from window to window? 

1025
   [132]Q-55: When using XFIXES cursorshape mode, some of the cursors
1026 1027
   look really bad with extra black borders around the cursor and other
   cruft. How can I improve their appearance? 
1028

1029
   [133]Q-56: In XFIXES mode, are there any hacks to handle cursor
1030 1031 1032 1033
   transparency ("alpha channel") exactly? 

   [Mouse Pointer]

1034
   [134]Q-57: Why does the mouse arrow just stay in one corner in my
1035 1036
   vncviewer, whereas my cursor (that does move) is just a dot? 

1037
   [135]Q-58: Can I take advantage of the TightVNC extension to the VNC
1038 1039 1040 1041
   protocol where Cursor Positions Updates are sent back to all connected
   clients (i.e. passive viewers can see the mouse cursor being moved
   around by another viewer)? 

1042
   [136]Q-59: Is it possible to swap the mouse buttons (e.g. left-handed
1043 1044 1045
   operation), or arbitrarily remap them? How about mapping button clicks
   to keystrokes, e.g. to partially emulate Mouse wheel scrolling? 

1046
   [Keyboard Issues]
1047

1048
   [137]Q-60: How can I get my AltGr and Shift modifiers to work between
1049 1050
   keyboards for different languages? 

1051
   [138]Q-61: When I try to type a "<" (i.e. less than) instead I get ">"
1052 1053
   (i.e. greater than)! Strangely, typing ">" works OK!! 

1054
   [139]Q-62: When I try to type a "<" (i.e. less than) instead I get
1055 1056
   "<," (i.e. an extra comma). 

1057
   [140]Q-63: I'm using an "international" keyboard (e.g. German "de", or
1058
   Danish "dk") and the -modtweak mode works well if the VNC viewer is
1059 1060 1061 1062
   run on a Unix/Linux machine with a similar keyboard.   But if I run
   the VNC viewer on Unix/Linux with a different keyboard (e.g. "us") or
   Windows with any keyboard, I can't type some keys like:   "@", "$",
   "<", ">", etc. How can I fix this? 
1063

1064
   [141]Q-64: When typing I sometimes get double, triple, or more of my
1065 1066
   keystrokes repeated. I'm sure I only typed them once, what can I do? 

1067
   [142]Q-65: The x11vnc -norepeat mode is in effect, but I still get
1068 1069
   repeated keystrokes!! 

1070
   [143]Q-66: The machine where I run x11vnc has an AltGr key, but the
1071 1072 1073 1074
   local machine where I run the VNC viewer does not. Is there a way I
   can map a local unused key to send an AltGr? How about a Compose key
   as well? 

1075
   [144]Q-67: I have a Sun machine I run x11vnc on. Its Sun keyboard has
1076 1077 1078 1079
   just one Alt key labelled "Alt" and two Meta keys labelled with little
   diamonds. The machine where I run the VNC viewer only has Alt keys.
   How can I send a Meta keypress? (e.g. emacs needs this) 

1080
   [145]Q-68: Can I map a keystroke to a mouse button click on the remote
1081 1082
   machine? 

1083 1084
   [Screen Related Issues and Features]

1085
   [146]Q-69: The remote display is larger (in number of pixels) than the
1086 1087 1088
   local display I am running the vncviewer on. I don't like the
   vncviewer scrollbars, what I can do? 

1089
   [147]Q-70: Does x11vnc support server-side framebuffer scaling? (E.g.
1090 1091
   to make the desktop smaller). 

1092
   [148]Q-71: Does x11vnc work with Xinerama? (i.e. multiple monitors
1093 1094
   joined together to form one big, single screen). 

1095
   [149]Q-72: Can I use x11vnc on a multi-headed display that is not
1096 1097
   Xinerama (i.e. separate screens :0.0, :0.1, ... for each monitor)? 

1098
   [150]Q-73: Can x11vnc show only a portion of the display? (E.g. for a
1099 1100
   special purpose rfb application). 

1101
   [151]Q-74: Does x11vnc support the XRANDR (X Resize, Rotate and
1102 1103 1104
   Reflection) extension? Whenever I rotate or resize the screen x11vnc
   just seems to crash. 

1105
   [152]Q-75: Why is the view in my VNC viewer completely black? Or why
1106
   is everything flashing around randomly? 
1107

1108
   [153]Q-76: I use Linux Virtual Consoles (VC's) to implement 'Fast User
1109 1110
   Switching' between users' sessions (e.g. Betty is on Ctrl-Alt-F7,
   Bobby is on Ctrl-Alt-F8, and Sid is on Ctrl-Alt-F1: they use those
1111
   keystrokes to switch between their sessions).   How come the view in a
1112 1113 1114 1115
   VNC viewer connecting to x11vnc is either completely black or
   otherwise all messed up unless the X session x11vnc is attached to is
   in the active VC? 

1116
   [154]Q-77: Can I use x11vnc to view my VMWare session remotely? 
1117

1118
   [155]Q-78: Can non-X devices (e.g. a raw framebuffer) be viewed and/or
1119 1120
   controlled by x11vnc? 

1121
   [156]Q-79: I am using x11vnc where my local machine has "popup/hidden
1122 1123 1124 1125
   taskbars" (e.g. GNOME or MacOS X) and the remote display where x11vnc
   runs also has "popup/hidden taskbars" (e.g. GNOME). When I move the
   mouse to the edge of the screen where the popups happen, the taskbars
   interfere and fight with each other in strange ways. What can I do? 
1126

1127
   [Misc: Clipboard, Beeps, Thanks, etc.]
1128

1129
   [157]Q-80: Does the Clipboard/Selection get transferred between the
1130 1131
   vncviewer and the X display? 

1132
   [158]Q-81: Why don't I hear the "Beeps" in my X session (e.g. when
1133
   typing tput bel in an xterm)? 
1134

1135
   [159]Q-82: Thanks for your program and for your help! Can I make a
1136
   donation? 
1137 1138
     _________________________________________________________________

1139 1140 1141

   [Building and Starting]

1142
   Q-1: I can't get x11vnc to start up. It says "XOpenDisplay failed
1143 1144
   (null)" or "Xlib: connection to ":0.0" refused by server Xlib: No
   protocol specified" and then exits. What do I need to do?
1145 1146

   For the former error, you need to specify the X display to connect to
1147
   (it also needs to be on the same machine the x11vnc process is to run
1148
   on). Set your DISPLAY environment variable or use the [160]-display
1149
   option to specify it. Nearly always the correct value will be ":0"
1150

1151

1152
   For the latter error, you need to set up the X11 permissions
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
   correctly.

   To make sure X11 permissions are the problem do this simple test:
   while sitting at the physical X display open a terminal window
   (gnome-terminal, xterm, etc). You should be able to start x11vnc
   without any need for special steps or command line options in that
   terminal. If that works OK then you know X11 permissions are the only
   thing preventing it from working when you try to start x11vnc via,
   say, a remote shell.

   How to Solve:  See the xauth(1), Xsecurity(7), and xhost(1) man pages
   for much info on X11 permissions. For example, you may need to set
1165
   your XAUTHORITY environment variable or use the [161]-auth option to
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
   point to the correct MIT-MAGIC-COOKIE file (e.g. /home/joe/.Xauthority
   or /var/gdm/:0.Xauth), or simply be sure you run x11vnc as the correct
   user (i.e. the user who owns the X session you wish to view).

   The cookie file contains the secret key that allows x11vnc to connect
   to the desired X display.

   If, say, sshd has set XAUTHORITY to point to a random file it has
   created for X forwarding that will cause problems. (Under some
   circumstances even su(1) and telnet(1) can set XAUTHORITY.) Running
   x11vnc as root is often not enough: you need to know where the
   MIT-MAGIC-COOKIE file for the desired X display is.   Example
   solution:
1179 1180
  x11vnc -display :0 -auth /var/gdm/:0.Xauth

1181
   (this is for the display manager gdm, see [162]this faq for other
1182 1183
   display manager cookie file names).

1184 1185 1186 1187
   Less safe, but to avoid figuring out where the XAUTHORITY file is, if
   the person sitting at the X session types "xhost +localhost" then one
   should be able to attach x11vnc to the session (from the same
   machine). The person could then type "xhost -localhost" after x11vnc
1188
   has connected to go back to the default permissions. Also, for some
1189
   situations the "-users lurk=" option may be of use (please read the
1190
   documentation on the [163]-users option).
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
   To test out your X11 permissions from a remote shell, set DISPLAY and
   possibly XAUTHORITY (see your shell's man page, bash(1), tcsh(1), on
   how to set environment variables) and type xdpyinfo in the same place
   you will be typing (or otherwise running) x11vnc. If information is
   printed out about the X display (screen sizes, supported extensions,
   color visuals info) that means the X11 permissions are set up
   properly: xdpyinfo successfully connected to DISPLAY! You could also
   type xclock and make sure no errors are reported (a clock should
   appear on the X display, press Ctrl-C to stop it). If these work, then
   typing "x11vnc" should also work.
1202 1203 1204

   Important: if you cannot get your X11 permissions so that the xdpyinfo
   or xclock tests work, x11vnc also will not work (all of these X
1205 1206
   clients must be allowed to connect to the X server to function
   properly).
1207

1208

1209 1210 1211 1212 1213 1214 1215
   Q-2: I can't get x11vnc and/or libvncserver to compile.

   Make sure you have all of the required -devel packages installed.
   These include X11/XFree86, libjpeg, libz, ...

   After running the libvncserver configure, carefully examine the output
   and the messages in the config.log file looking for missing
1216
   components. For example, if the configure output looks like:
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
  checking how to run the C preprocessor... gcc -E
  checking for X... no
  checking for XkbSelectEvents in -lX11... no
  checking for XineramaQueryScreens in -lXinerama... no
  checking for XTestFakeKeyEvent in -lXtst... no

   there is quite a bit wrong with the build environment. Hopefully
   simply adding -devel packages will fix it.

   For Debian the list seems to be:
  gcc
  make
  libc6-dev
  libjpeg62-dev
  libx11-dev
  libxext-dev
1233
  libxrandr-dev
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
  libxtst-dev
  x-dev
  xlibs-static-dev
  zlib1g-dev

   For Redhat the list seems to be:
  gcc
  make
  glibc-devel
  libjpeg-devel
  XFree86-devel
  zlib-devel

1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
   Q-3: I just built x11vnc successfully, but when I use it my keystrokes
   and mouse button clicks are ignored  (I am able to move the mouse
   though).

   This is most likely due to you not having a working build environment
   for the XTEST client library libXtst.so. The library is probably
   present on your system, but the package installing the development
   header file is missing.

   If you were watching carefully while configure was running you would
   have seen:
  checking for XTestFakeKeyEvent in -lXtst... no

   The solution is to add the necessary build environment package (and
   the library package if that is missing too). On Debian the build
   package is libxtst-dev. Other distros/OS's may have it in another
   package.

   x11vnc will build without support for this library (e.g. perhaps one
   wants a view-only x11vnc on a stripped down or embedded system...). At
   runtime it will also continue to run even if the X server it connects
   to does not support XTEST. In both cases it cannot inject keystrokes
   or button clicks since XTEST is needed for that (it can still move the
   mouse pointer using the X API XWarpPointer()).

   You will see a warning message something like this at run time:
  20/03/2005 22:33:09 WARNING: XTEST extension not available (either missing fr
om
  20/03/2005 22:33:09   display or client library libXtst missing at build time
).
  20/03/2005 22:33:09   MOST user input (pointer and keyboard) will be DISCARDE
D.
  20/03/2005 22:33:09   If display does have XTEST, be sure to build x11vnc wit
h
  20/03/2005 22:33:09   a working libXtst build environment (e.g. libxtst-dev,
  20/03/2005 22:33:09   or other packages).
  20/03/2005 22:33:09 No XTEST extension, switching to -xwarppointer mode for
  20/03/2005 22:33:09   pointer motion input.

1287

1288
   Q-4: Help, I need to run x11vnc on Solaris 2.5.1 (or other old
1289
   Unix/Linux) and it doesn't compile!
1290 1291

   We apologize that x11vnc does not build cleanly on older versions of
1292 1293 1294 1295 1296 1297 1298 1299
   Solaris, Linux, etc.: very few users are on these old releases.

   We have heard that since Dec/2004 a Solaris 2.6 built x11vnc will run
   on Solaris Solaris 2.5 and 2.5.1 (since a workaround for XConvertCase
   is provided).

   In any event, here is a workaround for Solaris 2.5.1 (and perhaps
   earlier and perhaps non-Solaris):
1300 1301

   First use the environment settings (CPPFLAGS, LDFLAGS, etc.) in the
1302
   above [164]Solaris build script to run the configure command. That
1303
   should succeed without failure. Then you have to hand edit the
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
   autogenerated rfb/rfbconfig.h file in the source tree, and just before
   the last #endif at the bottom of that file insert these workaround
   lines:
struct timeval _tmp_usleep_tv;
#define usleep(x) \
    _tmp_usleep_tv.tv_sec  = (x) / 1000000; \
    _tmp_usleep_tv.tv_usec = (x) % 1000000; \
    select(0, NULL, NULL, NULL, &_tmp_usleep_tv);
int gethostname(char *name, int namelen);
long random();
int srandom(unsigned int seed);
#undef LIBVNCSERVER_HAVE_LIBPTHREAD
#define SHUT_RDWR 2
typedef unsigned int in_addr_t;
1318
#define snprintf(a, n, args...) sprintf((a), ## args)
1319

1320 1321
   Then run make with the Solaris build script environment, everything
   should compile without problems, and the resulting x11vnc binary
1322 1323 1324 1325
   should work OK. If some non-x11vnc related programs fail (e.g. test
   programs) and the x11vnc binary is not created try "make -k" to have
   it keep going. Similar sorts of kludges in rfb/rfbconfig.h can be done
   on other older OS (Solaris, Linux, ...) releases.
1326

1327
   Here are some notes for similar steps that need to be done to build on
1328
   [165]SunOS 4.x
1329

1330 1331 1332 1333
   Please let us know if you had to use the above workaround (and whether
   it worked or not). If there is enough demand we will try to push clean
   compilations back to earlier Solaris, Linux, etc, releases.

1334

1335
   Q-5: Where can I get a precompiled x11vnc binary for my Operating
1336 1337
   System?

1338
   Hopefully the [166]build steps above and [167]FAQ provide enough info
1339 1340 1341 1342
   for a painless compile for most environments. Please report problems
   with the x11vnc configure, make, etc. on your system (if your system
   is known to compile other GNU packages successfully).

1343 1344
   There are precompiled x11vnc binaries built by other groups that are
   available at the following locations:
1345
    Debian:         (.deb)  [168]http://packages.debian.org/x11vnc
1346

1347 1348 1349 1350 1351
   Slackware: (.tgz) [169]http://www.linuxpackages.net/ Redhat/Fedora:
   (.rpm) [170]http://dag.wieers.com/packages/x11vnc/ SuSE: (.rpm)
   [171]http://linux01.gwdg.de/~pbleser/ Solaris: (pkg)
   [172]http://www.sunfreeware.com/ wwexptools: (.tgz)
   [173]http://www.bell-labs.com/project/wwexptools/packages.html
1352

1353
   If the above binaries don't work and building x11vnc on your OS fails
1354
   (and all else fails!) you can try one of [174]my collection of
1355
   binaries for various OS's and x11vnc releases.
1356 1357 1358 1359 1360 1361 1362 1363

   As a general note, the x11vnc program is simple enough you don't
   really need to install a package: the binary will in most cases work
   as is and from any location (as long as your system libraries are not
   too old, etc). So, for Linux distributions that are not one of the
   above, the x11vnc binary from the above packages has a good chance of
   working. You can "install" it by just copying the x11vnc binary to the
   desired directory in your PATH. Tip on extracting files from a Debian
1364 1365
   package: extract the archive via a command like: "ar x
   x11vnc_0.6-2_i386.deb" and then you can find the binary in the
1366 1367 1368
   resulting data.tar.gz tar file. Also, rpm2cpio(1) is useful in
   extracting files from rpm packages.

1369

1370
   Q-6: Where can I get a VNC Viewer binary (or source code) for the
1371 1372 1373 1374
   Operating System I will be viewing from?

   To obtain VNC viewers for the viewing side (Windows, Mac OS, or Unix)
   try here:
1375 1376 1377
     * [175]http://www.tightvnc.com/download.html
     * [176]http://www.realvnc.com/download-free.html
     * [177]http://sourceforge.net/projects/cotvnc/
1378

1379

1380
   Q-7: How can I see all of x11vnc's command line options and
1381 1382
   documentation on how to use them?

1383 1384
   Run:  x11vnc -opts   to list just the option names or run:  x11vnc
   -help   for long descriptions about each option. The output is listed
1385
   [178]here as well.
1386

1387

1388
   Q-8: I don't like typing arcane command line options every time I
1389
   start x11vnc. What can I do? Is there a config file? Or a GUI?
1390 1391 1392 1393 1394 1395 1396

   You could create a shell script that calls x11vnc with your options:
#!/bin/sh
#
# filename: X11vnc  (i.e. not "x11vnc")
# It resides in a directory in $PATH. "chmod 755 X11vnc" has been run on it.
#
1397
x11vnc -wait 50 -localhost -rfbauth $HOME/.vnc/passwd -display :0 $*
1398

1399 1400
   a similar thing can be done via aliases in your shell (bash, tcsh,
   csh, etc..).
1401 1402 1403 1404 1405

   Or as of Jun/2004 in the libvncserver CVS you can use the simple
   $HOME/.x11vncrc config file support. If that file exists, each line is
   taken as a command line option. E.g. the above would be:
# this is a comment in my ~/.x11vncrc file
1406
wait 50        # this is a comment to the end of the line.
1407 1408 1409 1410
-localhost     # note: the leading "-" is optional.
rfbauth  /home/fred/.vnc/passwd
display :0

1411 1412 1413
   As of Dec/2004 in the libvncserver CVS there is now a simple Tcl/Tk
   GUI based on the remote-control functionality ("-R") that was added.
   The /usr/bin/wish program is needed for operation. The gui is not
1414
   particularly user-friendly, it just provides a point and click mode to
1415
   set all the many x11vnc parameters and obtain help on them. See the
1416
   [179]-gui option for more info. Examples: "x11vnc ... -gui" and
1417
   "x11vnc ... -gui other:0" in the latter case the gui is displayed on
1418
   other:0, not the X display x11vnc is polling. There is also a
1419
   "[180]-gui tray" system tray mode.
1420

1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
   Q-9: How can I get the GUI to run in the System Tray, or at least be a
   smaller, simpler icon?

   As of Jul/2005 in the libvncserver CVS the gui can run in a more
   friendly small icon mode "-gui icon" or in the system tray: "-gui
   tray". It has balloon status, a simple menu, and a Properities dialog.
   The full, complicated, gui is only available under "Advanced". Other
   improvements were added as well. Try "Misc -> simple_gui" for a gui
   with fewer esoteric menu items.

   If the gui fails to embed itself in the system tray, do a retry via
   "Window View -> icon" followed by "Window View -> tray" with the popup
   menu.

   For inexperienced users starting up x11vnc and the GUI while sitting
   at the physical X display (not remotely), using something like "x11vnc
   -display :0 -gui tray=setpass" might be something for them that they
   are accustomed to in a Desktop environment (it prompts for an initial
   password, etc). This is a basic "Share My Desktop" mode.


   Q-10: Can I make x11vnc more quiet and also go into the background
1444
   after starting up?
1445

1446
   Use the [181]-q and [182]-bg options, respectively.  (also: -quiet is
1447
   an alias for -q)
1448

1449
   Note that under -bg the stderr messages will be lost unless you use
1450
   the "[183]-o logfile" option.
1451

1452

1453
   Q-11: Sometimes when a VNC viewer dies abruptly, x11vnc also dies with
1454 1455 1456 1457 1458 1459 1460
   the error message like: "Broken pipe". I'm using the -forever mode and
   I want x11vnc to keep running.

   As of Jan/2004 in the libvncserver CVS the SIGPIPE signal is ignored.
   So if a viewer client terminates abruptly, libvncserver will notice on
   the next I/O operation and will close the connection and continue on.

1461
   Up until of Apr/2004 the above fix only works for BSD signal systems
1462 1463
   (Linux, FreeBSD, ...) For SYSV systems there is a workaround in place
   since about Jun/2004.
1464

1465

1466
   Q-12: Are there any build-time customizations possible, e.g. change
1467 1468 1469 1470
   defaults, create a smaller binary, etc?

   As of Mar/2004 in the libvncserver cvs there are a few such options.
   They are enabled by adding something like -Dxxxx=1 to the CPPFLAGS
1471
   environment variable before running configure (see the [184]build
1472
   notes for general background).
1473 1474
     * -DVNCSHARED=1   make -shared the default.
     * -DFOREVER=1   make -forever the default.
1475
     * -DREMOTE_CONTROL=0   disable the remote control mechanism.
1476 1477 1478 1479
     * -DPASSWD_REQUIRED=1   require a password be supplied (-rfbauth,
       -passwdfile, ...)
     * -DPASSWD_UNLESS_NOPW=1   require a password unless -nopw is
       explicitly supplied.
1480 1481 1482 1483 1484 1485
     * -DSMALL_FOOTPRINT=1   strip out help text, gui, etc to make a
       smaller binary (e.g. for PDA or embedded system with low disk
       space). Also be sure to strip(1) the binary. Set to 2 or 3 to cut
       out even more.

   For example:
1486
  env CPPFLAGS="-DFOREVER=1" ./configure; make
1487 1488

   If other things (e.g. "-I ...") are needed in CPPFLAGS add them as
1489 1490
   well.

1491 1492 1493
   On some systems is seems you need to set LC_ALL=C for configure to
   work properly...

1494 1495 1496 1497 1498 1499 1500 1501
   Be careful the the following two variables: HARDWIRE_PASSWD and
   HARDWIRE_VIEWPASSWD. If set (remember to include the double quotes
   around the string), they will be used as default values for the
   -passwd and -viewpasswd options. Of course the strings will exist
   unobscured in the x11vnc: the binary better not be readable by
   unintendeds. Perhaps this is of use in remote access for an embedded
   application, etc...

1502 1503
   Let us know if more build-time customizations would be useful. Look
   near the top of the source file for any additional customization
1504 1505 1506 1507 1508
   macros. Here is the current (Jul/2005) list: REMOTE_CONTROL, NOPW,
   SMALL_FOOTPRINT, NOGUI, XDAMAGE, VNCSHARED, FOREVER, REMOTE_DEFAULT,
   EXTERNAL_COMMANDS, VIEWONLY, WIREFRAME, WIREFRAME_PARMS,
   WIREFRAME_COPYRECT, SCROLL_COPYRECT_PARMS, SCROLL_COPYRECT,
   SCALING_COPYRECT, NOREPEAT, SKIPDUPS, ADDKEYSYMS,
1509 1510
   POINTER_MODE_DEFAULT, DEBUG_XEVENTS, BOLDLY_CLOSE_DISPLAY, NOPW,
   PASSWD_REQUIRED, PASSWD_UNLESS_NOPW
1511

1512

1513 1514
   [Win2VNC Related]

1515
   Q-13: I have two separate machine displays in front of me, one Windows
1516 1517 1518 1519
   the other X11: can I use x11vnc in combination with Win2VNC in
   dual-screen mode to pass the keystrokes and mouse motions to the X11
   display?

1520
   Yes, for best response start up x11vnc with the "[185]-nofb" option
1521
   (disables framebuffer polling, and does other optimizations) on the
1522 1523
   secondary display (X11) machine. Then start up Win2VNC on the primary
   display (Windows) referring it to the secondary display.
1524

1525
   This will also work X11 to X11 using [186]x2vnc, however you would
1526 1527 1528 1529
   probably just want to avoid VNC and use x2x for that.

   For reference, here are some links to Win2VNC-like programs for
   multiple monitor setups:
1530 1531 1532 1533 1534
     * [187]Original Win2VNC
     * [188]Enhanced Win2VNC and [189]sourceforge link
     * [190]x2vnc
     * [191]x2x also [192]here
     * [193]zvnc (MorphOS)
1535

1536
   All of them will work with x11vnc (except x2x where it is not needed).
1537

1538

1539
   Q-14: I am running Win2VNC on my Windows machine and "x11vnc -nofb" on
1540 1541
   Unix to pass keyboard and mouse to the Unix monitor. Whenever I start
   Win2VNC it quickly disconnects and x11vnc says:
1542
   rfbProcessClientNormalMessage: read: Connection reset by peer
1543 1544

   Is the default visual of the X display you run x11vnc on low color
1545 1546 1547 1548
   (e.g. 8 bit per pixel PseudoColor)? (you can run xdpyinfo to check,
   look in the "screen" section). There seems to be a bug in Win2VNC in
   that it cannot deal correctly with colormaps (PseudoColor is the most
   common example of a visual with a colormap).
1549 1550 1551

   If so, there are a couple options. 1) Can you set the default visual
   on your display to be depth 24 TrueColor? Sun machines often have 8+24
1552 1553
   overlay/multi-depth visuals, and you can make the default visual depth
   24 TrueColor (see fbconfig(1) and Xsun(1)). 2) As of Feb/2004, in the
1554
   libvncserver CVS, x11vnc has the [194]-visual option to allow you to
1555 1556
   force the framebuffer visual to whatever you want (this usually messes
   up the colors unless you are very clever). In this case, the option
1557
   provides a convenient workaround for the Win2VNC bug:
1558 1559 1560
  x11vnc -nofb -visual TrueColor -display :0 ...

   So the visual will be set to 8bpp TrueColor and Win2VNC can handle
1561 1562
   this. Since Win2VNC does not use the framebuffer data there should be
   no problems in doing this.
1563
   [Color Issues]
1564

1565
   Q-15: The X display I run x11vnc on is only 8 bits per pixel (bpp)
1566
   PseudoColor (i.e. only 256 distinct colors). The x11vnc colors may
1567
   start out OK, but after a while they are incorrect in certain windows.
1568

1569
   Use the [195]-flashcmap option to have x11vnc watch for changes in the
1570 1571 1572 1573 1574 1575 1576 1577
   colormap, and propagate those changes back to connected clients. This
   can be slow (since the whole screen must be updated over the network
   whenever the colormap changes). This flashing colormap behavior often
   happens if an application installs its own private colormap when the
   mouse is in its window. "netscape -install" is a well-known historical
   example of this. Consider reconfiguring the system to 16 bpp or depth
   24 TrueColor if at all possible.

1578
   Also note that in some rare cases the [196]-notruecolor option has
1579 1580 1581 1582
   corrected colors on 8bpp displays. The red, green, and blue masks were
   non-zero in 8bpp PseudoColor on an obscure setup, and this option
   corrected the problems.

1583

1584
   Q-16: Color problems: Why are the colors for some windows incorrect in
1585 1586 1587
   x11vnc? BTW, my X display has nice overlay/multi-depth visuals of
   different color depths: e.g. there are both depth 8 and 24 visuals
   available at the same time.
1588

1589
   You may want to review the [197]previous question regarding 8 bpp
1590
   PseudoColor.
1591

1592
   On some hardware (Sun/SPARC, Sgi), the [198]-overlay option discussed
1593 1594
   a couple paragraphs down may solve this for you (you may want to skip
   to it directly).
1595 1596 1597 1598 1599 1600 1601 1602

   Run xdpyinfo(1) to see what the default visual is and what the depths
   of the other visuals are. Does the default visual have a depth of 8?
   If it does, can you possibly re-configure your X server to make the
   depth 24 visual the default? If you can do it, this will save you a
   lot of grief WRT colors and x11vnc (and for general usage too!). Here
   is how I do this on an old Sparcstation 20 running Solaris 9 with SX
   graphics
1603 1604
  xinit -- -dev /dev/fb defclass TrueColor defdepth 24

1605 1606
   and it works nicely (note: to log into console from the dtlogin
   window, select "Options -> Command Line Login", then login and enter
1607 1608 1609 1610
   the above command). See the -dev section of the Xsun(1) manpage for a
   description of the above arguments. If you have root permission, a
   more permanent and convenient thing to do is to record the arguments
   in a line like:
1611 1612
  :0  Local local_uid@console root /usr/openwin/bin/Xsun -dev /dev/fb defclass
TrueColor defdepth 24
1613

1614 1615
   in /etc/dt/config/Xservers (copy /usr/dt/config/Xservers). Also look
   at the fbconfig(1) and related manpages (e.g. ffbconfig, m64config,
1616
   pgxconfig, SUNWjfb_config, etc ...) for hardware framebuffer settings
runge's avatar
runge committed
1617 1618 1619 1620 1621 1622 1623 1624 1625
   that may achieve the same effect.

   In general for non-Sun machines, look at the "-cc class" and related
   options in your X server manpage (perhaps Xserver(1)), it may allow
   modifying the default visual (e.g. "-cc 4", see <X11/X.h> for the
   visual class numbers). On XFree86 some video card drivers (e.g. Matrox
   mga) have settings like Option "Overlay" "24,8" to support multi-depth
   overlays. For these, use the "-cc 4" X server command line option to
   get a depth 24 default visual.
1626

1627

1628
   The -overlay mode: Another option is if the system with overlay
1629
   visuals is a Sun system running Solaris or Sgi running IRIX you can
1630
   use the [199]-overlay x11vnc option (Aug/2004) to have x11vnc use the
1631 1632 1633 1634
   Solaris XReadScreen(3X11) function to poll the "true view" of the
   whole screen at depth 24 TrueColor. XReadDisplay(3X11) is used on
   IRIX. This is useful for Legacy applications (older versions of
   Cadence CAD apps are mentioned by x11vnc users) that require the
runge's avatar
runge committed
1635 1636 1637
   default depth be 8bpp, or the app will use a 8bpp visual even if depth
   24 visuals are available, and so the default depth workaround
   described in the previous paragraph is not sufficient for these apps.
1638 1639

   Misc. notes on -overlay mode: An amusing by-product of -overlay mode
1640 1641
   is that mouse cursor shape is correct. The -overlay mode may be
   somewhat slower than normal mode due to the extra framebuffer
1642 1643
   manipulations that must be performed. Also, on Solaris there is a bug
   in that for some popup menus, the windows they overlap will have
1644 1645
   painting errors (flashing colors) while the popup is up (a workaround
   is to disable SaveUnders by passing -su to Xsun, e.g. in your
1646
   /etc/dt/config/Xservers file).
1647

1648

runge's avatar
runge committed
1649
   Colors still not working correctly? Run xwininfo on the application
1650
   with the incorrect colors to verify that the depth of its visual is
runge's avatar
runge committed
1651
   different from the default visual depth (gotten from xdpyinfo). One
1652
   possible workaround in this case is to use the [200]-id option to
runge's avatar
runge committed
1653 1654 1655
   point x11vnc at the application window itself. If the application is
   complicated (lots of toplevel windows and popup menus) this may not be
   acceptable, and may even crash x11vnc (but not the application).
1656

1657 1658
   It is theoretically possible to solve this problem in general (see
   xwd(1) for example), but it does not seem trivial or sufficiently fast
1659
   for x11vnc to be able to do so in real time. Fortunately the
1660
   [201]-overlay option works for Solaris machines with overlay visuals
1661
   where most of this problem occurs.
1662

1663

1664
   Q-17: How do I figure out the window id to supply to the -id windowid
1665 1666 1667 1668
   option?

   Run the xwininfo program in a terminal. It will ask you to click on
   the desired application window. After clicking, it will print out much
1669 1670
   information, including the window id (e.g. 0x6000010). Also, the
   visual and depth of the window printed out is often useful in
1671
   debugging x11vnc [202]color problems.
1672

1673
   Also, as of Dec/2004 libvncserver CVS you can use "[203]-id pick" to
1674
   have x11vnc run xwininfo(1) for you and after you click the window it
1675
   extracts the windowid. Besides "pick" there is also "id:root" to allow
1676 1677
   you to go back to root window when doing remote-control.

1678

1679
   Q-18: Why don't menus or other transient windows come up when I am
1680 1681 1682 1683 1684 1685
   using the -id windowid option to view a single application window?

   This is related to the behavior of the XGetImage(3X11) and
   XShmGetImage() interfaces regarding backingstore, saveunders, etc. The
   way the image is retrieved depends on some aspects of how the X server
   maintains the display image data and whether other windows are
1686 1687 1688
   clipping or obscuring it. See the XGetImage(3X11) man page for more
   details. If you disable BackingStore and SaveUnders in the X server
   you should be able to see these transient windows.
1689 1690

   If things are not working and you still want to do the single window
1691
   polling, try the [204]-sid windowid option ("shifted" windowid).
1692

1693

1694
   Q-19: My X display is depth 24 at 24bpp (instead of the normal depth
1695
   24 at 32bpp). I'm having lots of color and visual problems with x11vnc
runge's avatar
runge committed
1696
   and/or vncviewer. What's up?
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

   First off, depth 24 at 24bpp (bpp=bits-per-pixel) is fairly uncommon
   and can cause problems in general. It also can be slower than depth 24
   at 32bpp. You might want to switch to 32bpp (for XFree86 see the
   "-fbbpp 32", DefaultFbBpp, FbBpp and related options). Perhaps you
   have 24bpp because the video memory of the machine is low and the
   screen wouldn't fit in video RAM at 32bpp. For this case depth 16 at
   16bpp might be an acceptable option.

   In any event x11vnc should handle depth 24 at 24bpp (although
   performance may be slower). There are some caveats involving the
   viewer however:

   The RealVNC Unix viewer cannot handle 24bpp from the server, it will
   say: "main: setPF: not 8, 16 or 32 bpp?" and exit. I have not checked
   the RealVNC Windows viewer.

   So you need to use the TightVNC Unix viewer. However there are some
   problems with that too. It seems libvncserver does not do 24bpp
   correctly with the Tight encoding. The colors and screen ultimately
   get messed up. So you have to use a different encoding with the
   TightVNC vncviewer, try "zlib", "hextile", or one of the other
   encodings (e.g. vncviewer -encodings "zlib hextile" ...). I have not
   checked the TightVNC or UltraVNC Windows viewers.

   It appears the older RealVNC Unix viewers (e.g. 3.3.3 and 3.3.7) can
   handle 24bpp from the server, so you may want to use those. They
   evidently request 32 bpp and libvncserver obliges.

   Now coming the opposite direction if you are running the vncviewer on
   the 24bpp display, TightVNC will fail with "Can't cope with 24
   bits-per-pixel. Sorry." and RealVNC will fail with "main: Error:
   couldn't find suitable pixmap format" so evidently you cannot use
   24bpp for the vncviewers to work on that X display.
   [Xterminals]

1733
   Q-20: Can I use x11vnc to view and interact with an Xterminal (e.g.
1734 1735 1736 1737 1738 1739
   NCD) that is not running UNIX and so x11vnc cannot be run on it
   directly?

   You can, but it will likely be very wasteful of network bandwidth
   since you will be polling the X display over the network as opposed to
   over the local hardware. To do this, run x11vnc on a UNIX machine as
1740
   close as possible network-wise (e.g. same switch) to the Xterminal
1741
   machine. Use the [205]-display option to point the display to that of
1742
   the Xterminal (you'll of course need basic X11 permission to do that)
1743
   and also supply the [206]-noshm option (this enables the polling over
1744
   the network).
1745

1746 1747
   The response will likely be sluggish (maybe only one "frame" per
   second). This mode is not recommended except for "quick checks" of
1748
   hard to get to X servers. Use something like "-wait 150" to cut down
1749
   on the polling rate. You may also need [207]-flipbyteorder if the
1750
   colors get messed up due to endian byte order differences.
1751

1752 1753
   Q-21: How do I get my X permissions (MIT-MAGIC-COOKIE file) correct
   for a Unix/Linux machine acting as an Xterminal?
1754

1755 1756 1757
   If the X display machine is a traditional Xterminal (where the X
   server process runs on the Xterminal box, but all of the X client
   applications (mozilla, etc) run on a central server (aka "terminal
1758 1759
   server")), you will need to log into the Xterminal machine (i.e. get a
   shell running there) and then start the x11vnc program. If the
1760 1761 1762 1763 1764 1765 1766
   Xterminal Linux/Unix machine is stripped down (e.g. no users besides
   root) that may be difficult.

   The next problem is the login Display Manager (e.g. gdm, kdm), and
   hence the MIT-MAGIC-COOKIE auth files, are on the central server and
   not on the Xterminal box where the X server and x11vnc processes are.

1767 1768 1769 1770 1771 1772
   So unless X permissions are completely turned off (e.g. "xhost +"), to
   run the x11vnc process on the Xterminal box the MIT-MAGIC-COOKIE auth
   file data (XAUTHORITY or $HOME/.Xauthority) must be accessible by or
   copied to the Xterminal. If $HOME/.Xauthority is exported via NFS
   (this is insecure of course, but has been going on for decades), then
   x11vnc can simply pick it up via NFS (you may need to use the
1773
   [208]-auth option to point to the correct file). Other options include
1774
   copying the auth file using scp, or something like:
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
  central-server>  xauth nextract - xterm123:0 | ssh xterm123 xauth nmerge -

   and then, say, ssh from central-server to xterm123 to start x11vnc.
   Here "xterm123" refers to the computer acting as the Xterminal and
   "central-server" is the terminal server. You can use "xauth -f
   /path/to/cookie-file list" to examine the contents of the cookie(s) in
   a file "/path/to/cookie-file". See the xauth(1) manpage for more
   details.

   If the display name in the cookie file needs to be changed between the
1785
   two hosts, see [209]this note on the "xauth add ..." command.
1786

1787
   A less secure option is to run something like "xhost +127.0.0.1" while
1788 1789 1790
   sitting at the Xterminal box to allow cookie-free local access for
   x11vnc. You can run "xhost -127.0.0.1" after x11vnc connects if you
   want to go back to the original permissions.
1791 1792 1793

   If the Xterminal is really stripped down and doesn't have any user
   accounts, NFS, etc. you'll need to contact your system administrator
1794 1795 1796 1797
   to set something up. It can be done!!!  Some Xterminal projects have
   actually enabled "run locally" facilities for the running of an
   occasional app more efficiently locally on the Xterminal box (e.g.
   realplayer).
1798

1799
   Not recommended, but as a last resort, you could have x11vnc [210]poll
1800 1801 1802
   the Xterminal Display over the network. For this you would run a
   "x11vnc -noshm ..." process on the central-server (and hope the
   network admin doesn't get angry...)
1803 1804 1805 1806

   Note: use of Display Manager (gdm, kdm, ...) auth cookie files (i.e.
   from /var/...,  /tmp/..., or elsewhere) may require modification via
   xauth(1) to correctly include the display x11vnc refers to (e.g.
1807
   "xauth -f cookie-file add :0 . 45be51ae2ce9dfbacd882ab3ef8e96b1",
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
   where the "45be51..." cookie value was found from an "xauth -f
   /path/to/original/cookie-file list") or other reasons. See xauth(1)
   manpage for full details on how to transfer an MIT-MAGIC-COOKIE
   between machines and displays.

   VNCviewer performance on Xterminals:  This isn't related to x11vnc on
   Xterminals, but we mention it here anyway because of the similar
   issues. If you are on an Xterminal and want to use vncviewer to
   connect to a VNC server somewhere, then performance would be best if
   you ran the viewer on the Xterminal box. Otherwise, (i.e. running the
   viewer process on the central-server) all of the vncviewer screen
   drawing is done more inefficiently over the network. Something to
   consider, especially on a busy network. (BTW, this has all of the
   above permission, etc, problems: both vncviewer and x11vnc are X
   client apps desired to be run on the Xterminal box).
1823 1824

   [Remote Control]
1825

1826
   Q-22: How do I stop x11vnc once it is running in the background?
1827

1828 1829
   As of Dec/2004 in the libvncserver CVS there is a remote control
   feature. It can change a huge amount of things on the fly: see the
1830
   [211]-remote and [212]-query options. To shut down the running x11vnc
1831 1832
   server just type "x11vnc -R stop". To disconnect all clients do
   "x11vnc -R disconnect:all", etc.
1833

1834
   If the [213]-forever option has not been supplied, x11vnc will
1835 1836 1837 1838
   automatically exit after the first client disconnects. In general you
   will have to kill the x11vnc process This can be done via: "kill
   NNNNN" (where NNNNN is the x11vnc process id number found from ps(1)),
   or "pkill x11vnc", or "killall x11vnc" (Linux only).
1839

1840
   If you have not put x11vnc in the background via the [214]-bg option
1841
   or shell & operator, then simply press Ctrl-C in the shell where
1842 1843 1844 1845 1846 1847 1848 1849
   x11vnc is running to stop it.

   Potential Gotcha: If somehow your Keypress of Ctrl-C went through
   x11vnc to the Xserver that then delivered it to x11vnc it is possible
   one or both of the Ctrl or C keys will be left stuck in the pressed
   down state in the Xserver. Tapping the stuck key (either via a new
   x11vnc or at the physical console) will release it from the stuck
   state. If the keyboard seems to be acting strangely it is often fixed
1850 1851
   by tapping Ctrl, Shift, and Alt. Alternatively, the [215]-clear_mods
   option and [216]-clear_keys option can be used to release pressed keys
1852 1853 1854 1855
   at startup and exit.


   Q-23: Can I change settings in x11vnc without having to restart it?
1856
   Can I remote control it?
1857

1858
   Look at the [217]-remote (same as -R) and [218]-query (same as -Q)
1859 1860 1861 1862 1863 1864 1865 1866 1867
   options added in the Dec/2004 libvncserver CVS. They allow nearly
   everything to be changed dynamically and settings to be queried.
   Examples: "x11vnc -R shared", "x11vnc -R forever", "x11vnc -R
   scale:3/4", "x11vnc -Q modtweak", "x11vnc -R stop", "x11vnc -R
   disconnect:all", etc.. These commands do not start a x11vnc server,
   but rather communicate with one that is already running. The X display
   (VNC_CONNECT property) is used as the communication channel, so the X
   permissions and DISPLAY must be set up correctly for communication to
   be possible.
1868

1869
   There is also a simple Tcl/Tk gui based on this remote control
1870
   mechanism. See the [219]-gui option for more info. You will need to
1871 1872 1873
   have Tcl/Tk (i.e. /usr/bin/wish) installed for it to work. It can also
   run in the system tray: "-gui tray" or as a standalone icon window:
   "-gui icon".
1874

1875 1876
   [Security and Permissions]

1877
   Q-24: How do I create a VNC password for use with x11vnc?
1878 1879 1880 1881 1882 1883 1884

   You may already have one in $HOME/.vnc/passwd if you have used, say,
   the vncserver program from the regular RealVNC or TightVNC packages
   (i.e. launching the Xvnc server). Otherwise, you could use the
   vncpasswd(1) program from those packages. The libvncserver package
   also comes with a simple program: storepasswd in the examples
   directory. And as of Jun/2004 in the libvncserver CVS x11vnc supports
1885
   the -storepasswd "pass" "file" [220]option, which is the the same
1886 1887 1888 1889
   functionality of storepasswd. Be sure to quote the "pass" if it
   contains shell meta characters, spaces, etc. Example:
  x11vnc -storepasswd 'sword*fish' $HOME/myvncpasswd

1890
   You then use the password via the x11vnc option: [221]-rfbauth
1891 1892 1893 1894 1895 1896 1897 1898
   $HOME/myvncpasswd

   Compared to vncpasswd(1) the latter two methods are a somewhat unsafe
   because the password is specified on the command line and so someone
   may see it by using ps(1) or looking over your shoulder. Also watch
   out for the command winding up in your shell's history file (history
   -c is often a way to clear it).

1899
   x11vnc also has the [222]-passwdfile and -passwd/-viewpasswd plain
1900 1901 1902
   text (i.e. not obscured like the -rfbauth VNC passwords) password
   options.

1903

1904
   Q-25: Can I have two passwords for VNC viewers, one for full access
1905 1906 1907
   and the other for view-only access to the display?

   Yes, as of May/2004 in the libvncserver CVS there is the
1908 1909
   [223]-viewpasswd option to supply the view-only password. Note the
   full-access password option [224]-passwd must be supplied at the same
1910 1911 1912 1913
   time. E.g.: -passwd sword -viewpasswd fish.

   To avoid specifying the passwords on the command line (where they
   could be observed via the ps(1) command by any user) you can use the
1914
   [225]-passwdfile option to specify a file containing plain text
1915 1916 1917 1918 1919 1920 1921
   passwords. Presumably this file is readable only by you, and ideally
   it is located on the machine x11vnc is run on (to avoid being snooped
   on over the network). The first line of this file is the full-access
   password. If there is a second line in the file and it is non-blank,
   it is taken as the view-only password. (use "__EMPTY__" to supply an
   empty one).

1922
   View-only passwords currently do not work for the [226]-rfbauth
1923 1924 1925 1926 1927 1928 1929 1930
   password option (standard VNC password storing mechanism). FWIW, note
   that although the output (usually placed in $HOME/.vnc/passwd) by the
   vncpasswd or storepasswd programs (or from x11vnc -storepasswd) looks
   encrypted they are really just obscured to avoid "casual" password
   stealing. It takes almost no skill to figure out how to extract the
   plain text passwords from $HOME/.vnc/passwd since it is very
   straight-forward to work out what to do from the VNC source code.

1931

1932
   Q-26: Can I fine tune what types of user input are allowed? E.g. have
1933 1934 1935
   some users just be able to move the mouse, but not click or type
   anything?

1936
   As of Feb/2005, the [227]-input option allows you to do this. "K",
1937 1938 1939 1940 1941 1942 1943 1944
   "M", and "B" stand for Keystroke, Mouse-motion, and Button-clicks,
   respectively. The setting: "-input M" makes attached viewers only able
   to move the mouse. "-input KMB,M" lets normal clients do everything
   and enables view-only clients to move the mouse.

   These settings can also be applied on a per-viewer basis via the
   remote control mechanism or the GUI. E.g. x11vnc -R input:hostname:M

1945

1946
   Q-27: Why does x11vnc exit as soon as the VNC viewer disconnects? And
1947 1948 1949 1950 1951
   why doesn't it allow more than one VNC viewer to connect at the same
   time?

   These defaults are simple safety measures to avoid someone unknowingly
   leaving his X11 desktop exposed (to the internet, say) for long
1952
   periods of time. Use the [228]-forever option (aka -many) to have
1953
   x11vnc wait for more connections after the first client disconnects.
1954
   Use the [229]-shared option to have x11vnc allow multiple clients to
1955
   connect simultaneously.
1956

1957
   Recommended additional safety measures include using ssh ([230]see
1958
   above), stunnel, or a VPN to authenticate and encrypt the viewer
1959 1960
   connections or to at least use the -rfbauth passwd-file [231]option to
   use VNC password protection (or [232]-passwdfile) It is up to YOU to
1961 1962 1963
   apply these security measures, they will not be done for you
   automatically.

1964

1965
   Q-28: Can I limit which machines incoming VNC clients can connect
1966 1967
   from?

1968
   Yes, look at the [233]-allow and [234]-localhost options to limit
1969
   connections by hostname or IP address. E.g.
1970 1971 1972 1973 1974
  x11vnc -allow 192.168.0.1,192.168.0.2

   for those two hosts or
  x11vnc -allow 192.168.0.

1975
   for a subnet. For individual hosts you can use the hostname instead of
1976 1977
   the IP number, e.g.: "-allow snoopy", and "-allow darkstar,wombat".
   Note that -localhost is the same as "-allow 127.0.0.1"
1978 1979

   For more control, build libvncserver with libwrap support
1980
   [235](tcp_wrappers) and then use /etc/hosts.allow See hosts_access(5)
1981
   for complete details.
1982

1983

1984
   Q-29: How do I build x11vnc/libvncserver with libwrap (tcp_wrappers)
1985 1986 1987 1988 1989 1990
   support?

   Here is one way to pass this information to the configure script:
  env CPPFLAGS=-DUSE_LIBWRAP LDFLAGS=-lwrap ./configure

   then run make as usual. This requires libwrap and its development
1991
   package (tcpd.h) to be installed on the build machine. If additional
1992 1993
   CPPFLAGS or LDFLAGS options are needed supply them as well using
   quotes.
1994 1995 1996 1997 1998 1999

   The resulting x11vnc then uses libwrap/tcp_wrappers for connections.
   The service name you will use in /etc/hosts.allow and /etc/hosts.deny
   is "vnc", e.g.:
  vnc: 192.168.100.3 .example.com

2000
   Note that if you run x11vnc out of [236]inetd you do not need to build
2001 2002 2003
   x11vnc with libwrap support because the /usr/sbin/tcpd reference in
   /etc/inetd.conf handles the tcp_wrappers stuff.

2004

2005
   Q-30: Can I have x11vnc only listen on one network interface (e.g.
runge's avatar
runge committed
2006 2007 2008
   internal LAN) rather than having it listen on all network interfaces
   and relying on -allow to filter unwanted connections out?

2009
   As of Mar/2005 in the libvncserver CVS, there is the "[237]-listen
runge's avatar
runge committed
2010 2011 2012
   ipaddr" option that enables this. For ipaddr either supply the desired
   network interface's IP address (or use a hostname that resolves to it)
   or use the string "localhost". For additional filtering simultaneously
2013
   use the "[238]-allow host1,..." option to allow only specific hosts
runge's avatar
runge committed
2014 2015
   in.

2016 2017
   This option is useful if you want to insure that no one can even begin
   a dialog with x11vnc from untrusted network interfaces (e.g. ppp0).
2018
   The option [239]-localhost now implies "-listen localhost" since that
2019
   is what most people expect it to do.
runge's avatar
runge committed
2020

2021

2022
   Q-31: Now that -localhost implies listening only on the loopback
2023
   interface, how I can occasionally allow in a non-localhost via the -R
runge's avatar
runge committed
2024 2025
   allowonce remote control command?

2026
   To do this specify "[240]-allow localhost". Unlike [241]-localhost
runge's avatar
runge committed
2027 2028 2029 2030 2031 2032
   this will leave x11vnc listening on all interfaces (but of course only
   allowing in local connections, e.g. ssh redirs). Then you can later
   run "x11vnc -R allowonce:somehost" or use to gui to permit a one-shot
   connection from a remote host.

   Note that if you do a lot of changing of the listening interface
2033 2034
   ([242]-listen option) via remote control or gui, you may need to also
   manually adjust the [243]-allow list if you unexpectedly get into a
runge's avatar
runge committed
2035
   state where the allow list cannot match any hosts that would be coming
2036
   in on the listening interface. If you just toggle [244]-localhost on
runge's avatar
runge committed
2037 2038
   and off x11vnc should see to it that you never get into such a state.

2039

2040
   Q-32: How can I tunnel my connection to x11vnc via an encrypted SSH
2041 2042
   channel between two Unix machines?

2043
   See the description earlier on this page on [245]how to tunnel VNC via
2044 2045 2046 2047 2048 2049
   SSH from Unix to Unix. A number of ways are described along with some
   issues you may encounter.

   Other secure encrypted methods exists, e.g. stunnel, IPSEC, various
   VPNs, etc.

2050

2051
   Q-33: How can I tunnel my connection to x11vnc via an encrypted SSH
2052 2053
   channel from Windows using an SSH client like Putty?

2054
   [246]Above we described how to tunnel VNC via SSH from Unix to Unix,
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
   you may want to review it. To do this from Windows using Putty it
   would go something like this:
     * In the Putty dialog window under 'Session' enter the hostname or
       IP number of the Unix machine with display to be viewed.
     * Make sure the SSH protocol is selected and the server port is
       correct.
     * Under 'Connections/SSH/Tunnels' Add a Local connection with
       'Source port:  5900' and 'Destination:  localhost:5900'
     * Log into the remote machine by pressing 'Open' and supplying
       username, password, etc.
     * In that SSH shell, start up x11vnc by typing the command: x11vnc
2066
       -display :0 plus any other desired options (e.g. -localhost).
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
     * Finally, start up your VNC Viewer in Windows and enter
       'localhost:0' as the VNC server.

   You can keep all of the settings in a Putty 'Saved Session'. Also,
   once everything is working, you can consider putting x11vnc -display
   :0 (plus other cmdline options) in the 'Remote command' Putty setting
   under 'Connections/SSH'. It is likely possible to script the whole
   process in a BAT file including launching the VNC viewer by using the
   plink Putty utility. Send us the script if you get that working.

2077 2078
   For extra protection feel free to run x11vnc with the [247]-localhost
   and [248]-rfbauth/[249]-passwdfile options.
2079 2080 2081 2082 2083 2084

   If the machine you SSH into via Putty is not the same machine with the
   X display you wish to view (e.g. your company provides incoming SSH
   access to a gateway machine), then you need to change the above Putty
   dialog setting to: 'Destination: otherhost:5900', Once logged in,
   you'll need to do a second login (ssh or rsh) to the workstation
2085
   machine 'otherhost' and then start up x11vnc on it. This can also be
2086
   automated by [250]chaining ssh's.
2087

2088
   As discussed [251]above another option is to first start the VNC
2089
   viewer in "listen" mode, and then launch x11vnc with the
2090
   "[252]-connect localhost" option to establish the reverse connection.
2091 2092 2093 2094
   In this case a Remote port redirection (not Local) is needed for port
   5500 instead of 5900 (i.e. 'Source port:  5500' and
   'Destination:  localhost:5500' for a Remote connection).

2095

2096
   Q-34: Can I prompt the user at the local X display whether the
2097 2098 2099 2100
   incoming VNC client should be accepted or not? Can I decide to make
   some clients view-only? How about running an arbitrary program to make
   the decisions?

2101
   Yes, look at the "[253]-accept command" option, it allows you to
2102 2103 2104 2105
   specify an external command that is run for each new client. (use
   quotes around the command if it contains spaces, etc.). If the
   external command returns 0 the client is accepted, otherwise the
   client is rejected. See below how to also accept clients view-only.
2106 2107 2108 2109 2110 2111 2112 2113

   The external command will have the RFB_CLIENT_IP environment variable
   set to the client's numerical IP address, RFB_CLIENT_PORT its port
   number. Similarly for RFB_SERVER_IP and RFB_SERVER_PORT to allow
   identification of the tcp virtual circuit. DISPLAY will be set to that
   of the X11 display being polled. Also, RFB_X11VNC_PID is set to the
   x11vnc process id (e.g. in case you decided to kill it), RFB_CLIENT_ID
   will be an id number, and RFB_CLIENT_COUNT the number of other clients
2114
   currently connected. RFB_MODE will be "accept".
2115 2116 2117 2118 2119

   As a special case, "-accept popup" will instruct x11vnc to create its
   own simple popup window. To accept the client press "y" or click mouse
   on the "Yes" button. To reject the client press "n" or click mouse on
   the "No" button. To accept the client View-only, press "v" or click
2120
   mouse on the "View" button. If the [254]-viewonly option has been
2121 2122
   supplied, the "View" action will not be present: the whole display is
   view only in that case.
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

   The popup window times out after 120 seconds, to change this behavior
   use "-accept popup:N" where N is the number of seconds (use 0 for no
   timeout). More tricks: "-accept popupmouse" will only take mouse click
   responses, while "-accept popupkey" will only take keystroke responses
   (popup takes both). After any of the 3 popup keywords you can supply a
   position of the window: +N+M, (the default is to center the window)
   e.g. -accept popupmouse+10+10.

   Also as a special case "-accept xmessage" will run the xmessage(1)
   program to prompt the user whether the client should be accepted or
   not. This requires that you have xmessage installed and available via
   PATH. In case it is not already on your system, the xmessage program
2136
   is available at [255]ftp://ftp.x.org/
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

   To include view-only decisions for the external commands, prefix the
   command something like this: "yes:0,no:*,view:3 mycommand ..." This
   associates the three actions: yes(accept), no(reject), and
   view(accept-view-only), with the numerical return codes. Use "*"
   instead of a number to set the default action (e.g. in case the
   external command returns an unexpected return code).

   Here is an example -accept script called accept_or_lock. It uses
   xmessage and xlock (replace with your screen lock command, maybe it is
   "xscreensaver-command -lock", or kdesktop_lock, or "dtaction
   LockDisplay"). It will prompt the user at the X display whether to
   accept, reject, or accept view-only the client, but if the prompt
   times out after 60 seconds the screen is locked and the VNC client is
   accepted. This allows the remote access when no one is at the display.
#!/bin/sh
#
# accept_or_lock: prompt user at X display whether to accept an incoming
#                 VNC connection.  If timeout expires, screen is locked
#                 and the VNC viewer is accepted (allows remote access
#                 when no one is sitting at the display).
#
# usage: x11vnc ... -forever -accept 'yes:0,no:*,view:4 accept_or_lock'
#
xmessage -buttons yes:2,no:3,view-only:4 -center \
         -timeout 60 "x11vnc: accept connection from $RFB_CLIENT_IP?"
rc=$?
if [ $rc = 0 ]; then
        xlock &
        sleep 5
        exit 0
elif [ $rc = 2 ]; then
        exit 0
elif [ $rc = 4 ]; then
        exit 4
fi
exit 1

2175
   Stefan Radman has written a nice dtksh script [256]dtVncPopup for use
2176 2177 2178 2179 2180 2181
   in CDE environments to do the same sort of thing. Information on how
   to use it is found at the top of the file. He encourages you to
   provide feedback to him to help improve the script.

   Note that in all cases x11vnc will block while the external command or
   popup is being run, so attached clients will not receive screen
runge's avatar
runge committed
2182
   updates, etc during this period.
2183

2184
   To run a command when a client disconnects, use the "[257]-gone
2185 2186
   command" option. This is for the user's convenience only: the return
   code of the command is not interpreted by x11vnc. The same environment
2187 2188
   variables are set as in "-accept command" (except that RFB_MODE will
   be "gone").
2189

2190

2191
   Q-35: Does x11vnc support Unix usernames and passwords? Can I further
2192 2193 2194 2195 2196 2197
   limit the set of Unix usernames who can connect to the VNC desktop?

   Until the VNC protocol and libvncserver support this things will be
   approximate at best. Hopefully, it will not be too long to wait for
   such support.

2198
   One approximate method involves starting x11vnc with the
2199
   [258]-localhost option. This basically requires the viewer user to log
2200 2201 2202
   into the workstation where x11vnc is running via their Unix username
   and password, and then somehow set up a port redirection of his
   vncviewer connection to make it appear to emanate from the local
2203 2204
   machine. As discussed above, ssh is useful for this: "ssh -l username
   -L 5900:localhost:5900 hostname ..." See the ssh wrapper scripts
2205
   mentioned [259]elsewhere on this page. Of course a malicious user
2206 2207 2208 2209
   could allow other users to get in through his channel, but that is a
   problem with every method. Another thing to watch out for is a
   malicious user on the viewer side (where ssh is running) trying to
   sneak in through the ssh port redirection.
2210 2211 2212 2213

   Regarding limiting the set of Unix usernames who can connect, the
   traditional way would be to further require a VNC password to supplied
   (-rfbauth, -passwd, etc). A scheme that avoids a second password
2214
   involves using the [260]-accept option that runs a program to examine
2215 2216 2217 2218 2219 2220 2221 2222
   the connection information to determine which user is connecting from
   the local machine. For example, the program could use the ident
   service on the local machine (normally ident should not be trusted
   over the network, but on the local machine it should be accurate:
   otherwise root has been compromised and so there are more serious
   problems!). An example script passed in via -accept scriptname that
   deduces the Unix username and limits who can be accepted might look
   something like this:
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
#!/bin/sh
if [ "$RFB_CLIENT_IP" != "127.0.0.1" -o "$RFB_SERVER_IP" != "127.0.0.1" ]; then
        exit 1  # something fishy... reject it.
fi
user=`echo "$RFB_CLIENT_PORT, $RFB_SERVER_PORT" | nc -w 1 $RFB_CLIENT_IP 113 \
        | grep 'USERID.*UNIX' | head -1 | sed -e 's/[\r ]//g' | awk -F: '{print
 $4}'`

for okuser in fred barney wilma betty
do
        if [ "X$user" = "X$okuser" ]; then
                exit 0  # accept it
        fi
done
exit 1  # reject it

   For this to work with ssh port redirection, the ssh option
   UsePrivilegeSeparation must be enabled.

2242

2243
   Q-36: I start x11vnc as root because it is launched via inetd(1) or a
2244 2245
   display manager like gdm(1). Can I have x11vnc later switch to a
   different user?
2246

2247
   As of Feb/2005 x11vnc has the [261]-users option that allows things
2248 2249 2250 2251 2252 2253
   like this. Please read the documentation on it (also in the x11vnc
   -help output) carefully for features and caveats. It's use can often
   decrease security unless care is taken.

   BTW, a nice use of it is "-users +nobody" that switches to the Unix
   user nobody right after connections to the X display are established.
2254

2255

2256
   Q-37: I use a screen-lock when I leave my workstation (e.g.
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
   xscreensaver or xlock). When I remotely access my workstation desktop
   via x11vnc I can unlock the desktop fine, but I am worried people will
   see my activities on the physical monitor. What can I do to prevent
   this, or at least make it more difficult?

   Probably most work environments would respect your privacy if you
   powered off the monitor. Also remember if people have physical access
   to your workstation they basically can do anything they want with it
   (e.g. install a backdoor for later use, etc).

   In any event, as of Jun/2004 there is an experimental utility to make
   it more difficult for nosey people to see your x11vnc activities. The
2269
   source for it is [262]blockdpy.c The idea behind it is simple (but
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
   obviously not bulletproof): when a VNC client attaches to x11vnc put
   the display monitor in the DPMS "off" state, if the DPMS state ever
   changes immediately start up the screen-lock program. The x11vnc user
   will notice something is happening and think about what to do next
   (while the screen is in a locked state).

   This works (or at least has a chance of working) because if the
   intruder moves the mouse or presses a key on the keyboard, the monitor
   wakes up out of the DPMS off state, and this induces the screen lock
   program to activate as soon as possible. Of course there are cracks in
   this, the eavesdropper could detach your monitor and insert a non-DPMS
   one, and there are race conditions. As mentioned above this is not
   bulletproof. A really robust solution would likely require X server
   and perhaps even video hardware support.

2285 2286
   The blockdpy utility is launched by the [263]-accept option and told
   to exit via the [264]-gone option (the vnc client user should
2287 2288
   obviously re-lock the screen before disconnecting!). Instructions can
   be found in the source code for the utility at the above link.
2289

2290

2291
   Q-38: Can I have x11vnc automatically lock the screen when I
2292 2293
   disconnect the VNC viewer?

2294
   Yes, a user mentions he uses the [265]-gone option under CDE to run a
2295
   screen lock program:
2296
  x11vnc -display :0 -forever -gone 'dtaction LockDisplay'
2297 2298

   Other possibilities are:
2299 2300 2301
  x11vnc -display :0 -forever -gone 'xscreensaver-command -lock'
  x11vnc -display :0 -forever -gone 'kdesktop_lock'
  x11vnc -display :0 -forever -gone 'xlock &'
2302 2303


2304
   [Display Managers and Services]
2305

2306
   Q-39: How can I run x11vnc as a "service" that is always available?
2307

2308 2309 2310 2311
   There are a number of ways to do this. The primary thing you need to
   decide is whether you want x11vnc to connect to the X session on the
   machine 1) regardless of who (or if anyone) has the X session, or 2)
   only if a certain user has the X session. Because X sessions are
2312 2313 2314
   protected by X permissions (MIT-MAGIC-COOKIE files XAUTHORITY and
   $HOME/.Xauthority) the automatically started x11vnc will of course
   need to have sufficient permissions to connect to the X display.
2315

2316
   Here are some ideas:
2317
     * Use the description under "Continuously" in the [266]FAQ on x11vnc
2318
       and Display Managers
2319
     * Use the description in the [267]FAQ on x11vnc and inetd(1)
2320
     * Start x11vnc from your $HOME/.xsession (or $HOME/.xinitrc)
2321
     * Although less reliable, see the [268]x11vnc_loop rc.local hack
2322
       below.
2323

2324 2325
   The display manager scheme will not be specific to which user has the
   X session unless a test is specifically put into the display startup
2326 2327 2328
   script (often named Xsetup). The inetd(1) scheme may or may not be
   specific to which user has the X session (and it may not be able to do
   all users via the XAUTHORITY permission issues).
2329 2330 2331 2332 2333 2334 2335

   The $HOME/.xsession scheme is obviously is specific to a particular
   user. If you do not know what a $HOME/.xsession script is or how to
   use one, perhaps your desktop has a "session startup commands"
   configuration option. The command to be run in the .xsession or
   .xinitrc file may look like this:
x11vnc -logfile $HOME/.x11vnc.log -rfbauth $HOME/.vnc/passwd -forever -bg
2336

2337 2338
   plus any other options you desire.

2339

2340
   Q-40: How can I use x11vnc to connect to an X login screen like xdm,
2341 2342
   GNOME gdm, KDE kdm, or CDE dtlogin? (i.e. nobody is logged into an X
   session yet).
2343 2344

   One time only.   If the X login screen is running and you just want to
2345
   connect to it once (i.e. a one-shot):
2346

2347 2348
   It is usually possible to do this by just adjusting the XAUTHORITY
   environment variable to point to the correct MIT-COOKIE auth file
2349
   while running x11vnc as root, e.g. for the gnome display manager, gdm:
2350 2351
  x11vnc -auth /var/gdm/:0.Xauth -display :0

2352
   (the [269]-auth option sets the XAUTHORITY variable for you).
2353 2354 2355 2356

   There will be a similar thing for xdm using however a different auth
   directory path (perhaps something like
   /var/lib/xdm/authdir/authfiles/A:0-XQvaJk for xdm or
2357
   /var/lib/kdm/A:0-crWk72 for kdm, where the random characters in
2358 2359 2360 2361 2362
   basename will vary a bit). Read your system docs to find out where the
   display manager cookie files are kept.

   Trick: sometimes ps(1) can reveal the X server process -auth argument
   (e.g. "ps wwwwaux | grep auth").
2363

2364 2365
   You next connect to x11vnc with a VNC viewer, give your username and
   password to the X login prompt to start your session.
2366

2367 2368
   Note:  gdm seems to have an annoying setting that causes x11vnc (and
   any other X clients) to be killed after the user logs in. Setting
2369 2370 2371
   KillInitClients=false in the [daemon] section of /etc/X11/gdm/gdm.conf
   avoids this. Otherwise, just restart x11vnc and then reconnect your
   viewer.
2372

2373 2374 2375 2376
   Note:  For dtlogin in addition to the above sort of trick (BTW, the
   auth file should be in /var/dt), you'll also need to add something
   like Dtlogin*grabServer:False to the Xconfig file
   (/etc/dt/config/Xconfig or /usr/dt/config/Xconfig on Solaris, see
2377
   [270]the example at the end of this FAQ). Then restart dtlogin, e.g.:
2378
   /etc/init.d/dtlogin stop; /etc/init.d/dtlogin start or reboot.
2379 2380 2381 2382

   Continuously.   Have x11vnc reattach each time the X server is
   restarted (i.e. after each logout):

2383 2384
   To make x11vnc always attached to the the X server including the login
   screen you will need to add a command to a display manager startup
2385 2386 2387 2388 2389 2390 2391 2392
   script.

   Please consider the security implications of this! Besides having the
   VNC display for the X session always available, there are other
   issues: .e.g. if you run the tkx11vnc gui (via say -gui or -gui tray),
   then the gui controls (insecure) are available on the physical X
   display before anyone has logged in (maybe doing "-gui
   tray,geom=+4000+4000" is a good idea...)
2393 2394 2395

   The name of the display manager startup script file depends on desktop
   used and seem to be:
2396
        GNOME        /etc/X11/gdm/Init/Default  (or Init/:0)
2397
        KDE          /etc/kde*/kdm/Xsetup
2398
        XDM          /etc/X11/xdm/Xsetup        (or xdm/Xsetup_0)
2399 2400 2401 2402
        CDE          /etc/dt/config/Xsetup

   although the exact location can depend on operating system and
   distribution. See the documentation for your display manager:  gdm(1),
2403 2404 2405 2406 2407 2408 2409 2410 2411
   kdm(1), xdm(1), dtlogin(1) for additional details. There may also be
   display number specific scripts: e.g. Xsetup_0 vs. Xsetup, you need to
   watch out for.

   Note:  The above gdm setting of KillInitClients=false in
   /etc/X11/gdm/gdm.conf is needed here as well.

   Note:  The above Dtlogin*grabServer:False step will be needed for
   dtlogin here as well.
2412 2413 2414

   In any event, the line you will add to the display manager script will
   look something like:
2415 2416 2417 2418
  /usr/local/bin/x11vnc -rfbauth /path/to/the/vnc/passwd -o /tmp/x11vnc.log -fo
rever -bg

   where you should customize the exact command to your needs.
2419

2420 2421 2422
   Happy, happy, joy, joy:  Note that we do not need to specify -display
   or -auth because happily they are already set for us in the DISPLAY
   and XAUTHORITY environment variables for the Xsetup script!!!
2423

2424 2425
   You may also want to force the VNC port with something like "-rfbport
   5900"
2426
     _________________________________________________________________
2427

2428 2429
   Fedora/gdm: Here is an example of what we did on a vanilla install of
   Fedora-C3 (seems to use gdm by default). Add a line like this to
2430
   /etc/X11/gdm/Init/:0
2431 2432
  /usr/local/bin/x11vnc -rfbauth /etc/x11vnc.passwd -forever -bg -o /tmp/x11vnc
.log
2433 2434 2435 2436 2437 2438 2439

   And then add this line to /etc/X11/gdm/gdm.conf in the [daemon]
   section:
  KillInitClients=false

   Then restart: /usr/sbin/gdm-restart (or reboot). The
   KillInitClients=false setting is important: without it x11vnc will be
2440
   killed immediately after the user logs in. Here are [271]full details
2441
   on how to configure gdm
2442
     _________________________________________________________________
2443

2444 2445
   Solaris/dtlogin: Here is an example of what we did on a vanilla
   install of Solaris:
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
   Make the directory /etc/dt/config:
  mkdir -p /etc/dt/config

   Copy over the Xconfig file for customization:
  cp /usr/dt/config/Xconfig /etc/dt/config/Xconfig

   Edit /etc/dt/config/Xconfig and uncomment the line:
  Dtlogin*grabServer:        False

   Next, copy over Xsetup for customization:
  cp /usr/dt/config/Xsetup /etc/dt/config/Xsetup

   Edit /etc/dt/config/Xsetup and at the bottom put a line like:
  /usr/local/bin/x11vnc -forever -o /var/tmp/x11vnc.log -bg

   (tweaked to your local setup and preferences, a password via -rfbauth,
   etc. would be a very good idea).

   Restart the X server and dtlogin:
  /etc/init.d/dtlogin stop
  /etc/init.d/dtlogin start

   (or reboot or maybe just restart the X session).
2469 2470
     _________________________________________________________________

2471 2472 2473 2474 2475 2476 2477 2478
   KDM: One user running the kdm display manager reports putting this
   line:
  x11vnc -forever -rfbauth /home/xyz/.vnc/passwd -bg -o /tmp/x11vnc.log

   in /etc/kde/kdm/Xsetup. After rebooting the system it all seemed to
   work fine.
     _________________________________________________________________

2479 2480

   If you do not want to deal with any display manager startup scripts,
2481
   here is a kludgey script that can be run manually or out of a boot
2482
   file like rc.local: [272]x11vnc_loop It will need some local
2483
   customization before running. Because the XAUTHORITY auth file must be
2484 2485
   guessed by this script, use of the display manager script method
   described above is greatly preferred.
2486

2487
   If the machine is a traditional Xterminal you may want to read
2488
   [273]this FAQ.
2489

2490

2491
   Q-41: Can I run x11vnc out of inetd(1)? How about xinetd(1)?
2492 2493 2494 2495 2496 2497

   Yes, perhaps a line something like this in /etc/inetd.conf will do it
   for you:

  5900 stream tcp nowait root /usr/sbin/tcpd /usr/local/bin/x11vnc_sh

2498
   where the shell script /usr/local/bin/x11vnc_sh uses the [274]-inetd
2499 2500
   option and looks something like (you'll need to customize to your
   settings).
2501
#!/bin/sh
2502
/usr/local/bin/x11vnc -inetd -display :0 -auth /home/fred/.Xauthority \
2503 2504 2505
        -rfbauth /home/fred/.vnc/passwd -o /tmp/x11vnc_sh.log

   Important:  Note that you must redirect the standard error output to a
2506 2507 2508 2509 2510
   log file (e.g. -o logfile) or "2>/dev/null" for proper operation via
   inetd (otherwise the standard error also goes to the VNC vncviewer,
   and that confuses it greatly, causing it to abort). If you do not use
   a wrapper script as above but rather call x11vnc directly in
   /etc/inetd.conf and do not redirect stderr to a file, then you must
2511
   specify the -q (aka [275]-quiet) option: "/usr/local/bin/x11vnc -q
2512 2513 2514 2515 2516
   -inetd ...". When you supply both -q and -inet and no "-o logfile"
   then stderr will automatically be closed (to prevent, e.g. library
   stderr messages leaking out to the viewer). The recommended practice
   is to use "-o logfile" to collect the output in a file or wrapper
   script with "2>logfile" redirection because the errors and warnings
2517 2518
   printed out are very useful in troubleshooting problems.

2519
   Note also the need to set XAUTHORITY via [276]-auth to point to the
2520 2521 2522 2523
   MIT-COOKIE auth file to get permission to connect to the X display
   (setting and exporting the XAUTHORITY variable accomplishes the same
   thing). See the x11vnc_loop file in the previous question for more
   ideas on what that auth file may be, etc.
2524

2525 2526 2527
   Note:  On Solaris you cannot have the bare number 5900 in
   /etc/inetd.conf, you'll need to replace it with a word like x11vnc an
   then put something like "x11vnc 5900/tcp" in /etc/services.
2528

2529 2530 2531 2532
   Since the process runs as root, it might be a bad idea to have the
   logfile in a world-writable area like /tmp if there are untrustworthy
   users on the machine. Perhaps /var/log would be a better place.

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
   Be sure to look at your /etc/hosts.allow and /etc/hosts.deny settings
   to limit the machines that can connect to this service (your
   desktop!). For the above example with /etc/hosts.allow:
  x11vnc_sh : 123.45.67.89

   A really safe way to do things is to limit the above inetd to
   localhost only (via /etc/hosts.allow) and use ssh to tunnel the
   incoming connection. Using inetd for this prevents there being a tiny
   window of opportunity between x11vnc starting up and your vncviewer
   connecting to it. Always use a VNC password to further protect against
   unwanted access.

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
   For xinetd(1), one user reports he created the file
   /etc/xinetd.d/x11vncservice containing the following:
# default: off
# description:
service x11vncservice
{
        flags           = REUSE NAMEINARGS
        port            = 5900
        type            = UNLISTED
        socket_type     = stream
        protocol        = tcp
        wait            = no
        user            = root
        server          = /usr/sbin/tcpd
        server_args     = /usr/local/bin/x11vnc_sh
        disable         = no
}

   With the contents of /usr/local/bin/x11vnc_sh similar to the example
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
   given above. One user reports this works with avoiding the wrapper
   script:
service x11vncservice
{
        port            = 5900
        type            = UNLISTED
        socket_type     = stream
        protocol        = tcp
        wait            = no
        user            = root
        server          = /usr/local/bin/x11vnc
        server_args     = -inetd -q -display :0 -auth /var/gdm/:0.Xauth
        disable         = no
}

   (or one can replace the -q with say "-o /var/log/x11vnc.log" to
   capture a log)
2581

2582

2583
   Q-42: How do I make x11vnc work with the Java VNC viewer applet in a
2584 2585 2586
   web browser?

   To have x11vnc serve up a Java VNC viewer applet to any web browsers
2587
   that connect to it, run x11vnc with this [277]option:
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
  -httpdir /path/to/the/java/classes/dir

   (this directory will contain the files index.vnc and, for example,
   VncViewer.jar) Note that libvncserver contains the TightVNC Java
   classes jar file for your convenience. (it is the file
   classes/VncViewer.jar in the source tree).

   You will see output something like this:
  14/05/2004 11:13:56 Autoprobing selected port 5900
  14/05/2004 11:13:56 Listening for HTTP connections on TCP port 5800
  14/05/2004 11:13:56   URL http://walnut:5800
  14/05/2004 11:13:56 screen setup finished.
  14/05/2004 11:13:56 The VNC desktop is walnut:0
  PORT=5900

   then you can connect to that URL with any Java enabled browser. Feel
   free to customize the default index.vnc file in the classes directory.

2606
   As of May/2005 the [278]-http option will try to guess where the Java
2607 2608 2609
   classes jar file is by looking a expected locations.

   Also note that if you wanted to, you could also start the Java viewer
2610 2611 2612
   entirely from the viewer-side by having the jar file there and using
   either the java or appletviewer commands to run the program.

2613

2614
   Q-43: Are reverse connections (i.e. the VNC server connecting to the
2615
   VNC viewer) using "vncviewer -listen" and vncconnect(1) supported?
2616

2617 2618
   As of Mar/2004 in the libvncserver CVS x11vnc supports reverse
   connections. On Unix one starts the VNC viewer in listen mode:
runge's avatar
runge committed
2619
   vncviewer -listen (see your documentation for Windows, etc), and then
2620
   starts up x11vnc with the [279]-connect option. To connect immediately
runge's avatar
runge committed
2621 2622 2623 2624 2625
   at x11vnc startup time use the "-connect host:port" option (use commas
   for a list of hosts to connect to). The ":port" is optional (default
   is 5500). If a file is specified instead: -connect /path/to/some/file
   then that file is checked periodically (about once a second) for new
   hosts to connect to.
2626

2627
   To use the vncconnect(1) program (from the core VNC package at
2628
   www.realvnc.com) specify the [280]-vncconnect option to x11vnc (Note:
2629
   as of Dec/2004 -vncconnect is now the default). vncconnect(1) must be
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
   pointed to the same X11 DISPLAY as x11vnc (since it uses X properties
   to communicate with x11vnc). If you do not have or do not want to get
   the vncconnect(1) program, the following script (named "Vncconnect")
   may work if your xprop(1) supports the -set option:
#!/bin/sh
# usage: Vncconnect <host>
#        Vncconnect <host:port>
# note: not all xprop(1) support -set.
#
xprop -root -f VNC_CONNECT 8s -set VNC_CONNECT "$1"
2640

2641

2642
   Q-44: Can I use x11vnc as a replacement for Xvnc? (i.e. not for a real
2643 2644 2645 2646 2647 2648 2649 2650 2651
   display, but for a virtual one I keep around).

   You can, but you would not be doing this for performance reasons (for
   virtual X sessions, Xvnc will give the fastest response). You may want
   to do this because Xvnc does not support an X server extension you
   desire, or you want to take advantage of one of x11vnc's unending
   number of options and features.

   One way to acheive this is to have a Xvfb(1) virtual framebuffer X
2652 2653 2654 2655 2656 2657
   server running in the background and have x11vnc attached to it.
   Another method, faster and more accurate is to use the "dummy" Device
   Driver in XFree86/Xorg (see below). One could view this desktop both
   remotely and locally using vncviewer. Make sure vncviewer's
   "-encodings raw" is in effect for local viewing (compression seems to
   slow things down locally).
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

   Here is one way to start up Xvfb:
  xinit -- /usr/X11R6/bin/Xvfb :1 -screen 0 1024x768x16

   This starts up a 16bpp virtual display. To export it via VNC use
   "x11vnc -display :1 ...".

   One good thing about Xvfb is that the virtual framebuffer exists in
   main memory (rather than in the video hardware), and so x11vnc can
   "screen scrape" it efficiently (more than, say, 100X faster than
   normal video hardware).

   There are some annoyances WRT Xvfb though. The default keyboard
   mapping seems to be very poor. One should run x11vnc with
2672
   [281]-add_keysyms option to have keysyms added automatically. Also, to
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
   add the Shift_R and Control_R modifiers something like this is needed:
#!/bin/sh
xmodmap -e "keycode any = Shift_R"
xmodmap -e "add Shift = Shift_L Shift_R"
xmodmap -e "keycode any = Control_R"
xmodmap -e "add Control = Control_L Control_R"

   Perhaps the Xvfb options -xkbdb or -xkbmap could be used to get a
   better default keyboard mapping.

2683 2684 2685 2686 2687 2688 2689 2690
   A user points out a faster and more accurate method is to use the
   "dummy" Device Driver of XFree86/Xorg instead of Xvfb. He uses this to
   create a persistent and resizable desktop accessible from anywhere. In
   the Device Section of the config file set Driver "dummy". You may also
   need to set VideoRam NNN to be large enough to hold the framebuffer.
   The framebuffer is kept in main memory like Xvfb except that the
   server code is closely correlated with the real XFree86/Xorg Xserver
   unlike Xvfb. The main drawback to this method (besides requiring extra
2691
   configuration and possibly root permission) is that it also does the
2692
   Linux Virtual Console/Terminal (VC/VT) [282]switching even though it
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
   does not need to (since it doesn't use a real framebuffer). There are
   some "dual headed" (actually multi-headed/multi-user) patches to the X
   server that turn off the VT usage in the X server.

   One way to start the "dummy" driver would be:
startx -- :1 -config /etc/X11/xorg.conf.dummy

   where the file /etc/X11/xorg.conf.dummy has its Device Section
   modified as described above.

   In general, one can use this sort of scheme to export other virtual X
   sessions, say Xnest or even Xvnc itself (useful for testing x11vnc).
2705

2706

2707
   Q-45: How can I use x11vnc on "headless" machines? Why might I want
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
   to?

   An interesting application of x11vnc is to let it export displays of
   "headless" machines. For example, you may have some lab or server
   machines with no keyboard, mouse, or monitor, but each one still has a
   video card. One can use x11vnc to provide a simple "desktop service"
   from these server machines.

   An X server can be started on the headless machine (sometimes this
   requires configuring the X server to not fail if it cannot detect a
   keyboard or mouse, see the next paragraph). Then you can export that X
2719
   display via x11vnc (e.g. see [283]this FAQ) and access it from
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
   anywhere on the network via a VNC viewer.

   Some tips on getting X servers to start on machines without keyboard
   or mouse: For XFree86/Xorg the Option "AllowMouseOpenFail" "true"
   "ServerFlags" config file option is useful. On Solaris Xsun the
   +nkeyboard and +nmouse options are useful (put them in the server
   command line args in /etc/dt/config/Xservers). See Xserver(1) for more
   info.

   Although this usage may sound strange it can be quite useful for a GUI
   (or other) testing or QA setups: the engineers do not need to walk to
   lab machines running different hardware, OS's, versions, etc (or have
   many different machines in their office). They just connect to the
   various test machines over the network via VNC. The advantage to
   testing this way instead of using Xvnc or even Xvfb is that the test
   is done using the real X server, fonts, video hardware, etc. that will
   be used in the field.

   One can imagine a single server machine crammed with as many video
   cards as it can hold to provide multiple simultaneous access or
   testing on different kinds of video hardware.
2741

2742
   [Resource Usage and Performance]
2743

2744
   Q-46: I have lots of memory, but why does x11vnc fail with    shmget:
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
   No space left on device    or    Minor opcode of failed request: 1
   (X_ShmAttach)?

   It is not a matter of free memory, but rather free shared memory (shm)
   slots, also known as shm segments. This often occurs on a public
   Solaris machine using the default of only 100 slots. You (or the owner
   or root) can clean them out with ipcrm(1). x11vnc tries hard to
   release its slots, but it, and other programs, are not always able to
   (e.g. if kill -9'd).

   Sometimes x11vnc will notice the problem with shm segments and tries
   to get by with fewer, only giving a warning like this:
  19/03/2004 10:10:58 shmat(tile_row) failed.
  shmat: Too many open files
  19/03/2004 10:10:58 error creating tile-row shm for len=4
  19/03/2004 10:10:58 reverting to single_copytile mode

2762
   Here is a shell script [284]shm_clear to list and prompt for removal
2763
   of your unattached shm segments (attached ones are skipped). I use it
2764
   while debugging x11vnc (I use "shm_clear -y" to assume "yes" for each
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
   prompt). If x11vnc is regularly not cleaning up its shm segments,
   please contact me so we can work to improve the situation.

   Longer term, on Solaris you can put something like this in
   /etc/system:
  set shmsys:shminfo_shmmax = 0x2000000
  set shmsys:shminfo_shmmni = 0x1000

   to sweep the problem under the rug (4096 slots). On Linux, examine
   /proc/sys/kernel/shmmni; you can modify the value by writing to that
   file.

   Things are even more tight on Solaris 8 and earlier, there is a
   default maximum number of shm segments per process of 6. The error is
   the X server (not x11vnc) being unable to attach to the segments, and
   looks something like this:
  30/04/2004 14:04:26 Got connection from client 192.168.1.23
  30/04/2004 14:04:26   other clients:
  X Error of failed request:  BadAccess (attempt to access private resource den
ied)
     Major opcode of failed request:  131 (MIT-SHM)
     Minor opcode of failed request:  1 (X_ShmAttach)
     Serial number of failed request:  14
     Current serial number in output stream:  17

   This tight limit on Solaris 8 can be increased via:
  set shmsys:shminfo_shmseg = 100

   in /etc/system. See the next paragraph for more workarounds.

   To minimize the number of shm segments used by x11vnc try using the
2796
   [285]-onetile option (corresponds to only 3 shm segments used, and
2797 2798
   adding -fs 1.0 knocks it down to 2). If you are having much trouble
   with shm segments, consider disabling shm completely via the
2799
   [286]-noshm option. Performance will be somewhat degraded but when
2800
   done over local machine sockets it should be acceptable (see an
2801
   [287]earlier question discussing -noshm).
2802

2803

2804
   Q-47: How can I make x11vnc use less system resources?
2805

2806
   The [288]-nap and "[289]-wait n" (where n is the sleep between polls
2807
   in milliseconds, the default is 30 or so) option are good places to
2808
   start. Reducing the X server bits per pixel depth (e.g. to 16bpp or
2809 2810
   even 8bpp) will further decrease memory I/O and network I/O. The
   ShadowFB will make x11vnc's screen polling less severe. Using the
2811 2812
   [290]-onetile option will use less memory and use fewer shared memory
   slots (add [291]-fs 1.0 for one less slot).
2813

2814

2815
   Q-48: How can I make x11vnc use MORE system resources?
2816

2817 2818
   You can try [292]-threads and dial down the wait time (e.g. -wait 1)
   and possibly dial down [293]-defer as well. Note that if you try to
2819 2820 2821
   increase the "frame rate" too much you can bog down the server end
   with the extra work it needs to do compressing the framebuffer data,
   etc.
2822 2823 2824

   That said, it is possible to "stream" video via x11vnc if the video
   window is small enough. E.g. a 256x192 xawtv TV capture window (using
2825
   the x11vnc [294]-id option) can be streamed over a LAN or wireless at
2826
   a reasonable frame rate.
2827

2828

2829
   Q-49: I use x11vnc over a slow link with high latency (e.g. dialup
2830 2831
   modem), is there anything I can do to speed things up?

2832
   Some things you might want to experiment with (many of which will help
2833 2834 2835
   performance on faster links as well):

     X server/session parameters:
2836 2837
     * Configure the X server bits per pixel to be 16bpp or even 8bpp.
       (reduces amount of data needed to be polled, compressed, and sent)
2838 2839
     * Use a smaller desktop size (e.g. 1024x768 instead of 1280x1024)
     * Make sure the desktop background is a solid color (the background
2840
       is resent every time it is re-exposed). Consider using the
2841
       [295]-solid [color] option to try to do this automatically.
2842 2843
     * Configure your window manager or desktop "theme" to not use fancy
       images, shading, and gradients for the window decorations, etc.
2844 2845
       Disable window animations, etc. Maybe your desktop has a "low
       bandwidth" theme you can easily switch into and out of.
2846
     * Avoid small scrolls of large windows using the Arrow keys or
2847
       scrollbar. Try to use PageUp/PageDown instead. (not so much of a
2848
       problem in x11vnc 0.7.2 if [296]-scrollcopyrect is active and
2849
       detecting scrolls for the application).
2850
     * If the [297]-wireframe option is not available (earlier than
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
       x11vnc 0.7.2 or you have disabled it via -nowireframe) then
       Disable Opaque Moves and Resizes in the window manager/desktop.
     * However if -wireframe is active (on by default in x11vnc 0.7.2)
       then you should Enable Opaque Moves and Resizes in the window
       manager! This seems counter-intuitive, but because x11vnc detects
       the move/resize events early there is a huge speedup over a slow
       link when Opaque Moves and Resizes are enabled. (e.g. CopyRect
       encoding will be used).
     * Turn off Anti-aliased fonts on your system, web browser, terminal
       windows, etc. AA fonts do not compress as well as traditional
       fonts (sometimes 10X less).
2862
     * On XFree86 turn on the Shadow Framebuffer to speed up reading.
2863 2864 2865 2866 2867
       (Option "ShadowFB" "true" in the Device section of
       /etc/X11/XF86Config) This disables 2D acceleration on the physical
       display and so may not be worth it, but could be of use in some
       situations. If the link is very slow, this speedup may not be
       noticed.
2868 2869

     VNC viewer parameters:
2870
     * Use a [298]TightVNC enabled viewer! (Actually, RealVNC 4.x viewer
2871 2872 2873 2874
       with ZRLE encoding is not too bad either; some claim it is
       faster).
     * Make sure the tight (or zrle) encoding is being used (look at
       vncviewer and x11vnc outputs)
2875 2876
     * Request 8 bits per pixel using -bgr233 (up to 4X speedup over
       depth 24 TrueColor (32bpp), but colors will be off)
2877 2878 2879
     * RealVNC 4.x viewer has some extremely low color modes (only 64 and
       even 8 colors). The colors are poor, but it is usually noticeably
       faster than bgr233 (256 colors).
2880 2881 2882
     * Try increasing the TightVNC -compresslevel (compresses more on
       server side before sending, but uses more CPU)
     * Try reducing the TightVNC -quality (increases JPEG compression,
2883 2884 2885 2886
       but is lossy with painting artifacts)
     * Try other VNC encodings via -encodings (tight is may be the
       fastest, but you should compare it to zrle and maybe some of the
       others)
2887
     * On the machine where vncviewer is run, make sure Backing Store is
2888 2889 2890
       enabled (XFree86/Xorg disables it by default causing re-exposures
       of vncviewer to be very slow) Option "backingstore" in config
       file.
2891 2892

     x11vnc parameters:
2893
     * Try using [299]-nodragging (no screen updates when dragging mouse,
2894
       but sometimes you miss visual feedback)
2895
     * Make sure the [300]-wireframe option is active (it should be on by
2896 2897
       default) and you have Opaque Moves/Resizes Enabled in the window
       manager.
2898
     * Make sure the [301]-scrollcopyrect option is active (it should be
2899 2900
       on by default). This detects scrolls in many (but not all)
       applications an applies the CopyRect encoding for a big speedup.
2901 2902
     * Set [302]-fs 1.0 (disables fullscreen updates)
     * Try increasing [303]-wait or [304]-defer (reduces the maximum
2903
       "frame rate", but won't help much for large screen changes)
2904
     * Try the [305]-progressive pixelheight mode with the block
2905 2906
       pixelheight 100 or so (delays sending vertical blocks since they
       may change while viewer is receiving earlier ones)
2907
     * If you just want to watch one (simple) window use [306]-id (cuts
2908 2909
       down extraneous polling and updates, but can be buggy or
       insufficient)
2910 2911
     * Set [307]-nosel (disables all clipboard selection exchange)
     * Use [308]-nocursor and [309]-nocursorpos (repainting the remote
2912
       cursor position and shape takes resources and round trips)
2913
     * On very slow links (e.g. <= 28.8) you may need to increase the
2914
       [310]-readtimeout n setting if it sometimes takes more than 20sec
2915
       to paint the full screen, etc.
2916

2917

2918
   Q-50: Does x11vnc support the X DAMAGE Xserver extension to find
2919 2920 2921 2922 2923 2924 2925 2926 2927
   modified regions of the screen quickly and efficiently?

   Yes, as of Mar/2005 in the libvncserver CVS x11vnc will use the X
   DAMAGE extension by default if it is available on the display. This
   requires libXdamage to be available in the build environment as well
   (recent Linux distros and Solaris 10 have it).

   The DAMAGE extension enables the X server to report changed regions of
   the screen back to x11vnc. So x11vnc doesn't have to guess where the
2928 2929 2930 2931 2932
   changes are (by polling every pixel of the entire screen every 2-4
   seconds). The use of X DAMAGE dramatically reduces the load when the
   screen is not changing very much (i.e. most of the time). It also
   noticeably improves updates, especially for very small changed areas
   (e.g. clock ticking, cursor flashing, typing, etc).
2933 2934 2935

   Note that the DAMAGE extension does not speed up the actual reading of
   pixels from the video card framebuffer memory, by, say, mirroring them
2936
   in main memory. So reading the fb is still painfully [311]slow (e.g.
2937
   5MB/sec), and so even using X DAMAGE when large changes occur on the
2938 2939 2940
   screen the bulk of the time is still spent retrieving them. Not ideal,
   but use of the ShadowFB XFree86/Xorg option speeds up the reading
   considerably (at the cost of h/w acceleration).
2941 2942

   Unfortunately the current Xorg DAMAGE extension implementation can at
2943 2944 2945 2946 2947 2948
   times be overly conservative and report very large rectangles as
   "damaged" even though only a small portion of the pixels have actually
   been modified. This behavior is often the fault of the window manager
   (e.g. it redraws the entire, unseen, frame window underneath the
   application window when it gains focus), or the application itself
   (e.g. does large, unnecessary repaints).
2949 2950 2951 2952 2953

   To work around this deficiency, x11vnc currently only trusts small
   DAMAGE rectangles to contain real damage. The larger rectangles are
   only used as hints to focus the traditional scanline polling (i.e. if
   a scanline doesn't intersect a recent DAMAGE rectangle, the scan is
2954
   skipped). You can use the "[312]-xd_area A" option to adjust the size
2955 2956 2957 2958
   of the trusted DAMAGE rectangles. The default is 20000 pixels (e.g. a
   140x140 square, etc). Use "-xd_area 0" to disable the cutoff and trust
   all DAMAGE rectangles.

2959 2960
   The option "[313]-xd_mem f" may also be of use in tuning the
   algorithm. To disable using DAMAGE entirely use "[314]-noxdamage".
2961 2962


2963
   Q-51: When I drag windows around with the mouse or scroll up and down
2964 2965 2966
   things really bog down (unless I do the drag in a single, quick
   motion). Is there anything to do to improve things?

2967
   This problem is primarily due to [315]slow hardware read rates from
2968 2969 2970 2971 2972 2973
   video cards: as you scroll or move a large window around the screen
   changes are much too rapid for x11vnc to keep up them (it can usually
   only read the video card at about 5-10 MB/sec, so it can take a good
   fraction of a second to read the changes induce from moving a large
   window, if this to be done a number of times in succession the window
   or scroll appears to "lurch" forward). See the description in the
2974
   [316]-pointer_mode option for more info. The next bottleneck is
2975 2976 2977 2978 2979
   compressing all of these changes and sending them out to connected
   viewers, however the VNC protocol is pretty much self-adapting with
   respect to that (updates are only packaged and sent when viewers ask
   for them).

2980 2981 2982 2983
   As of Jan/2004 there are some improvements in the libvncserver CVS
   tree. The default should now be much better than before and dragging
   small windows around should no longer be a huge pain. If for some
   reason these changes make matters worse, you can go back to the old
2984
   way via the "[317]-pointer_mode 1" option.
2985

2986
   Also added was the [318]-nodragging option that disables all screen
2987 2988 2989
   updates while dragging with the mouse (i.e. mouse motion with a button
   held down). This gives the snappiest response, but might be undesired
   in some circumstances when you want to see the visual feedback while
2990 2991
   dragging (e.g. menu traversal or text selection).

2992
   As of Dec/2004 in the libvncserver CVS the [319]-pointer_mode n option
2993
   was introduced. n=1 is the original mode, n=2 an improvement, etc..
2994
   See the -pointer_mode n help for more info.
2995

2996
   Also, in some circumstances the [320]-threads option can improve
2997 2998 2999 3000 3001
   response considerably. Be forewarned that if more than one vncviewer
   is connected at the same time then libvncserver may not be thread safe
   (try to get the viewers to use different VNC encodings, e.g. tight and
   ZRLE).

3002
   As of Apr/2005 in the libvncserver CVS two new options (see the
3003
   [321]wireframe FAQ and [322]scrollcopyrect FAQ below) provide schemes
3004 3005
   to sweep this problem under the rug for window moves or resizes and
   for some (but not all) window scrolls.
3006 3007


3008
   Q-52: Why not do something like wireframe animations to avoid the
3009 3010 3011 3012 3013 3014 3015 3016
   windows "lurching" when being moved or resized?

   Nice idea for a hack! As of Apr/2005 in the libvncserver CVS x11vnc by
   default will apply heuristics to try to guess if a window is being
   (opaquely) moved or resized. If such a change is detected framebuffer
   polling and updates will be suspended and only an animated "wireframe"
   (a rectangle outline drawn where the moved/resized window would be) is
   shown. When the window move/resize stops, it returns to normal
3017 3018
   processing: you should only see the window appear in the new position.
   This spares you from interacting with a "lurching" window between all
3019 3020
   of the intermediate steps. BTW the lurching is due to [323]slow video
   card read rates (see [324]here too). A displacement, even a small one,
3021 3022
   of a large window requires a non-negligible amount of time, a good
   fraction of a second, to read in from the hardware framebuffer.
3023

3024 3025 3026
   Note that Opaque Moves/Resizes must be Enabled by your window manager
   for -wireframe to do any good.

3027
   The mode is currently on by default because most people are inflicted
3028
   with the problem. It can be disabled with the [325]-nowireframe option
3029 3030 3031 3032 3033
   (aka -nowf). Why might one want to turn off the wireframing? Since
   x11vnc is merely guessing when windows are being moved/resized, it may
   guess poorly for your window-manager or desktop, or even for the way
   you move the pointer. If your window-manager or desktop already does
   its own wireframing then this mode is a waste of time and could do the
3034 3035 3036 3037 3038 3039
   wrong thing occasionally. There may be other reasons the new mode
   feels unnatural. If you have very expensive video hardware (SGI) or
   are using an in-RAM video framebuffer (SunRay, ShadowFB, Xvfb), the
   read rate from that framebuffer may be very fast (100's of MB/sec) and
   so you don't really see much lurching: opaque moves look smooth in
   x11vnc. Note: ShadowFB is often turned on when you are using the
3040 3041
   vesafb or fbdev XFree86 video driver instead of a native one so you
   might be using it already and not know.
3042 3043 3044 3045

   The heuristics used to guess window motion or resizing are simple, but
   are not fool proof: x11vnc is sometimes tricked and so you'll
   occasionally see the lurching opaque move and rarely something even
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
   worse.

   First it assumes that the move/resize will occur with a mouse button
   pressed, held down and dragged (of course this is only mostly true).
   Next it will only consider a window for wireframing if the mouse
   pointer is initially "close enough" to the edges of the window frame,
   e.g. you have grabbed the title bar or a resizer edge (this
   requirement can be disabled and it also not applied if a modifier key,
   e.g. Alt, is pressed). If these are true, it will wait an amount of
   time to see if the window starts moving or resizing. If it does, it
   starts drawing the wireframe "outline" of where the window would be.
   When the mouse button is released, or a timeout occurs, it goes back
   to the standard mode to allow the actual framebuffer changes to
   propagate to the viewers.
3060 3061 3062 3063 3064 3065 3066

   These parameters can be tweaked:
     * Color/Shade of the wireframe.
     * Linewidth of the outline frame.
     * Cutoff size of windows to not apply wireframing to.
     * Cutoffs for closeness to Top, Bottom, Left, and Right edges of
       window.
3067
     * Modifier keys to enable interior window grabbing.
3068 3069 3070 3071 3072
     * Maximum time to wait for dragging pointer events.
     * Maximum time to wait for the window to start moving/resizing.
     * Maximum time to show a wireframe animation.
     * Minimum time between sending wireframe outlines.

3073
   See the [326]"-wireframe tweaks" option for more details. On a slow
3074 3075
   link, e.g. dialup modem, the parameters may be automatically adjusted
   for better response.
3076 3077 3078


   CopyRect encoding:  In addition to the above there is the
3079
   [327]"-wirecopyrect mode" option. It is also on by default. This
3080 3081 3082 3083 3084 3085 3086 3087 3088
   instructs x11vnc to not only show the wireframe animation, but to also
   instruct all connected VNC viewers to locally translate the window
   image data from the original position to the new position on the
   screen when the animation is done. This speedup is the VNC CopyRect
   encoding: the framebuffer update doesn't need to send the actual new
   image data. This is nice in general, and very convenient over a slow
   link, but since it is based on heuristics you may need to disable it
   with the -nowirecopyrect option (aka -nowcr) if it works incorrectly
   or unnaturally for you.
3089 3090 3091 3092

   The -wirecopyrect modes are: "never" (same as -nowirecopyrect); "top",
   only apply the CopyRect if the window is appears to be on the top of
   the window stack and is not obstructed by other windows; and "always"
3093 3094
   to always try to apply the CopyRect (obstructed regions are usually
   clipped off and not translated).
3095 3096 3097 3098 3099 3100 3101

   Note that some desktops (KDE and xfce) appear to mess with the window
   stacking in ways that are not yet clear. In these cases x11vnc works
   around the problem by applying the CopyRect even if obscuring windows'
   data is translated! Use -nowirecopyrect if this yields undesirable
   effects for your desktop.

3102 3103 3104
   Also, the CopyRect encoding may give incorrect results under -scale
   (depending on the scale factor the CopyRect operation is often only
   approximate: the correctly scaled framebuffer will be slightly
3105 3106 3107 3108 3109
   different from the translated one). x11vnc will try to push a
   "cleanup" update after the CopyRect if -scale is in effect. Use
   -nowirecopyrect if this or other painting errors are unacceptable.


3110
   Q-53: Can x11vnc try to apply heuristics to detect when an window is
3111 3112 3113 3114 3115
   scrolling its contents and use the CopyRect encoding for a speedup?

   Another nice idea for a hack! As of May/2005 in the libvncserver CVS
   x11vnc will by default apply heuristics to try to detect if the the
   window that has the input focus is scrolling its contents (but only
3116
   when x11vnc is feeding user input, keystroke or pointer, to the X
3117 3118 3119
   server). So, when detected, scrolls induced by dragging on a scrollbar
   or by typing (e.g. Up or Down arrows, hitting Return in a terminal
   window, etc), will show up much more quickly than via the standard
3120 3121 3122 3123 3124 3125 3126
   x11vnc screen polling update mechanism.

   There will be a speedup for both slow and fast links to viewers. For
   slow links the speedup is mostly due to the CopyRect encoding not
   requiring the image data to be transmitted over the network. For fast
   links the speedup is primarily due to x11vnc not having to read the
   scrolled framebuffer data from the X server (recall that reading from
3127
   the hardware framebuffer is [328]slow).
3128 3129 3130

   To do this x11vnc uses the RECORD X extension to snoop the X11
   protocol between the X client with the focus window and the X server.
3131 3132 3133
   This extension is usually present on most X servers (but SuSE disables
   it for some reason). On XFree86/Xorg it can be enabled via Load
   "record" in the Module section of the config file if it isn't already.
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

   Currently the RECORD extension is used as little as possible so as to
   not slow down regular use. Only simple heuristics are applied to
   detect XCopyArea and XConfigureWindow calls from the application.
   These catch a lot of scrolls, e.g. in mozilla/firefox and in terminal
   windows like gnome-terminal and xterm. Unfortunately the toolkits KDE
   applications use make scroll detection less effective (only rarely are
   they detected: i.e. Konqueror and Konsole don't work). An interesting
   project, that may be the direction x11vnc takes, is to record all of
   the X11 protocol from all clients and try to "tee" the stream into a
   modified Xvfb watching for CopyRect and other VNC speedups. A
   potential issue is the RECORD stream is delayed from actual view on
   the X server display: if one falls too far behind it could become a
   mess...

3149
   The initial implementation of [329]-scrollcopyrect option is useful in
3150
   that it detects many scrolls and thus gives a much nicer working
3151 3152
   environment (especially when combined with the [330]-wireframe
   [331]-wirecopyrect [332]options, which are also on by default; and if
3153 3154 3155 3156 3157
   you are willing to enable the ShadowFB things are very fast). The fact
   that there aren't long delays or lurches during scrolling is the
   primary improvement.

   But there are some drawbacks:
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
     * Not all scrolls are detected. Some apps scroll windows in ways
       that cannot currently be detected, and other times x11vnc "misses"
       the scroll due to timeouts, etc. Sometimes it is more distracting
       that a speedup occasionally doesn't work as opposed to being
       consistently slow!
     * For rapid scrolling (i.e. sequence of many scrolls over a short
       period) there can be painting errors (tearing, bunching up, etc.)
       during the scroll. These will repair themselves after the scroll
       is over, but when they are severe it can be distracting. Try to
       think of the approximate window contents as a quicker and more
       useful "animation" compared to the slower polling scheme...
     * Scrolling inside shells in terminal windows (gnome-terminal,
       xterm), can lead to odd painting errors. This is because x11vnc
       did not have time to detect a screen change just before the scroll
       (most common is the terminal undraws the block cursor before
       scrolling the text up: in the viewer you temporarily see multiple
       block cursors). Another issue is with things like more(1): scroll
       detection for 5-6 lines happens nicely, but then it can't keep up
       and so there is a long pause for the standard polling method to
       deliver the remaining updates.
     * More rarely sometimes painting errors are not repaired after the
       scroll is over. This may be a bug in x11vnc or libvncserver, or it
       may be an inescapable fact of the CopyRect encoding and the delay
       between RECORD callbacks and what is actually on the X display.
       One can tap the Alt_L key (Left "Alt" key) 3 times in a row to
       signal x11vnc to refresh the screen to all viewers. Your
       VNC-viewer may have its own screen refresh hot-key or button. See
3185
       also: [333]-fixscreen
3186 3187
     * Some applications, notably OpenOffice, do XCopyArea scrolls in
       weird ways that assume ancestor window clipping is taking place.
3188
       See the [334]-scr_skip option for ways to tweak this on a
3189 3190 3191 3192 3193 3194 3195 3196 3197
       per-application basis.
     * Selecting text while dragging the mouse may be slower, especially
       if the Button-down event happens near the window's edge. This is
       because the scrollcopyrect scheme is watching for scrolls via
       RECORD and has to wait for a timeout to occur before it does the
       update.
     * For reasons not yet understood the RECORD extension can stop
       responding (and hence scrolls are missed). As a workaround x11vnc
       attempts to reset the RECORD connection every 60 seconds or so.
3198
       Another workaround is to type 4 Super_L (Left Super/Windows-Flag
3199 3200 3201 3202 3203 3204
       key) in a row to reset RECORD. Work is in progress to try to fix
       this bug.
     * Sometimes you need to "retrain" x11vnc for a certain window
       because it fails to detect scrolls in it. Sometimes clicking
       inside the application window or selecting some text in it to
       force the focus helps.
3205
     * When using the [335]-scale option there will be a quick CopyRect
3206 3207 3208 3209 3210
       scroll, but it needs to be followed by a slower "cleanup" update.
       This is because for a fixed finite screen resolution (e.g. 75 dpi)
       scaling and copyrect-ing are not exactly independent. Scaling
       involves a blending of nearby pixels and if you translate a pixel
       the neighbor pixel weighting may be different. So you have to wait
3211
       a bit for the cleanup update to finish. On slow links x11vnc may
3212 3213 3214 3215 3216 3217
       automatically decide to not detect scrolls when -scale is in
       effect. In general it will also try to defer the cleanup update if
       possible.

   If you find the -scrollcopyrect behavior too approximate or
   distracting you can go back to the standard polling-only update method
3218
   with the [336]-noscrollcopyrect (or -noscr for short). If you find
3219
   some extremely bad and repeatable behavior for -scrollcopyrect please
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
   report a bug.

   Alternatively, as with -wireframe, there are many tuning parameters to
   try to improve the situation. You can also access these parameters
   inside the gui under "Tuning". These parameters can be tweaked:
     * The minimum pixel area of a rectangle to be watched for scrolls.
     * A list if application names to skip scroll detection.
     * Which keystrokes should trigger scroll detection.
     * Which applications should have a "terminal" tweak applied to them.
     * When repeating keys (e.g. Up arrow) should be discarded to
       preserve a scroll.
     * Cutoffs for closeness to Top, Bottom, Left, and Right edges of
       window for mouse induced scrolls.
     * Set timeout parameters for keystroke induced scrolls.
     * Set timeout parameters for mouse pointer induced scrolls.
     * Have the full screen be periodically refreshed to fix painting
       errors.
3237 3238 3239



3240 3241
   [Mouse Cursor Shapes]

3242
   Q-54: Why isn't the mouse cursor shape (the little icon shape where
3243 3244
   the mouse pointer is) correct as I move from window to window?

3245
   On X servers supporting XFIXES or Solaris/IRIX Overlay extensions it
3246 3247
   is possible for x11vnc to do this correctly. See a few paragraphs down
   for the answer.
3248

3249
   Historically, the X11 mouse cursor shape (i.e. little picture: an
3250
   arrow, X, I-beam, resizer, etc) is one of the few WRITE-only objects
3251 3252 3253 3254 3255
   in X11. That is, an application can tell the X server what the cursor
   shape should be when the pointer is in a given window, but a program
   (like x11vnc) unfortunately cannot read this information. I believe
   this is because the cursor shape is often downloaded to the graphics
   hardware (video card), but I could be mistaken.
3256

3257
   A simple kludge is provided by the "[337]-cursor X" option that
3258 3259 3260
   changes the cursor when the mouse is on the root background (or any
   window has the same cursor as the root background). Note that desktops
   like GNOME or KDE often cover up the root background, so this won't
3261
   work for those cases. Also see the "[338]-cursor some" option for
3262
   additional kludges.
3263 3264 3265

   Note that as of Aug/2004 in the libvncserver CVS, on Solaris using the
   SUN_OVL overlay extension and IRIX, x11vnc can show the correct mouse
3266
   cursor when the [339]-overlay option is supplied. See [340]this FAQ
3267
   for more info.
3268 3269 3270

   Also as of Dec/2004 in the libvncserver CVS XFIXES X extension support
   has been added to allow exact extraction of the mouse cursor shape.
3271 3272 3273
   XFIXES fixes the problem of the cursor-shape being write-only: x11vnc
   can now query the X server for the current shape and send it back to
   the connected viewers. XFIXES is available on recent Linux Xorg based
3274
   distros and [341]Solaris 10.
3275 3276 3277

   The only XFIXES issue is the handling of alpha channel transparency in
   cursors. If a cursor has any translucency then in general it must be
3278 3279 3280 3281
   approximated to opaque RGB values for use in VNC. There are some
   situations where the cursor transparency can also handled exactly:
   when the VNC Viewer requires the cursor shape be drawn into the VNC
   framebuffer or if you apply a patch to your VNC Viewer to extract
3282
   hidden alpha channel data under 32bpp. [342]Details can be found here.
3283

3284

3285
   Q-55: When using XFIXES cursorshape mode, some of the cursors look
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
   really bad with extra black borders around the cursor and other cruft.
   How can I improve their appearance?

   This happens for cursors with transparency ("alpha channel"); regular
   X cursors (bitmaps) should be correct. Unfortunately x11vnc 0.7 was
   released with a very poor algorithm for approximating the
   transparency, which led to the ugly black borders.

   The problem is as follows: XFIXES allows x11vnc to retrieve the
   current X server cursor shape, including the alpha channel for
   transparency. For traditional bitmap cursors the alpha value will be 0
   for completely transparent pixels and 255 for completely opaque
   pixels; whereas for modern, eye-candy cursors an alpha value between 0
   and 255 means to blend in the background colors to that degree with
   the cursor colors. The pixel color blending formula is something like
   this: Red = Red_cursor * a + Red_background * (1 - a), (where here 0
   =< a =< 1), with similar for Green and Blue. The VNC protocol does not
   currently support an alpha channel in cursors: it only supports
   regular X bitmap cursors and Rich Cursors that have RGB (Red, Green,
3305
   Blue) color data, but no "A" = alpha data. So in general x11vnc has to
3306 3307 3308 3309 3310 3311
   approximate a cursor with transparency to create a Rich Cursor. This
   is easier said than done: some cursor themes have cursors with
   complicated drop shadows and other forms of translucency.

   Anyway, for the x11vnc 0.7.1 release the algorithm for approximating
   transparency is much improved and hopefully gives decent cursor shapes
3312
   for most cursor themes and you don't have to worry about it.
3313 3314

   In case it still looks bad for your cursor theme, there are (of
3315
   course!) some tunable parameters. The "[343]-alphacut n" option lets
3316 3317 3318
   you set the threshold "n" (between 0 and 255): cursor pixels with
   alpha values below n will be considered completely transparent while
   values equal to or above n will be completely opaque. The default is
3319
   240. The "[344]-alphafrac f" option tries to correct individual
3320 3321 3322 3323 3324
   cursors that did not fare well with the default -alphacut value: if a
   cursor has less than fraction f (between 0.0 and 1.0) of its pixels
   selected by the default -alphacut, the threshold is lowered until f of
   its pixels are selected. The default fraction is 0.33.

3325
   Finally, there is an option [345]-alpharemove that is useful for
3326 3327 3328 3329 3330 3331
   themes where many cursors are light colored (e.g. "whiteglass").
   XFIXES returns the cursor data with the RGB values pre-multiplied by
   the alpha value. If the white cursors look too grey, specify
   -alpharemove to brighten them by having x11vnc divide out the alpha
   value.

3332 3333 3334 3335 3336 3337
   One user played with these parameters and reported back:
 Of the cursor themes present on my system:

   gentoo and gentoo-blue:   alphacut:192 - noalpharemove

   gentoo-silver:            alphacut:127 and alpharemove
3338

3339 3340 3341 3342 3343
   whiteglass and redglass (presumably also handhelds, which is based
   heavily on redglass) look fine with the apparent default of alphacut:255.


   Q-56: In XFIXES mode, are there any hacks to handle cursor
3344 3345
   transparency ("alpha channel") exactly?

3346 3347 3348 3349 3350
   As of Jan/2005 in the CVS, libvncserver has been modified to allow an
   alpha channel (i.e. RGBA data) for Rich Cursors. So x11vnc can now
   send the alpha channel data to libvncserver. However, this data will
   only be used for VNC clients that do not support the
   CursorShapeUpdates VNC extension (or have disabled it). It can be
3351
   disabled for all clients with the [346]-nocursorshape x11vnc option.
3352 3353 3354
   In this case the cursor is drawn, correctly blended with the
   background, into the VNC framebuffer before being sent out to the
   client. So the alpha blending is done on the x11vnc side. Use the
3355
   [347]-noalphablend option to disable this behavior (always approximate
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
   transparent cursors with opaque RGB values).

   The CursorShapeUpdates VNC extension complicates matters because the
   cursor shape is sent to the VNC viewers supporting it, and the viewers
   draw the cursor locally. This improves response over slow links. Alpha
   channel data for these locally drawn cursors is not supported by the
   VNC protocol.

   However, in the libvncserver CVS there is a patch to the TightVNC
   viewer to make this work for CursorShapeUpdates under some
   circumstances. This hack is outside of the VNC protocol. It requires
   the screens on both sides to be depth 24 at 32bpp (it uses the extra 8
   bits to secretly hide the cursor alpha channel data). Not only does it
   require depth 24 at 32bpp, but it also currently requires the client
   and server to be of the same endianness (otherwise the hidden alpha
   data gets reset to zero by a libvncserver translation function; we can
   fix this at some point if there is interest). The patch is for the
   TightVNC 1.3dev5 Unix vncviewer and it enables the TightVNC viewer to
   do the cursor alpha blending locally. The patch code should give an
   example on how to change the Windows TightVNC viewer to achieve the
   same thing (send me the patch if you get that working).
3377 3378 3379

   [Mouse Pointer]

3380
   Q-57: Why does the mouse arrow just stay in one corner in my
3381 3382
   vncviewer, whereas my cursor (that does move) is just a dot?

3383
   This default takes advantage of a [348]tightvnc extension
3384
   (CursorShapeUpdates) that allows specifying a cursor image shape for
3385
   the local VNC viewer. You may disable it with the [349]-nocursor
3386
   option to x11vnc if your viewer does not have this extension.
3387 3388 3389 3390 3391 3392

   Note: as of Aug/2004 in the libvncserver CVS this should be fixed: the
   default for non-tightvnc viewers (or ones that do not support
   CursorShapeUpdates) will be to draw the moving cursor into the x11vnc
   framebuffer. This can also be disabled via -nocursor.

3393

3394
   Q-58: Can I take advantage of the TightVNC extension to the VNC
3395 3396 3397 3398
   protocol where Cursor Positions Updates are sent back to all connected
   clients (i.e. passive viewers can see the mouse cursor being moved
   around by another viewer)?

3399
   Use the [350]-cursorpos option when starting x11vnc. A VNC viewer must
3400 3401
   support the Cursor Positions Updates for the user to see the mouse
   motions (the TightVNC viewers support this). As of Aug/2004 in the
3402 3403
   libvncserver CVS -cursorpos is the default. See also [351]-nocursorpos
   and [352]-nocursorshape.
3404 3405 3406


   Q-59: Is it possible to swap the mouse buttons (e.g. left-handed
3407 3408 3409
   operation), or arbitrarily remap them? How about mapping button clicks
   to keystrokes, e.g. to partially emulate Mouse wheel scrolling?

3410
   You can remap the mouse buttons via something like: [353]-buttonmap
3411
   13-31 (or perhaps 12-21). Also, note that xmodmap(1) lets you directly
3412 3413 3414 3415 3416 3417
   adjust the X server's button mappings, but in some circumstances it
   might be more desirable to have x11vnc do it.

   One user had an X server with only one mouse button(!) and was able to
   map all of the VNC client mouse buttons to it via: -buttonmap 123-111.

3418
   Note that the [354]-debug_pointer option prints out much info for
3419
   every mouse/pointer event and is handy in solving problems.
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

   To map mouse button clicks to keystrokes you can use the alternate
   format where the keystrokes are enclosed between colons like this
   :<KeySym>: in place of the mouse button digit. For a sequence of
   keysyms separate them with "+" signs. Look in the include file
   <X11/keysymdef.h>, or use xev(1), or -debug_keyboard to fine the
   keysym names. Button clicks can also be included in the sequence via
   the fake keysyms Button1, etc.

   As an example, suppose the VNC viewer machine has a mouse wheel (these
   generate button 4 and 5 events), but the machine that x11vnc is run on
   only has the 3 regular buttons. In normal operation x11vnc will
   discard the button 4 and 5 events. However, either of the following
   button maps could possibly be of use emulating the mouse wheel events
   in this case:
  -buttonmap 12345-123:Prior::Next:
  -buttonmap 12345-123:Up+Up+Up::Down+Down+Down:

   Exactly what keystroke "scrolling" events they should be bound to
   depends on one's taste. If this method is too approximate, one could
3440
   consider not using [355]-buttonmap but rather configuring the X server
3441
   to think it has a mouse with 5 buttons even though the physical mouse
3442
   does not. (e.g. 'Option "ZAxisMapping" "4 5"').
3443 3444 3445 3446 3447

   Note that when a keysym-mapped mouse button is clicked down this
   immediately generates the key-press and key-release events (for each
   keysym in turn if the mapping has a sequence of keysyms). When the
   mouse button goes back up nothing is generated.
3448

3449 3450 3451 3452 3453 3454 3455
   If you include modifier keys like Shift_L instead of key-press
   immediately followed by key-release the state of the modifier key is
   toggled (however the initial state of the modifier key is ignored). So
   to map the right button to type my name 'Karl Runge' I could use this:
  -buttonmap 3-:Shift_L+k+Shift_L+a+r+l+space+Shift_L+r+Shift_L+u+n+g+e:

   (yes, this is getting a little silly).
3456 3457 3458 3459 3460 3461 3462 3463 3464

   BTW, Coming the other way around, if the machine you are sitting at
   does not have a mouse wheel, but the remote machine does (or at least
   has 5 buttons configured), this key remapping can be useful:
  -remap Super_R-Button4,Menu-Button5

   you just tap those two keys to get the mouse wheel scrolls (this is
   more useful than the Up and Down arrow keys because a mouse wheel
   "click" usually gives a multi-line scroll).
3465 3466
   [Keyboard Issues]

3467
   Q-60: How can I get my AltGr and Shift modifiers to work between
3468 3469
   keyboards for different languages?

3470
   The option [356]-modtweak should help here. It is a mode that monitors
3471 3472 3473
   the state of the Shift and AltGr Modifiers and tries to deduce the
   correct keycode to send, possibly by sending fake modifier key presses
   and releases in addition to the actual keystroke.
3474 3475 3476 3477 3478

   Update:  As of Jul/2004 in the libvncserver CVS, -modtweak is now the
   default (use -nomodtweak to get the old behavior). This was done
   because it was noticed on newer XFree86 setups even on bland "us"
   keyboards like "pc104 us" XFree86 included a "ghost" key with both "<"
3479
   and ">" it. This key does not exist on the keyboard (see [357]this FAQ
3480 3481 3482 3483
   for more info). Without -modtweak there was then an ambiguity in the
   reverse map keysym => keycode, making it so the "<" symbol could not
   be typed.

3484
   Also see the [358]FAQ about the -xkb option for a more powerful method
3485 3486 3487
   of modifier tweaking for use on X servers with the XKEYBOARD
   extension.

3488
   When trying to resolve keyboard mapping problems, note that the
3489
   [359]-debug_keyboard option prints out much info for every keystroke
3490
   and so can be useful debugging things.
3491

3492

3493
   Q-61: When I try to type a "<" (i.e. less than) instead I get ">"
3494 3495 3496 3497 3498 3499 3500
   (i.e. greater than)! Strangely, typing ">" works OK!!

   Does your keyboard have a single key with both "<" and ">" on it? Even
   if it doesn't, your X server may think your keyboard has such a key
   (e.g. pc105 in the XF86Config file when it should be something else,
   say pc104).

3501
   Short Cut: Try the [360]-xkb or [361]-sloppy_keys options and see if
3502
   that helps the situation. The discussion below is a bit outdated (e.g.
3503
   [362]-modtweak is now the default) but is useful reference for various
3504 3505 3506
   tricks and so is kept.


3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
   The problem here is that on the Xserver where x11vnc is run there are
   two keycodes that correspond to the "<" keysym. Run something like
   this to see:

  xmodmap -pk | egrep -i 'KeyCode|less|greater'
  There are 4 KeySyms per KeyCode; KeyCodes range from 8 to 255.
      KeyCode     Keysym (Keysym) ...
       59         0x002c (comma)  0x003c (less)
       60         0x002e (period) 0x003e (greater)
       94         0x003c (less)   0x003e (greater)

   That keycode 94 is the special key with both "<" and ">". When x11vnc
   receives the "<" keysym over the wire from the remote VNC client, it
   unfortunately maps it to keycode 94 instead of 59, and sends 94 to the
   X server. Since Shift is down (i.e. you are Shifting the comma key),
   the X server interprets this as Shifted-94, which is ">".

   A workaround in the X server configuration is to "deaden" that special
   key:

  xmodmap -e "keycode 94 = "

   However, one user said he had to do this:

  xmodmap -e "keycode 94 = 0x002c 0x003c"

   (If the numerical values are different for your setup, substitute the
   ones that correspond to your display. The above xmodmap scheme can
   often be used to work around other ambiguous keysym to keycode
   mappings).

   Alternatively, here are some x11vnc options to try to work around the
   problem:
   -modtweak

   and
   -remap less-comma

   These are convenient in that they do not modify the actual X server
3546
   settings. The former ([363]-modtweak) is a mode that monitors the
3547 3548
   state of the Shift and AltGr modifiers and tries to deduce the correct
   keycode sequence to send. Since Jul/2004 -modtweak is now the default.
3549
   The latter ([364]-remap less-comma) is an immediate remapping of the
3550 3551
   keysym less to the keysym comma when it comes in from a client (so
   when Shift is down the comma press will yield "<").
3552

3553
   See also the [365]FAQ about the -xkb option as a possible workaround
3554
   using the XKEYBOARD extension.
3555

3556
   Note that the [366]-debug_keyboard option prints out much info for
3557
   every keystroke to aid debugging keyboard problems.
3558

3559

3560 3561 3562 3563
   Q-62: When I try to type a "<" (i.e. less than) instead I get "<,"
   (i.e. an extra comma).

   This is likely because you press "Shift" then "<" but then released
3564
   the Shift key before releasing the "<". Because of a [367]keymapping
3565 3566 3567
   ambiguity the last event "< up" is interpreted as "," because that key
   unshifted is the comma.

3568
   This should not happen in [368]-xkb mode, because it works hard to
3569
   resolve the ambiguities. If you do not want to use -xkb, try the
3570
   option [369]-sloppy_keys to attempt a similar type of algorithm.
3571 3572 3573


   Q-63: I'm using an "international" keyboard (e.g. German "de", or
3574
   Danish "dk") and the -modtweak mode works well if the VNC viewer is
3575 3576 3577 3578
   run on a Unix/Linux machine with a similar keyboard.   But if I run
   the VNC viewer on Unix/Linux with a different keyboard (e.g. "us") or
   Windows with any keyboard, I can't type some keys like:   "@", "$",
   "<", ">", etc. How can I fix this?
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593

   The problem with Windows is it does not seem to handle AltGr well. It
   seems to fake it up by sending Control_L+Alt_R to applications. The
   Windows VNC viewer sends those two down keystrokes out on the wire to
   the VNC server, but when the user types the next key to get, e.g., "@"
   the Windows VNC viewer sends events bringing the up the
   Control_L+Alt_R keys, and then sends the "@" keysym by itself.

   The Unix/Linux VNC viewer on a "us" keyboard does a similar thing
   since "@" is the Shift of the "2" key. The keysyms Shift and "@" are
   sent to the VNC server.

   In both cases no AltGr is sent to the VNC server, but we know AltGr is
   needed on the physical international keyboard to type a "@".

3594
   This all worked fine with x11vnc running with the [370]-modtweak
3595 3596 3597 3598
   option (it figures out how to adjust the Modifier keys (Shift or
   AltGr) to get the "@"). However it fails under recent versions of
   XFree86 (and the X.org fork). These run the XKEYBOARD extension by
   default and make heavy use of it to handle international keyboards.
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611

   To make a long story short, on these newer XFree86 setups the
   traditional X keymap lookup x11vnc uses is no longer accurate. x11vnc
   can't find the keysym "@" anywhere in the keymapping! (even though it
   is in the XKEYBOARD extended keymapping).

   How to Solve: As of Jul/2004 in the libvncserver CVS x11vnc has two
   changes:
     * -modtweak (tweak Modifier keys) is now the default (use
       -nomodtweak to go back to the old way)
     * there is a new option -xkb to use the XKEYBOARD extension API to
       do the Modifier key tweaking.

3612
   The [371]-xkb option seems to fix all of the missing keys: "@", "<",
3613
   ">", etc.: it is recommended that you try it if you have this sort of
3614 3615 3616 3617 3618
   problem. Let us know if there are any remaining problems (see the next
   paragraph for some known problems). If you specify the -debug_keyboard
   (aka -dk) option twice you will get a huge amount of keystroke
   debugging output (send it along with any problems you report).

3619
   Update: as of Jun/2005 x11vnc will try to automatically enable
3620
   [372]-xkb if it appears that would be beneficial (e.g. if it sees any
3621 3622 3623
   of "@", "<", ">", "[" and similar keys are mapped in a way that needs
   the -xkb to access them). To disable this automatic check use -noxkb.

3624 3625 3626 3627 3628 3629 3630 3631
   Known problems:
     * One user had to disable a "ghost" Mode_switch key that was causing
       problems under -xkb. His physical AltGr key was bound to
       ISO_Level3_Shift (which seems to be the XKEYBOARD way of doing
       things), while there was a ghost key Mode_switch (which seems to
       be obsolete) in the mapping as well. Both of these keysyms were
       bound to Mod5 and x11vnc was unfortunately choosing Mode_switch.
       From the x11vnc -xkb -dk -dk output it was noted that Mode_switch
3632 3633 3634
       was attached to keycode 93 (no physical key generates this
       keycode) while ISO_Level3_Shift was attached to keycode 113. The
       keycode skipping option was used to disable the ghost key:
3635
       [373]-skip_keycodes 93
3636 3637 3638 3639 3640 3641
     * In implementing -xkb we noticed that some characters were still
       not getting through, e.g. "~" and "^". This is not really an
       XKEYBOARD problem. What was happening was the VNC viewer was
       sending the keysyms asciitilde and asciicircum to x11vnc, but on
       the X server with the international keyboard those keysyms were
       not mapped to any keys. So x11vnc had to skip them.
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
       The way these characters are typically entered on international
       keyboards is by "dead" (aka "mute") keys. E.g. to enter "~" at the
       physical display the keysym dead_tilde is pressed and released
       (this usually involves holding AltGr down while another key is
       pressed) and then space is pressed. (this can also be used get
       characters with the "~" symbol on top, e.g. "ã" by typing "a"
       instead of space).
       What to do? In general the VNC protocol has not really solved this
       problem: what should be done if the VNC viewer sends a keysym not
       recognized by the VNC server side? Workarounds can possibly be
3652
       created using the [374]-remap x11vnc option:
3653 3654 3655
  -remap asciitilde-dead_tilde,asciicircum-dead_circumflex
       etc. Use -remap filename if the list is long. Please send us your
       workarounds for this problem on your keyboard. Perhaps we can have
3656
       x11vnc adjust automatically at some point. Also see the
3657 3658
       [375]-add_keysyms option in the next paragraph.
       Update: for convenience "[376]-remap DEAD" does many of these
3659
       mappings at once.
3660 3661
     * To complement the above workaround using the [377]-remap, an
       option [378]-add_keysyms was added. This option instructs x11vnc
3662 3663 3664 3665 3666 3667
       to bind any unknown Keysyms coming in from VNC viewers to unused
       Keycodes in the X server. This modifies the global state of the X
       server. When x11vnc exits it removes the extra keymappings it
       created. Note that the -remap mappings are applied first, right
       when the Keysym is received from a VNC viewer, and only after that
       would -add_keysyms, or anything else, come into play.
3668 3669
       Update: -add_keysyms is now on by default. Use -noadd_keysyms to
       disable.
3670

3671

3672
   Q-64: When typing I sometimes get double, triple, or more of my
3673 3674 3675 3676 3677 3678 3679
   keystrokes repeated. I'm sure I only typed them once, what can I do?

   This may be due to an interplay between your X server's key autorepeat
   delay and the extra time delays caused by x11vnc processing.

   Short answer: disable key autorepeating by running the command "xset r
   off" on the Xserver where x11vnc is run (restore via "xset r on") or
3680
   use the new (Jul/2004) [379]-norepeat x11vnc option. You will still
3681
   have autorepeating because that is taken care of on your VNC viewer
3682 3683 3684 3685
   side.

   Update: as of Dec/2004 -norepeat is now the default. Use -repeat to
   disable it.
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

   Details: suppose you press a key DOWN and it generates changes in
   large regions of the screen. The CPU and I/O work x11vnc does for the
   large screen change could be longer than your X server's key
   autorepeat delay. x11vnc may not get to processing the key UP event
   until after the screen work is completed. The X server believes the
   key has been held down all this time, and applies its autorepeat
   rules.

   Even without inducing changes in large regions of the screen, this
   problem could arise when accessing x11vnc via a dialup modem or
   otherwise high latency link (e.g. > 250 ms latency).

   Look at the output of "xset q" for the "auto repeat delay" setting. Is
3700 3701 3702 3703
   it low (e.g. < 300 ms)? If you turn off autorepeat completely: "xset r
   off", does the problem go away?

   The workaround is to manually apply "xset r off" and "xset r on" as
3704
   needed, or to use the [380]-norepeat (which has since Dec/2004 been
3705 3706 3707 3708 3709
   made the default). Note that with X server autorepeat turned off the
   VNC viewer side of the connection will (nearly always) do its own
   autorepeating so there is no big loss here, unless someone is also
   working at the physical display and misses his autorepeating.

3710

3711
   Q-65: The x11vnc -norepeat mode is in effect, but I still get repeated
3712 3713
   keystrokes!!

3714
   Are you using x11vnc to log in to an X session? (as described in
3715
   [381]this FAQ) If so, x11vnc is starting before your session and it
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
   disables autorepeat when you connect, but then after you log in your
   session startup (GNOME, KDE, ...) could be resetting the autorepeat to
   be on. Or it could be something inside your desktop trying to be
   helpful that decides to turn it back on.

   x11vnc in -norepeat mode will by default reset autorepeat to off 2
   times (to help get thru the session startup problem), but it will not
   continue to battle with things turning autorepeat back on. It will
   also turn autorepeat off whenever it goes from a state of zero clients
   to one client. You can adjust the number of resets via "-norepeat N",
   or use "-norepeat -1" to have it keep resetting it whenever autorepeat
   gets turned back on when clients are connected.

   In general you can manually turn autorepeating off by typing "xset r
   off", or a using desktop utility/menu, or "x11vnc -R norepeat". If
   something in your desktop is automatically turning it back on you
   should figure out how to disable that somehow.

3734

3735
   Q-66: The machine where I run x11vnc has an AltGr key, but the local
3736 3737 3738
   machine where I run the VNC viewer does not. Is there a way I can map
   a local unused key to send an AltGr? How about a Compose key as well?

3739
   Something like "[382]-remap Super_R-Mode_switch" x11vnc option may
3740 3741 3742
   work. Note that Super_R is the "Right Windoze(tm) Flaggie" key; you
   may want to choose another. The -debug_keyboard option comes in handy
   in finding keysym names (so does xev(1)).
3743 3744

   For Compose how about "-remap Menu-Multi_key" (note that Multi_key is
3745
   the official name for Compose). To do both at the same time: "-remap
3746 3747 3748
   Super_R-Mode_switch,Menu-Multi_key" or use "-remap filename" to
   specify remappings from a file.

3749

3750
   Q-67: I have a Sun machine I run x11vnc on. Its Sun keyboard has just
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
   one Alt key labelled "Alt" and two Meta keys labelled with little
   diamonds. The machine where I run the VNC viewer only has Alt keys.
   How can I send a Meta keypress? (e.g. emacs needs this)

   Here are a couple ideas. The first one is to simply use xmodmap(1) to
   adjust the Sun X server. Perhaps xmodmap -e "keysym Alt_L = Meta_L
   Alt_L" will do the trick. (there are other ways to do it, one user
   used: xmodmap -e "keycode 26 = Meta_L" for his setup).

   Since xmodmap(1) modifies the X server mappings you may not want to do
   this (because it affects local work on that machine). Something like
3762
   the [383]-remap Alt_L-Meta_L to x11vnc may be sufficient for ones
3763 3764
   needs, and does not modify the X server environment. Note that you
   cannot send Alt_L in this case, maybe -remap Super_L-Meta_L would be a
3765
   better choice if the Super_L key is typically unused in Unix.
3766

3767

3768
   Q-68: Can I map a keystroke to a mouse button click on the remote
3769 3770 3771 3772
   machine?

   This can be done directly in some X servers using AccessX and
   Pointer_EnableKeys, but is a bit awkward. It may be more convenient to
3773
   have x11vnc do the remapping. This can be done via the [384]-remap
3774 3775
   option using the fake "keysyms" Button1, Button2, etc. as the "to"
   keys (i.e. the ones after the "-")
3776

3777 3778
   As an example, consider a laptop where the VNC viewer is run that has
   a touchpad with only two buttons. It is difficult to do a middle
3779 3780 3781
   button "paste" because (using XFree86/Xorg Emulate3Buttons) you have
   to click both buttons on the touch pad at the same time. This
   remapping:
3782
  [385]-remap Super_R-Button2
3783 3784

   maps the Super_R "flag" key press to the Button2 click, thereby making
3785
   X pasting a bit easier.
3786 3787 3788 3789 3790

   Note that once the key goes down, the button down and button up events
   are generated immediately on the x11vnc side. When the key is released
   (i.e. goes up) no events are generated.

3791 3792
   [Screen Related Issues and Features]

3793
   Q-69: The remote display is larger (in number of pixels) than the
3794 3795 3796 3797 3798 3799 3800
   local display I am running the vncviewer on. I don't like the
   vncviewer scrollbars, what I can do?

   vncviewer has a option (usually accessible via F8 key or -fullscreen
   option) for vncviewer to run in full screen, where it will
   automatically scroll when the mouse is near the edge of the current
   view. For quick scrolling, also make sure Backing Store is enabled on
3801 3802 3803
   the machine vncviewer is run on. (XFree86/Xorg disables it by default
   for some reason, add Option "backingstore" to XF86Config on the
   vncviewer side).
3804 3805 3806 3807 3808

   BTW, contact me if you are having problems with vncviewer in
   fullscreen mode with your window manager (i.e. no keyboard response).
   I have a workaround for vncviewer using XGrabServer().

3809 3810 3811
   There may also be scaling viewers out there (e.g. TightVNC or UltraVNC
   on Windows) that automatically shrink or expand the remote framebuffer
   to fit the local display. Especially for hand-held devices. See also
3812
   [386]this FAQ on x11vnc scaling.
3813

3814

3815
   Q-70: Does x11vnc support server-side framebuffer scaling? (E.g. to
3816 3817 3818 3819
   make the desktop smaller).

   As of Jun/2004 in the libvncserver CVS x11vnc provides basic
   server-side scaling. It is a global scaling of the desktop, not a
3820
   per-client setting. To enable it use the "[387]-scale fraction"
3821 3822
   option. "fraction" can either be a floating point number (e.g. -scale
   0.5) or the alternative m/n fraction notation (e.g. -scale 2/3). Note
3823
   that if fraction is greater than one the display is magnified.
3824

3825 3826 3827 3828 3829
   Extra resources (CPU, memory I/O, and memory) are required to do the
   scaling. If the machine is slow where x11vnc is run with scaling
   enabled, the interactive response can be unacceptable. OTOH, if run
   with scaling on a fast machine the performance degradation is usually
   not a big issue or even noticeable.
3830 3831 3832

   Also, if you just want a quick, rough "thumbnail" of the display you
   can append ":nb" to the fraction to turn on "no blending" mode. E.g.:
3833 3834 3835
   "-scale 1/3:nb" Fonts will be difficult to read, but the larger
   features will be recognizable. BTW, "no blending" mode is forced on
   when scaling 8bpp PseudoColor displays (because blending an indexed
3836 3837
   colormap is a bad idea and leads to random colors, use :fb to force it
   on).
3838

3839 3840
   One can also use the ":nb" with an integer scale factor (say "-scale
   2:nb") to use x11vnc as a screen magnifier for vision impaired
3841
   [388]applications. Since with integer scale factors the framebuffers
3842 3843 3844
   become huge and scaling operations time consuming, be sure to use
   ":nb" for the fastest response.

3845 3846 3847 3848
   In general for a scaled display if you are using a TightVNC viewer you
   may want to turn off jpeg encoding (e.g. vncviewer -nojpeg host:0).
   There appears to be a noise enhancement effect, especially for regions
   containing font/text: the scaling can introduce some pixel artifacts
3849 3850 3851 3852 3853 3854 3855 3856
   that evidently causes the tight encoding algorithm to incorrectly
   detect the regions as image data and thereby introduce additional
   pixel artifacts due to the lossiness of the jpeg compression
   algorithm. Experiment to see if -nojpeg vncviewer option improves the
   readability of text when using -scale to shrink the display size. Also
   note that scaling may actually slow down the transfer of text regions
   because after being scaled they do not compress as well. (this can
   often be a significant slowdown, e.g. 10X).
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

   Another issue is that it appears VNC viewers require the screen width
   to be a multiple of 4. When scaling x11vnc will round the width to the
   nearest multiple of 4. To disable this use the ":n4" sub option (like
   ":nb" in the previous paragraph; to specify both use a comma:
   ":nb,n4", etc.)

   If one desires per-client scaling for something like 1:1 from a
   workstation and 1:2 from a smaller device (e.g. handheld), currently
   the only option is to run two (or more) x11vnc processes with
3867
   different scalings listening on separate ports ([389]-rfbport option,
3868 3869
   etc.).

3870
   BTW, whenever you run two or more x11vnc's on the same X display and
3871 3872
   use the [390]GUI, then to avoid all of the x11vnc's simultaneously
   answering the gui you will need to use something like [391]"-connect
3873 3874 3875 3876 3877 3878 3879 3880
   file1 -gui ..." with different connect files for each x11vnc you want
   to control via the gui (or remote-control). The "-connect file1" usage
   gives separate communication channels between a x11vnc proces and the
   gui process. Otherwise they all share the same X property channel:
   VNC_CONNECT.

   Update: As of Mar/2005 in the libvncserver CVS x11vnc now scales the
   mouse cursor with the same scale factor as the screen. If you don't
3881
   want that, use the [392]"-scale_cursor frac" option to set the cursor
3882 3883 3884
   scaling to a different factor (e.g. use "-scale_cursor 1" to keep the
   cursor at its natural unscaled size).

3885

3886
   Q-71: Does x11vnc work with Xinerama? (i.e. multiple monitors joined
3887 3888 3889
   together to form one big, single screen).

   Yes, it should generally work because it simply polls the big
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
   effective screen.

   If the viewing-end monitor is not as big as the remote Xinerama
   display, then the vncviewer scrollbars, etc, will have to be used to
   pan across the large area. However one user started two x11vnc's, one
   with "-clip 1280x1024+0+0" and the other with "-clip 1280x1024+1280+0"
   to split the big screen into two and used two VNC viewers to access
   them.

   There are a couple potential issues with Xinerama however. If the
   screen is not rectangular (e.g. 1280x1024 and 1024x768 monitors joined
   together), then there will be "non-existent" areas on the screen. The
   X server will return "garbage" image data for these areas and so they
3903
   may be distracting to the viewer. The [393]-blackout x11vnc option
3904 3905
   allows you to blacken-out rectangles by manually specifying their
   WxH+X+Y geometries. If your system has the libXinerama library, the
3906
   [394]-xinerama x11vnc option can be used to have it automatically
3907 3908
   determine the rectangles to be blackened out. (Note on 8bpp
   PseudoColor displays the fill color may not be black).
3909 3910 3911

   Some users have reported that the mouse does not behave properly for
   their Xinerama display: i.e. the mouse cannot be moved to all regions
3912
   of the large display. If this happens try using the [395]-xwarppointer
3913 3914 3915 3916 3917
   option. This instructs x11vnc to fake mouse pointer motions using the
   XWarpPointer function instead of the XTestFakeMotionEvent XTEST
   function. (This may be due to a bug in the X server for XTEST when
   Xinerama is enabled).

3918

3919
   Q-72: Can I use x11vnc on a multi-headed display that is not Xinerama
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
   (i.e. separate screens :0.0, :0.1, ... for each monitor)?

   You can, but it is a little bit awkward: you must start separate
   x11vnc processes for each screen, and on the viewing end start up
   separate VNC viewer processes connecting to them. e.g. on the remote
   end:
  x11vnc -display :0.0 -bg -q -rfbport 5900
  x11vnc -display :0.1 -bg -q -rfbport 5901

   (this could be automated in the display manager Xsetup for example)
   and then on the local machine where you are sitting:
  vncviewer somehost:0 &
  vncviewer somehost:1 &

   Note: if you are running on Solaris 8 or earlier you can easily hit up
   against the maximum of 6 shm segments per process (for Xsun in this
   case) from running multiple x11vnc processes. You should modify
3937 3938
   /etc/system as mentioned in another [396]FAQ to increase the limit. It
   is probably also a good idea to run with the [397]-onetile option in
3939
   this case (to limit each x11vnc to 3 shm segments), or even
3940
   [398]-noshm to use no shm segments.
3941

3942

3943
   Q-73: Can x11vnc show only a portion of the display? (E.g. for a
3944 3945
   special purpose rfb application).

3946
   As of Mar/2005 in the libvncserver CVS x11vnc has the "[399]-clip
3947 3948
   WxH+X+Y" option to select a rectangle of width W, height H and offset
   (X, Y). Thus the VNC screen will be the clipped sub-region of the
3949
   display and be only WxH in size. One user used -clip to split up a
3950
   large [400]Xinerama screen into two more managable smaller screens.
3951 3952

   This also works to view a sub-region of a single application window if
3953
   the [401]-id or [402]-sid options are used. The offset is measured
3954 3955
   from the upper left corner of the selected window.

3956

3957
   Q-74: Does x11vnc support the XRANDR (X Resize, Rotate and Reflection)
3958 3959 3960 3961
   extension? Whenever I rotate or resize the screen x11vnc just seems to
   crash.

   As of Dec/2004 in the libvncserver CVS x11vnc supports XRANDR. You
3962
   enable it with the [403]-xrandr option to make x11vnc monitor XRANDR
3963 3964
   events and also trap X server errors if the screen change occurred in
   the middle of an X call like XGetImage. Once it traps the screen
3965 3966 3967 3968 3969 3970 3971
   change it will create a new framebuffer using the new screen.

   If the connected vnc viewers support the NewFBSize VNC extension
   (Windows TightVNC viewer and RealVNC 4.0 windows and Unix viewers do)
   then the viewer will automatically resize. Otherwise, the new
   framebuffer is fit as best as possible into the original viewer size
   (portions of the screen may be clipped, unused, etc). For these
3972
   viewers you can try the [404]-padgeom option to make the region big
3973
   enough to hold all resizes and rotations.
3974 3975 3976 3977 3978 3979

   If you specify "-xrandr newfbsize" then vnc viewers that do not
   support NewFBSize will be disconnected before the resize. If you
   specify "-xrandr exit" then all will be disconnected and x11vnc will
   terminate.

3980

3981
   Q-75: Why is the view in my VNC viewer completely black? Or why is
3982 3983 3984 3985
   everything flashing around randomly?

   See the next FAQ for a possible explanation.

3986

3987
   Q-76: I use Linux Virtual Consoles (VC's) to implement 'Fast User
3988 3989
   Switching' between users' sessions (e.g. Betty is on Ctrl-Alt-F7,
   Bobby is on Ctrl-Alt-F8, and Sid is on Ctrl-Alt-F1: they use those
3990
   keystrokes to switch between their sessions).   How come the view in a
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
   VNC viewer connecting to x11vnc is either completely black or
   otherwise all messed up unless the X session x11vnc is attached to is
   in the active VC?

   This seems to have to do with how applications (the X server processes
   in this case) must "play nicely" if they are not on the active VC.
   That is, they should not read from the keyboard or mouse or manage the
   video display unless they have the active VC. Given that it appears
   the XGetImage() call must ultimately retrieve the framebuffer data
   from the video hardware itself, it would make sense x11vnc's polling
   wouldn't work unless the X session had active control of the VC.

   There does not seem to be an easy way to work around this. Even xwd(1)
   doesn't work in this case (try it). Something would need to be done at
   a lower level, say in the XFree86 X server. Also, using the XFree86
   Shadow Framebuffer (a copy of the video framebuffer is kept in main
   memory) does not appear to fix the problem.

   If no one is sitting at the workstation and you just want to remotely
   switch the VC over to the one associated with your X session (so
4011 4012 4013
   x11vnc can poll it correctly), one can use the chvt(1) command, e.g.
   "chvt 7" for VC #7.

4014

4015
   Q-77: Can I use x11vnc to view my VMWare session remotely?
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025

   Yes, since VMWare is an X application you can view it via x11vnc in
   the normal way.

   Note that VMWare has several viewing modes:
     * Normal X application window  (with window manager frame)
     * Quick-Switch mode  (with no window manager frame)
     * Fullscreen mode

   The way VMWare does Fullscreen mode on Linux is to display the Guest
4026
   desktop in a separate Virtual Console (e.g. VC 8) (see [405]this FAQ
4027
   on VC's for background). Unfortunately, this Fullscreen VC is not an X
4028
   server. So x11vnc cannot access it (however, [406]see this for a
4029
   possible partial workaround). x11vnc works fine with "Normal X
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
   application window" and "Quick-Switch mode" because these use X.

   One user reports he left his machine with VMWare in the Fullscreen
   mode, and even though his X session wasn't in the active VC, he could
   still connect x11vnc to the X session and pass the keystrokes Ctrl-Alt
   (typing "blind") to the VMWare X app. This induced VMWare to switch
   out of Fullscreen into Normal X mode and he could continue working in
   the Guest desktop remotely.

   Sometimes it is convenient (for performance, etc.) to start VMWare in
   its own X session using startx(1). This can be used to have a minimal
   window manger (e.g. twm or even no window manager), to improve
   response. One can also cut the display depth (e.g. to 16bpp) in this
   2nd X session to improve video performance. This 2nd X session
   emulates Fullscreen mode to some degree and can be viewed via x11vnc
4045
   as long as the VMWare X session [407]is in the active VC.
4046 4047 4048 4049 4050

   Also note that with a little bit of playing with "xwininfo -all
   -children" output one can extract the (non-toplevel) windowid of the
   of the Guest desktop only when VMWare is running as a normal X
   application. Then one can export just the guest desktop (i.e. without
4051
   the VMWare menu buttons) by use of the [408]-id windowid option. The
4052 4053 4054 4055 4056 4057 4058
   caveats are the X session VMWare is in must be in the active VC and
   the window must be fully visible, so this mode is not terribly
   convenient, but could be useful in some circumstances (e.g. running
   VMWare on a very powerful server machine in a server room that happens
   to have a video card, (but need not have a monitor, Keyboard or
   mouse)).

4059

4060
   Q-78: Can non-X devices (e.g. a raw framebuffer) be viewed and/or
4061 4062 4063 4064 4065 4066 4067 4068 4069
   controlled by x11vnc?

   As of Apr/2005 in the libvncserver CVS there is rudimentary support
   for this. Two options were added: "-rawfb string" (to indicate the raw
   framembuffer and its parameters) and "-pipeinput cmd" (to provide an
   external program that will inject or otherwise process mouse and
   keystroke input).

   This non-X mode for x11vnc is experimental because it is so removed in
4070 4071 4072 4073 4074
   scope from the intended usage of the tool. Little attempt is made to
   make all of the other options consistent with non-X framebuffer
   polling. So all of the X-related options (e.g. -add_keysyms, -xkb) are
   just ignored or in the worst case will cause a crash. Be careful
   applying such an option via the command line or remote control.
4075 4076

   The format for the -rawfb string is:
4077
    -rawfb <type>:<object>@<W>x<H>x<bpp>[:<R>/<G>/<B>][+<offset>]
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091

   Some examples:
    -rawfb shm:210337933@800x600x32:ff/ff00/ff0000

    -rawfb map:/dev/fb0@1024x768x16

    -rawfb map:/tmp/Xvfb_screen0@640x480x8+3232

    -rawfb file:/tmp/my.pnm@250x200x24+37

   So the type can be "shm" for shared memory objects, and "map" or
   "file" for file objects. "map" uses mmap(2) to map the file into
   memory and is preferred over "file" (that uses the slower lseek(2)
   access method). Only use file if map isn't working. BTW, "mmap" is an
4092 4093
   alias for "map" and if you do not supply a type and the file exists,
   map is assumed.
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131

   Also, if the string is of the form "setup:cmd" then cmd is run and the
   first line of its output retrieved and used as the rawfb string. This
   allows initializing the device, determining WxHxB, etc.

   The object will be the numerical shared memory id for the case of shm.
   The idea here is some other program has created this shared memory
   segment and periodically updates it with new framebuffer data. x11vnc
   polls the area for changes. See shmat(2) and ipcs(8) for more info.
   The ipcs command will list current shared memory segments on the
   system.

   The object will be the path to the regular or character special file
   for the cases of map and file. The idea here is that in the case of a
   regular file some other program is writing/updating framebuffer image
   data to it. In the case of a character special (e.g. /dev/fb0) it is
   the kernel that is "updating" the framebuffer data.

   In all cases x11vnc needs to be told the width, height, and number of
   bits per pixel (bpp) of the framebuffer. This is the @WxHxB field. For
   the case of the Linux framebuffer device, /dev/fb0, the fbset(8) may
   be of use (but may not always be accurate for what is currently
   viewable). In general some guessing may be required, especially for
   the bpp.

   Based on the bpp x11vnc will try to guess the red, green, and blue
   masks (these indicate which bits correspond to each color). It if gets
   it wrong you can specify them manually via the optional ":R/G/B"
   field. E.g. ":0xff000/0x00ff00/0x0000ff" (this is the default for
   32bpp).

   Finally, the framebuffer may not begin at the beginning of the memory
   object, so use the optional "+offset" parameter to indicate where the
   framebuffer information starts. So as an example, the Xvfb virtual
   framebuffer has options -shmem and -fbdir for exporting its virtual
   screen to either shm or a mapped file. The format of these is XWD and
   so the initial header should be skipped. BTW, since XWD is not
   strictly RGB the view will only be approximate. Of course for the case
4132
   of Xvfb x11vnc can poll it much better via the [409]X API, but you get
4133 4134 4135 4136 4137 4138 4139 4140 4141
   the idea.

   By default in -rawfb mode x11vnc will actually close any X display it
   happened to open. This is basically to shake out bugs (e.g it will
   crash rather than mysteriously interacting with the X display). If you
   want x11vnc to keep the X display open while polling the raw
   framebuffer capitalize the type (i.e. "SHM:", "MAP:", or "FILE:").
   This could be convenient for keeping the remote control channel active
   (it uses X properties). The "-connect /path/to/file" mechanism could
4142 4143 4144 4145
   also be used for remote control to avoid the X property channel. Rare
   usage, but if you also supply -noviewonly in this mode then the mouse
   and keyboard input are still sent to the X display, presumably for
   doing something strange with /dev/fb...
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184


   All of the above was just for viewing the raw framebuffer. That may be
   enough for certain applications of this feature (e.g. suppose a video
   camera mapped its framebuffer into memory). To handle the pointer and
   keyboard input from the viewer users the "-pipeinput cmd" option was
   added to indicate a helper program to process the user input. The
   input is streamed to it and looks something like this:
   Pointer 1 205 257 0 None
   Pointer 1 198 253 0 None
   Pointer 1 198 253 1 ButtonPress-1
   Pointer 1 198 253 0 ButtonRelease-1
   Pointer 1 198 252 0 None
   Keysym 1 1 119 w KeyPress
   Keysym 1 0 119 w KeyRelease
   Keysym 1 1 65288 BackSpace KeyPress
   Keysym 1 0 65288 BackSpace KeyRelease
   Keysym 1 1 112 p KeyPress
   Keysym 1 0 112 p KeyRelease

   Run "-pipeinput tee:/bin/cat" to get a description of the format. Note
   that the -pipeinput option is independent of -rawfb mode and so may
   have some other interesting uses. BTW, the "tee:" prefix means x11vnc
   will both process the user input and pipe it to the command. The
   default is to just pipe it to the -pipeinput command.

   Note the -pipeinput helper program could actually control the raw
   framebuffer. In the libvncserver CVS a simple example program
   x11vnc/misc/slide.pl is provided that demonstrates a simple jpeg
   "slideshow" application.

   The -pipeinput program is run with these environment variables set:
   X11VNC_PID, X11VNC_PROG, X11VNC_CMDLINE, X11VNC_RAWFB_STR to aid its
   knowing what is up.

   Another example provided in libvncserver CVS is a script to inject
   keystrokes into the Linux console (e.g. the virtual consoles:
   /dev/tty1, /dev/tty2, etc) in x11vnc/misc/vcinject.pl. It is based on
   the vncterm/LinuxVNC.c program also in the libvncserver CVS. So to
4185
   view and interact with VC #2 (assuming it is the [410]active VC) one
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
   can run something like:
  x11vnc -rawfb map:/dev/fb0@1024x768x16 -pipeinput './vcinject.pl 2'

   This assumes your Linux framebuffer device (/dev/fb0) is properly
   configured. See fbset(8) and other documentation. Try
   "file:/dev/fb0@WxHxB" as a last resort.

   The above is just an example of what can be done. If you really want
   to view and interact with the Linux console it is better to use the
   more accurate and faster LinuxVNC program. The only advantage x11vnc
   -rawfb might have is that it can presumably allow interaction with a
   non-text application, e.g. one based on svgalib. For example the
4198
   [411]VMWare Fullscreen mode is actually viewable under -rawfb. But
4199
   this isn't much use until one figures out how to inject keystrokes and
4200
   mouse events...
4201 4202 4203 4204 4205 4206 4207 4208

   The -rawfb and -pipeinput features are intended to help one creatively
   "get out of a jam" (say on a legacy or embedded device) where X is
   absent or doesn't work properly. Feedback and bug reports are welcome.
   For more control and less overhead use libvncserver in your own C
   program that passes the framebuffer to libvncserver.


4209
   Q-79: I am using x11vnc where my local machine has "popup/hidden
4210 4211 4212 4213 4214 4215
   taskbars" (e.g. GNOME or MacOS X) and the remote display where x11vnc
   runs also has "popup/hidden taskbars" (e.g. GNOME). When I move the
   mouse to the edge of the screen where the popups happen, the taskbars
   interfere and fight with each other in strange ways. What can I do?

   Is there a way to temporarily disable one or both of these magic
4216 4217 4218 4219 4220
   desktop taskbars?

   One x11vnc user suggests: it should be straightforward to right mouse
   click on the task bar panel, and uncheck "enable auto-hide" from the
   panel properties dialog box. This will make the panel always visible.
4221

4222
   [Misc: Clipboard, Beeps, Thanks, etc.]
4223

4224
   Q-80: Does the Clipboard/Selection get transferred between the
4225 4226 4227 4228 4229
   vncviewer and the X display?

   As of Jan/2004 in the libvncserver CVS x11vnc supports the "CutText"
   part of the rfb protocol. Furthermore, x11vnc is able to hold the
   PRIMARY selection (Xvnc does not seem to do this). If you don't want
4230
   the Clipboard/Selection exchanged use the [412]-nosel option. If you
4231
   don't want the PRIMARY selection to be polled for changes use the
4232 4233
   [413]-noprimary option. You can also fine-tune it a bit with the
   [414]-seldir dir option.
4234

4235 4236 4237 4238
   You may need to watch out for desktop utilities such as KDE's
   "Klipper" that do odd things with the selection, clipboard, and
   cutbuffers.

4239

4240
   Q-81: Why don't I hear the "Beeps" in my X session (e.g. when typing
4241 4242 4243 4244
   tput bel in an xterm)?

   As of Dec/2003 in the libvncserver CVS "Beep" XBell events are tracked
   by default. The X server must support the XKEYBOARD extension (this is
4245 4246
   not on by default in Solaris, see Xserver(1) for how to turn it on via
   +kb), and so you won't hear them if the extension is not present.
4247

4248
   If you don't want to hear the beeps use the [415]-nobell option. If
4249 4250 4251
   you want to hear the audio from the remote applications, consider
   trying a redirector such as esd.

4252

4253 4254


4255 4256
    Contributions:

4257
   Q-82: Thanks for your program and for your help! Can I make a
4258 4259 4260
   donation?

   Please do (any amount is appreciated) and thank you for your support!
runge's avatar
runge committed
4261
   Click on the PayPal button below for more info.
4262 4263
   Also, in general I always enjoy hearing from x11vnc users, how they
   use it, what new features they would like, etc.   Please send me an
4264
   [416]email!
4265 4266

   [PayPal]
4267 4268 4269 4270 4271 4272

References

   1. http://www.karlrunge.com/x11vnc/index.html#faq
   2. http://www.karlrunge.com/x11vnc/index.html#downloading
   3. http://www.karlrunge.com/x11vnc/index.html#building
4273
   4. http://www.karlrunge.com/x11vnc/index.html#faq-thanks
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
   5. http://www.karlrunge.com/x11vnc/index.html#beta-test
   6. http://www.karlrunge.com/x11vnc/index.html#faq
   7. http://www.karlrunge.com/x11vnc/index.html#contact
   8. http://www.uk.research.att.com/vnc/
   9. http://www.realvnc.com/
  10. http://www.tightvnc.com/
  11. http://www.karlrunge.com/x11vnc/index.html#downloading
  12. http://www.tightvnc.com/download.html
  13. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-auth
  14. http://www.karlrunge.com/x11vnc/index.html#faq-xperms
  15. http://www.karlrunge.com/x11vnc/index.html#faq-viewer-download
  16. http://www.sun.com/software/solaris/freeware/
4286
  17. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-forever
4287 4288 4289 4290 4291
  18. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-forever
  19. http://www.karlrunge.com/x11vnc/index.html#faq-service
  20. http://www.karlrunge.com/x11vnc/index.html#faq-passwd
  21. http://www.karlrunge.com/x11vnc/index.html#vnc_password_file
  22. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-connect
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
  23. http://www.karlrunge.com/x11vnc/index.html#vnc_password_file
  24. http://www.karlrunge.com/x11vnc/index.html#faq-inetd
  25. http://www.karlrunge.com/x11vnc/index.html#tightvnc_via
  26. http://www.karlrunge.com/x11vnc/index.html#gateway_double_ssh
  27. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-bg
  28. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-connect
  29. http://www.karlrunge.com/x11vnc/index.html#faq-inetd
  30. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-rfbauth
  31. http://www.karlrunge.com/x11vnc/index.html#faq-passwd
  32. http://www.karlrunge.com/x11vnc/index.html#faq-passwdfile
  33. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-passwdfile
  34. http://www.karlrunge.com/x11vnc/index.html#faq-allow-opt
  35. http://www.karlrunge.com/x11vnc/index.html#faq-tcp_wrappers
  36. http://sourceforge.net/projects/libvncserver/
  37. http://sourceforge.net/project/showfiles.php?group_id=32584&package_id=119006&release_id=341817
  38. http://sourceforge.net/project/shownotes.php?group_id=32584&release_id=341817
  39. http://www.karlrunge.com/x11vnc/x11vnc-0.7.3.tar.gz
  40. http://www.karlrunge.com/x11vnc/index.html#faq-binaries
  41. http://www.tightvnc.com/download.html
  42. http://www.realvnc.com/download-free.html
  43. http://sourceforge.net/projects/cotvnc/
  44. http://www.karlrunge.com/x11vnc/rx11vnc
  45. http://www.karlrunge.com/x11vnc/rx11vnc.pl
  46. http://www.sunfreeware.com/
  47. http://www.karlrunge.com/x11vnc/index.html#faq-build
  48. ftp://ftp.uu.net/graphics/jpeg/
  49. http://www.gzip.org/zlib/
  50. http://www.sunfreeware.com/
  51. http://www.karlrunge.com/x11vnc/index.html#faq-solaris251build
  52. http://www.karlrunge.com/x11vnc/x11vnc-0.7.3.tar.gz
  53. http://www.karlrunge.com/x11vnc/bins
  54. mailto:x11vnc-beta@karlrunge.com
  55. http://www.karlrunge.com/x11vnc/index.html#faq-xdamage
  56. http://www.karlrunge.com/x11vnc/index.html#faq-wireframe
  57. http://www.karlrunge.com/x11vnc/index.html#wirecopyrect
  58. http://www.karlrunge.com/x11vnc/index.html#faq-scrollcopyrect
  59. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-solid
  60. http://www.tightvnc.com/
  61. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-rfbport
  62. http://www.karlrunge.com/x11vnc/x11vnc_opts.html
  63. http://www.karlrunge.com/x11vnc/index.html#faq-passwd
  64. http://www.karlrunge.com/x11vnc/recurse_x11vnc.jpg
  65. http://wwws.sun.com/sunray/index.html
  66. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nap
  67. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wait
  68. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-rfbport
  69. http://www.karlrunge.com/x11vnc/shm_clear
4339
  70. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scrollcopyrect
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
  71. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wireframe
  72. http://www.karlrunge.com/x11vnc/index.html#faq-xvfb
  73. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-cursor
  74. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-overlay
  75. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scrollcopyrect
  76. mailto:xvml@karlrunge.com
  77. http://www.karlrunge.com/x11vnc/index.html#faq-thanks
  78. http://www.karlrunge.com/x11vnc/index.html#faq-xperms
  79. http://www.karlrunge.com/x11vnc/index.html#faq-build
  80. http://www.karlrunge.com/x11vnc/index.html#faq-missing-xtest
  81. http://www.karlrunge.com/x11vnc/index.html#faq-solaris251build
  82. http://www.karlrunge.com/x11vnc/index.html#faq-binaries
  83. http://www.karlrunge.com/x11vnc/index.html#faq-viewer-download
  84. http://www.karlrunge.com/x11vnc/index.html#faq-cmdline-opts
  85. http://www.karlrunge.com/x11vnc/index.html#faq-config-file
  86. http://www.karlrunge.com/x11vnc/index.html#faq-gui-tray
  87. http://www.karlrunge.com/x11vnc/index.html#faq-quiet-bg
  88. http://www.karlrunge.com/x11vnc/index.html#faq-sigpipe
  89. http://www.karlrunge.com/x11vnc/index.html#faq-build-customizations
  90. http://www.karlrunge.com/x11vnc/index.html#faq-win2vnc
  91. http://www.karlrunge.com/x11vnc/index.html#faq-win2vnc-8bpp
  92. http://www.karlrunge.com/x11vnc/index.html#faq-8bpp
  93. http://www.karlrunge.com/x11vnc/index.html#faq-overlays
  94. http://www.karlrunge.com/x11vnc/index.html#faq-windowid
  95. http://www.karlrunge.com/x11vnc/index.html#faq-transients-id
  96. http://www.karlrunge.com/x11vnc/index.html#faq-24bpp
  97. http://www.karlrunge.com/x11vnc/index.html#faq-noshm
  98. http://www.karlrunge.com/x11vnc/index.html#faq-xterminal-xauth
  99. http://www.karlrunge.com/x11vnc/index.html#faq-stop-bg
 100. http://www.karlrunge.com/x11vnc/index.html#faq-remote_control
 101. http://www.karlrunge.com/x11vnc/index.html#faq-passwd
 102. http://www.karlrunge.com/x11vnc/index.html#faq-passwdfile
 103. http://www.karlrunge.com/x11vnc/index.html#faq-input-opt
 104. http://www.karlrunge.com/x11vnc/index.html#faq-forever-shared
 105. http://www.karlrunge.com/x11vnc/index.html#faq-allow-opt
 106. http://www.karlrunge.com/x11vnc/index.html#faq-tcp_wrappers
 107. http://www.karlrunge.com/x11vnc/index.html#faq-listen-interface
 108. http://www.karlrunge.com/x11vnc/index.html#faq-listen-localhost
 109. http://www.karlrunge.com/x11vnc/index.html#faq-ssh-unix
 110. http://www.karlrunge.com/x11vnc/index.html#faq-ssh-putty
 111. http://www.karlrunge.com/x11vnc/index.html#faq-accept-opt
 112. http://www.karlrunge.com/x11vnc/index.html#faq-unix-passwords
 113. http://www.karlrunge.com/x11vnc/index.html#faq-users-opt
 114. http://www.karlrunge.com/x11vnc/index.html#faq-blockdpy
 115. http://www.karlrunge.com/x11vnc/index.html#faq-gone-lock
 116. http://www.karlrunge.com/x11vnc/index.html#faq-service
 117. http://www.karlrunge.com/x11vnc/index.html#faq-display-manager
 118. http://www.karlrunge.com/x11vnc/index.html#faq-inetd
 119. http://www.karlrunge.com/x11vnc/index.html#faq-java-http
 120. http://www.karlrunge.com/x11vnc/index.html#faq-reverse-connect
 121. http://www.karlrunge.com/x11vnc/index.html#faq-xvfb
 122. http://www.karlrunge.com/x11vnc/index.html#faq-headless
 123. http://www.karlrunge.com/x11vnc/index.html#faq-solshm
 124. http://www.karlrunge.com/x11vnc/index.html#faq-less-resource
 125. http://www.karlrunge.com/x11vnc/index.html#faq-more-resource
 126. http://www.karlrunge.com/x11vnc/index.html#faq-slow-link
 127. http://www.karlrunge.com/x11vnc/index.html#faq-xdamage
 128. http://www.karlrunge.com/x11vnc/index.html#faq-pointer-mode
 129. http://www.karlrunge.com/x11vnc/index.html#faq-wireframe
 130. http://www.karlrunge.com/x11vnc/index.html#faq-scrollcopyrect
 131. http://www.karlrunge.com/x11vnc/index.html#faq-cursor-shape
 132. http://www.karlrunge.com/x11vnc/index.html#faq-xfixes-alpha
 133. http://www.karlrunge.com/x11vnc/index.html#faq-xfixes-alpha-hacks
 134. http://www.karlrunge.com/x11vnc/index.html#faq-cursor-arrow
 135. http://www.karlrunge.com/x11vnc/index.html#faq-cursor-positions
 136. http://www.karlrunge.com/x11vnc/index.html#faq-buttonmap-opt
 137. http://www.karlrunge.com/x11vnc/index.html#faq-altgr
 138. http://www.karlrunge.com/x11vnc/index.html#faq-greaterless
 139. http://www.karlrunge.com/x11vnc/index.html#faq-greaterless-sloppy
 140. http://www.karlrunge.com/x11vnc/index.html#faq-xkbmodtweak
 141. http://www.karlrunge.com/x11vnc/index.html#faq-repeated-keys
 142. http://www.karlrunge.com/x11vnc/index.html#faq-repeated-keys-still
 143. http://www.karlrunge.com/x11vnc/index.html#faq-remap-opt
 144. http://www.karlrunge.com/x11vnc/index.html#faq-sun-alt-meta
 145. http://www.karlrunge.com/x11vnc/index.html#faq-remap-button-click
 146. http://www.karlrunge.com/x11vnc/index.html#faq-scrollbars
 147. http://www.karlrunge.com/x11vnc/index.html#faq-scaling
 148. http://www.karlrunge.com/x11vnc/index.html#faq-xinerama
 149. http://www.karlrunge.com/x11vnc/index.html#faq-multi-screen
 150. http://www.karlrunge.com/x11vnc/index.html#faq-clip-screen
 151. http://www.karlrunge.com/x11vnc/index.html#faq-xrandr
 152. http://www.karlrunge.com/x11vnc/index.html#faq-black-screen
 153. http://www.karlrunge.com/x11vnc/index.html#faq-linuxvc
 154. http://www.karlrunge.com/x11vnc/index.html#faq-vmware
 155. http://www.karlrunge.com/x11vnc/index.html#faq-rawfb
 156. http://www.karlrunge.com/x11vnc/index.html#faq-hidden-taskbars
 157. http://www.karlrunge.com/x11vnc/index.html#faq-clipboard
 158. http://www.karlrunge.com/x11vnc/index.html#faq-beeps
 159. http://www.karlrunge.com/x11vnc/index.html#faq-thanks
 160. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-display
 161. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-auth
 162. http://www.karlrunge.com/x11vnc/index.html#faq-display-manager
 163. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-users
 164. http://www.karlrunge.com/x11vnc/index.html#solarisbuilding
 165. http://www.karlrunge.com/x11vnc/x11vnc_sunos4.html
 166. http://www.karlrunge.com/x11vnc/index.html#building
 167. http://www.karlrunge.com/x11vnc/index.html#faq-build
 168. http://packages.debian.org/x11vnc
 169. http://www.linuxpackages.net/search_view.php?by=name&name=x11vnc
 170. http://dag.wieers.com/packages/x11vnc/
 171. http://linux01.gwdg.de/~pbleser/rpm-navigation.php?cat=Network/x11vnc/
 172. http://www.sunfreeware.com/
 173. http://www.bell-labs.com/project/wwexptools/packages.html
 174. http://www.karlrunge.com/x11vnc/bins
 175. http://www.tightvnc.com/download.html
 176. http://www.realvnc.com/download-free.html
 177. http://sourceforge.net/projects/cotvnc/
 178. http://www.karlrunge.com/x11vnc/x11vnc_opts.html
 179. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-gui
 180. http://www.karlrunge.com/x11vnc/index.html#faq-gui-tray
 181. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-q
 182. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-bg
 183. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-o
 184. http://www.karlrunge.com/x11vnc/index.html#solarisbuilding
 185. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nofb
 186. http://fredrik.hubbe.net/x2vnc.html
 187. http://www.hubbe.net/~hubbe/win2vnc.html
 188. http://www.deboer.gmxhome.de/
 189. http://sourceforge.net/projects/win2vnc/
 190. http://fredrik.hubbe.net/x2vnc.html
 191. http://freshmeat.net/projects/x2x/
 192. http://ftp.digital.com/pub/Digital/SRC/x2x/
 193. http://zapek.com/software/zvnc/
 194. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-visual
 195. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-flashcmap
 196. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-notruecolor
 197. http://www.karlrunge.com/x11vnc/index.html#faq-8bpp
 198. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-overlay
 199. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-overlay
 200. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-id
 201. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-overlay
 202. http://www.karlrunge.com/x11vnc/index.html#faq-overlays
 203. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-id
 204. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-sid
 205. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-display
 206. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-noshm
 207. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-flipbyteorder
 208. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-auth
 209. http://www.karlrunge.com/x11vnc/index.html#xauth_pain
 210. http://www.karlrunge.com/x11vnc/index.html#faq-noshm
 211. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remote
 212. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-query
 213. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-forever
 214. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-bg
 215. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-clear_mods
 216. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-clear_keys
 217. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remote
 218. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-query
 219. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-gui
 220. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-storepasswd
4490
 221. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-rfbauth
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
 222. http://www.karlrunge.com/x11vnc/index.html#faq-passwdfile
 223. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-viewpasswd
 224. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-passwd
 225. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-passwdfile
 226. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-rfbauth
 227. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-input
 228. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-forever
 229. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-shared
 230. http://www.karlrunge.com/x11vnc/index.html#tunnelling
 231. http://www.karlrunge.com/x11vnc/index.html#faq-passwd
 232. http://www.karlrunge.com/x11vnc/index.html#faq-passwdfile
4502 4503
 233. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-allow
 234. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-localhost
4504 4505
 235. http://www.karlrunge.com/x11vnc/index.html#faq-tcp_wrappers
 236. http://www.karlrunge.com/x11vnc/index.html#faq-inetd
4506 4507 4508
 237. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-listen
 238. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-allow
 239. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-localhost
4509 4510 4511 4512 4513 4514
 240. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-allow
 241. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-localhost
 242. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-listen
 243. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-allow
 244. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-localhost
 245. http://www.karlrunge.com/x11vnc/index.html#tunnelling
4515
 246. http://www.karlrunge.com/x11vnc/index.html#tunnelling
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
 247. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-localhost
 248. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-rfbauth
 249. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-passwdfile
 250. http://www.karlrunge.com/x11vnc/index.html#gateway_double_ssh
 251. http://www.karlrunge.com/x11vnc/index.html#tunnelling
 252. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-connect
 253. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-accept
 254. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-viewonly
 255. ftp://ftp.x.org/
 256. http://www.karlrunge.com/x11vnc/dtVncPopup
 257. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-gone
 258. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-localhost
 259. http://www.karlrunge.com/x11vnc/index.html#tunnelling
 260. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-accept
 261. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-users
 262. http://www.karlrunge.com/x11vnc/blockdpy.c
 263. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-accept
 264. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-gone
 265. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-gone
 266. http://www.karlrunge.com/x11vnc/index.html#display-manager-continuously
 267. http://www.karlrunge.com/x11vnc/index.html#faq-inetd
 268. http://www.karlrunge.com/x11vnc/index.html#x11vnc_loop
 269. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-auth
 270. http://www.karlrunge.com/x11vnc/index.html#dtlogin_solaris
 271. http://www.jirka.org/gdm-documentation/x241.html
 272. http://www.karlrunge.com/x11vnc/x11vnc_loop
 273. http://www.karlrunge.com/x11vnc/index.html#faq-xterminal-xauth
 274. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-inetd
 275. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-q
 276. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-auth
 277. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-httpdir
 278. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-http
 279. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-connect
 280. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-vncconnect
 281. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-add_keysyms
 282. http://www.karlrunge.com/x11vnc/index.html#faq-linuxvc
 283. http://www.karlrunge.com/x11vnc/index.html#display-manager-continuously
 284. http://www.karlrunge.com/x11vnc/shm_clear
4554
 285. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-onetile
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
 286. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-noshm
 287. http://www.karlrunge.com/x11vnc/index.html#faq-noshm
 288. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nap
 289. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wait
 290. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-onetile
 291. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-fs
 292. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-threads
 293. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-defer
 294. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-id
 295. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-solid
4565
 296. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scrollcopyrect
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
 297. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wireframe
 298. http://www.tightvnc.com/
 299. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nodragging
 300. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wireframe
 301. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scrollcopyrect
 302. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-fs
 303. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wait
 304. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-defer
 305. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-progressive
 306. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-id
 307. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nosel
 308. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nocursor
 309. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nocursorpos
 310. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-readtimeout
 311. http://www.karlrunge.com/x11vnc/index.html#fb_read_slow
 312. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xd_area
 313. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xd_mem
 314. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-noxdamage
 315. http://www.karlrunge.com/x11vnc/index.html#fb_read_slow
 316. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-pointer_mode
 317. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-pointer_mode
 318. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nodragging
 319. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-pointer_mode
 320. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-threads
 321. http://www.karlrunge.com/x11vnc/index.html#faq-wireframe
 322. http://www.karlrunge.com/x11vnc/index.html#faq-scrollcopyrect
 323. http://www.karlrunge.com/x11vnc/index.html#faq-pointer-mode
 324. http://www.karlrunge.com/x11vnc/index.html#fb_read_slow
4594
 325. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wireframe
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
 326. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wireframe
 327. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wireframe
 328. http://www.karlrunge.com/x11vnc/index.html#fb_read_slow
 329. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scrollcopyrect
 330. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wireframe
 331. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-wirecopyrect
 332. http://www.karlrunge.com/x11vnc/index.html#faq-wireframe
 333. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-fixscreen
 334. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scr_skip
 335. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scale
 336. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scrollcopyrect
 337. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-cursor
 338. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-cursor
 339. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-overlay
 340. http://www.karlrunge.com/x11vnc/index.html#the-overlay-mode
 341. http://www.karlrunge.com/x11vnc/index.html#solaris10-build
 342. http://www.karlrunge.com/x11vnc/index.html#faq-xfixes-alpha-hacks
 343. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-alphacut
 344. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-alphafrac
 345. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-alpharemove
 346. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nocursorshape
 347. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-noalphablend
 348. http://www.tightvnc.com/
 349. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nocursor
 350. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-cursorpos
 351. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nocursorpos
 352. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nocursorshape
 353. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-buttonmap
 354. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-debug_pointer
 355. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-buttonmap
 356. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-modtweak
 357. http://www.karlrunge.com/x11vnc/index.html#faq-greaterless
 358. http://www.karlrunge.com/x11vnc/index.html#faq-xkbmodtweak
 359. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-debug_keyboard
 360. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xkb
 361. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-sloppy_keys
 362. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-modtweak
 363. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-modtweak
 364. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remap
 365. http://www.karlrunge.com/x11vnc/index.html#faq-xkbmodtweak
 366. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-debug_keyboard
 367. http://www.karlrunge.com/x11vnc/index.html#faq-greaterless
 368. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xkb
 369. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-sloppy_keys
 370. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-modtweak
 371. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xkb
 372. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xkb
 373. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-skip_keycodes
 374. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remap
 375. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-add_keysyms
 376. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remap
4646
 377. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remap
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
 378. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-add_keysyms
 379. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-norepeat
 380. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-norepeat
 381. http://www.karlrunge.com/x11vnc/index.html#faq-display-manager
 382. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remap
 383. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remap
 384. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remap
 385. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-remap
 386. http://www.karlrunge.com/x11vnc/index.html#faq-scaling
 387. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scale
 388. http://www.cus.cam.ac.uk/~ssb22/source/vnc-magnification.html
 389. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-rfbport
 390. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-gui
 391. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-connect
 392. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-scale_cursor
 393. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-blackout
 394. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xinerama
 395. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xwarppointer
 396. http://www.karlrunge.com/x11vnc/index.html#faq-solshm
 397. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-onetile
 398. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-noshm
 399. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-clip
 400. http://www.karlrunge.com/x11vnc/index.html#faq-xinerama
 401. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-id
 402. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-id
 403. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-xrandr
 404. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-padgeom
4674
 405. http://www.karlrunge.com/x11vnc/index.html#faq-linuxvc
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
 406. http://www.karlrunge.com/x11vnc/index.html#faq-rawfb
 407. http://www.karlrunge.com/x11vnc/index.html#faq-linuxvc
 408. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-id
 409. http://www.karlrunge.com/x11vnc/index.html#faq-xvfb
 410. http://www.karlrunge.com/x11vnc/index.html#faq-linuxvc
 411. http://www.karlrunge.com/x11vnc/index.html#faq-vmware
 412. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nosel
 413. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-noprimary
 414. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-seldir
 415. http://www.karlrunge.com/x11vnc/x11vnc_opts.html#opt-nobell
 416. mailto:xvml@karlrunge.com
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695


=======================================================================
http://www.karlrunge.com/x11vnc/x11vnc_opts.html:

     _________________________________________________________________

x11vnc: a VNC server for real X displays

   Here are all of x11vnc command line options:
4696 4697
% x11vnc -opts      (see below for -help long descriptions)

4698
x11vnc: allow VNC connections to real X11 displays. 0.7.3 lastmod: 2005-07-17
4699 4700 4701 4702

x11vnc options:
  -display disp            -auth file             
  -id windowid             -sid windowid          
4703
  -clip WxH+X+Y            -flashcmap             
4704 4705 4706 4707 4708 4709 4710
  -shiftcmap n             -notruecolor           
  -visual n                -overlay               
  -overlay_nocursor        -scale fraction        
  -scale_cursor frac       -viewonly              
  -shared                  -once                  
  -forever                 -timeout n             
  -inetd                   -http                  
4711 4712
  -connect string          -vncconnect            
  -novncconnect            -allow host1[,host2..] 
4713 4714
  -localhost               -nolookup              
  -input string            -viewpasswd string     
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
  -passwdfile filename     -nopw                  
  -storepasswd pass file   -accept string         
  -gone string             -users list            
  -noshm                   -flipbyteorder         
  -onetile                 -solid [color]         
  -blackout string         -xinerama              
  -xtrap                   -xrandr [mode]         
  -padgeom WxH             -o logfile             
  -flag file               -rc filename           
  -norc                    -h, -help              
  -?, -opts                -V, -version           
  -dbg                     -q                     
  -bg                      -modtweak              
  -nomodtweak              -xkb                   
  -noxkb                   -skip_keycodes string  
  -sloppy_keys             -skip_dups             
  -noskip_dups             -add_keysyms           
  -noadd_keysyms           -clear_mods            
  -clear_keys              -remap string          
  -norepeat                -repeat                
  -nofb                    -nobell                
  -nosel                   -noprimary             
  -seldir string           -cursor [mode]         
  -nocursor                -arrow n               
  -noxfixes                -alphacut n            
  -alphafrac fraction      -alpharemove           
  -noalphablend            -nocursorshape         
  -cursorpos               -nocursorpos           
  -xwarppointer            -buttonmap string      
  -nodragging              -wireframe [str]       
  -nowireframe             -wirecopyrect mode     
  -nowirecopyrect          -debug_wireframe       
  -scrollcopyrect mode     -noscrollcopyrect      
  -scr_area n              -scr_skip list         
  -scr_inc list            -scr_keys list         
  -scr_term list           -scr_keyrepeat lo-hi   
  -scr_parms string        -fixscreen string      
  -debug_scroll            -noxrecord             
  -grab_buster             -nograb_buster         
  -debug_grabs             -pointer_mode n        
  -input_skip n            -speeds rd,bw,lat      
  -wmdt string             -debug_pointer         
  -debug_keyboard          -defer time            
  -wait time               -wait_ui factor        
  -nowait_bog              -readtimeout n         
  -nap                     -nonap                 
  -sb time                 -noxdamage             
  -xd_area A               -xd_mem f              
  -sigpipe string          -threads               
  -nothreads               -fs f                  
  -gaps n                  -grow n                
  -fuzz n                  -debug_tiles           
  -snapfb                  -rawfb string          
  -pipeinput cmd           -gui [gui-opts]        
  -remote command          -query variable        
  -QD variable             -sync                  
4771 4772 4773 4774
  -noremote                -yesremote             
  -unsafe                  -safer                 
  -privremote              -nocmds                
  -deny_all              
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792

libvncserver options:
-rfbport port          TCP port for RFB protocol
-rfbwait time          max time in ms to wait for RFB client
-rfbauth passwd-file   use authentication on RFB protocol
                       (use 'storepasswd' to create a password file)
-passwd plain-password use authentication 
                       (use plain-password as password, USE AT YOUR RISK)
-deferupdate time      time in ms to defer updates (default 40)
-desktop name          VNC desktop name (default "LibVNCServer")
-alwaysshared          always treat new clients as shared
-nevershared           never treat new clients as shared
-dontdisconnect        don't disconnect existing clients when a new non-shared
                       connection comes in (refuse new connection instead)
-httpdir dir-path      enable http server using dir-path home
-httpport portnum      use portnum for http connection
-enablehttpproxy       enable http proxy support
-progressive height    enable progressive updating for slow links
runge's avatar
runge committed
4793 4794
-listen ipaddr         listen for connections only on network interface with
                       addr ipaddr. '-listen localhost' and hostname work too.
4795 4796 4797



4798 4799
% x11vnc -help

4800
x11vnc: allow VNC connections to real X11 displays. 0.7.3 lastmod: 2005-07-17
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812

Typical usage is:

   Run this command in a shell on the remote machine "far-host"
   with X session you wish to view:

       x11vnc -display :0

   Then run this in another window on the machine you are sitting at:

       vncviewer far-host:0

4813 4814 4815 4816 4817 4818
Once x11vnc establishes connections with the X11 server and starts listening
as a VNC server it will print out a string: PORT=XXXX where XXXX is typically
5900 (the default VNC server port).  One would next run something like
this on the local machine: "vncviewer hostname:N" where "hostname" is
the name of the machine running x11vnc and N is XXXX - 5900, i.e. usually
"vncviewer hostname:0".
4819

4820
By default x11vnc will not allow the screen to be shared and it will exit
4821
as soon as the client disconnects.  See -shared and -forever below to override
4822 4823 4824 4825 4826 4827
these protections.  See the FAQ for details how to tunnel the VNC connection
through an encrypted channel such as ssh(1).  In brief:

       ssh -L 5900:localhost:5900 far-host 'x11vnc -localhost -display :0'

       vncviewer -encodings 'copyrect tight zrle hextile' localhost:0
4828

4829 4830
Also, use of a VNC password (-rfbauth or -passwdfile) is strongly recommend.

4831 4832 4833 4834 4835 4836 4837
For additional info see: http://www.karlrunge.com/x11vnc/
                    and  http://www.karlrunge.com/x11vnc/#faq


Rudimentary config file support: if the file $HOME/.x11vncrc exists then each
line in it is treated as a single command line option.  Disable with -norc.
For each option name, the leading character "-" is not required.  E.g. a
4838
line that is either "forever" or "-forever" may be used and are equivalent.
4839
Likewise "wait 100" or "-wait 100" are acceptable and equivalent lines.
4840 4841 4842 4843
The "#" character comments out to the end of the line in the usual way
(backslash it for a literal).  Leading and trailing whitespace is trimmed off.
Lines may be continued with a "\" as the last character of a line (it
becomes a space character).
4844 4845 4846 4847 4848 4849 4850 4851

Options:

-display disp          X11 server display to connect to, usually :0.  The X
                       server process must be running on same machine and
                       support MIT-SHM.  Equivalent to setting the DISPLAY
                       environment variable to "disp".
-auth file             Set the X authority file to be "file", equivalent to
4852
                       setting the XAUTHORITY environment variable to "file"
4853 4854
                       before startup.  Same as -xauth file.  See Xsecurity(7),
                       xauth(1) man pages for more info.
4855

4856 4857
-id windowid           Show the window corresponding to "windowid" not
                       the entire display.  New windows like popup menus,
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
                       transient toplevels, etc, may not be seen or may be
                       clipped.  Disabling SaveUnders or BackingStore in the
                       X server may help show them.  x11vnc may crash if the
                       window is initially partially obscured, changes size,
                       is iconified, etc.  Some steps are taken to avoid this
                       and the -xrandr mechanism is used to track resizes.  Use
                       xwininfo(1) to get the window id, or use "-id pick"
                       to have x11vnc run xwininfo(1) for you and extract
                       the id.  The -id option is useful for exporting very
                       simple applications (e.g. the current view on a webcam).
4868
-sid windowid          As -id, but instead of using the window directly it
4869
                       shifts a root view to it: this shows SaveUnders menus,
4870
                       etc, although they will be clipped if they extend beyond
4871
                       the window.
4872 4873 4874 4875 4876 4877
-clip WxH+X+Y          Only show the sub-region of the full display that
                       corresponds to the rectangle with size WxH and offset
                       +X+Y.  The VNC display has size WxH (i.e. smaller than
                       the full display).  This also works for -id/-sid mode
                       where the offset is relative to the upper left corner
                       of the selected window.
4878

4879 4880
-flashcmap             In 8bpp indexed color, let the installed colormap flash
                       as the pointer moves from window to window (slow).
4881 4882 4883 4884 4885 4886 4887
-shiftcmap n           Rare problem, but some 8bpp displays use less than 256
                       colorcells (e.g. 16-color grayscale, perhaps the other
                       bits are used for double buffering) *and* also need to
                       shift the pixels values away from 0, .., ncells.  "n"
                       indicates the shift to be applied to the pixel values.
                       To see the pixel values set DEBUG_CMAP=1 to print out
                       a colormap histogram.  Example: -shiftcmap 240
4888
-notruecolor           For 8bpp displays, force indexed color (i.e. a colormap)
4889
                       even if it looks like 8bpp TrueColor (rare problem).
4890 4891 4892 4893 4894 4895 4896
-visual n              Experimental option: probably does not do what you
                       think.  It simply *forces* the visual used for the
                       framebuffer; this may be a bad thing... (e.g. messes
                       up colors or cause a crash). It is useful for testing
                       and for some workarounds.  n may be a decimal number,
                       or 0x hex.  Run xdpyinfo(1) for the values.  One may
                       also use "TrueColor", etc. see <X11/X.h> for a list.
4897
                       If the string ends in ":m" then for better or for
4898
                       worse the visual depth is forced to be m.
4899

4900 4901 4902 4903
-overlay               Handle multiple depth visuals on one screen, e.g. 8+24
                       and 24+8 overlay visuals (the 32 bits per pixel are
                       packed with 8 for PseudoColor and 24 for TrueColor).

4904 4905 4906 4907 4908 4909
                       Currently -overlay only works on Solaris via
                       XReadScreen(3X11) and IRIX using XReadDisplay(3).
                       On Solaris there is a problem with image "bleeding"
                       around transient popup menus (but not for the menu
                       itself): a workaround is to disable SaveUnders
                       by passing the "-su" argument to Xsun (in
4910
                       /etc/dt/config/Xservers).
4911 4912

                       Use -overlay as a workaround for situations like these:
4913
                       Some legacy applications require the default visual to
4914 4915
                       be 8bpp (8+24), or they will use 8bpp PseudoColor even
                       when the default visual is depth 24 TrueColor (24+8).
4916 4917
                       In these cases colors in some windows will be incorrect
                       in x11vnc unless -overlay is used.  Another use of
4918 4919
                       -overlay is to enable showing the exact mouse cursor
                       shape (details below).
4920

4921
                       Under -overlay, performance will be somewhat slower
4922 4923 4924
                       due to the extra image transformations required.
                       For optimal performance do not use -overlay, but rather
                       configure the X server so that the default visual is
4925
                       depth 24 TrueColor and try to have all apps use that
4926
                       visual (e.g. some apps have -use24 or -visual options).
4927 4928
-overlay_nocursor      Sets -overlay, but does not try to draw the exact mouse
                       cursor shape using the overlay mechanism.
4929 4930

-scale fraction        Scale the framebuffer by factor "fraction".  Values
4931 4932
                       less than 1 shrink the fb, larger ones expand it.  Note:
                       image may not be sharp and response may be slower.
4933 4934 4935
                       If "fraction" contains a decimal point "." it
                       is taken as a floating point number, alternatively
                       the notation "m/n" may be used to denote fractions
4936
                       exactly, e.g. -scale 2/3
4937

4938
                       Scaling Options: can be added after "fraction" via
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
                       ":", to supply multiple ":" options use commas.
                       If you just want a quick, rough scaling without
                       blending, append ":nb" to "fraction" (e.g. -scale
                       1/3:nb).  No blending is the default for 8bpp indexed
                       color, to force blending for this case use ":fb".

                       To disable -scrollcopyrect and -wirecopyrect under
                       -scale use ":nocr".  If you need to to enable them use
                       ":cr" or specify them explicitly on the command line.
                       If a slow link is detected, ":nocr" may be applied
                       automatically.  Default: :cr
4950 4951

                       More esoteric options: for compatibility with vncviewers
4952
                       the scaled width is adjusted to be a multiple of 4:
4953
                       to disable this use ":n4".  ":in" use interpolation
4954
                       scheme even when shrinking, ":pad" pad scaled width
4955 4956
                       and height to be multiples of scaling denominator
                       (e.g. 3 for 2/3).
4957

4958 4959 4960 4961 4962
-scale_cursor frac     By default if -scale is supplied the cursor shape is
                       scaled by the same factor.  Depending on your usage,
                       you may want to scale the cursor independently of the
                       screen or not at all.  If you specify -scale_cursor
                       the cursor will be scaled by that factor.  When using
4963 4964 4965
                       -scale mode to keep the cursor at its "natural" size
                       use "-scale_cursor 1".  Most of the ":" scaling
                       options apply here as well.
4966

4967
-viewonly              All VNC clients can only watch (default off).
4968 4969
-shared                VNC display is shared, i.e. more than one viewer can
                       connect at the same time (default off).
4970 4971 4972 4973
-once                  Exit after the first successfully connected viewer
                       disconnects, opposite of -forever. This is the Default.
-forever               Keep listening for more connections rather than exiting
                       as soon as the first client(s) disconnect. Same as -many
4974
-timeout n             Exit unless a client connects within the first n seconds
4975
                       after startup.
4976 4977
-inetd                 Launched by inetd(1): stdio instead of listening socket.
                       Note: if you are not redirecting stderr to a log file
4978
                       (via shell 2> or -o option) you MUST also specify the -q
4979 4980 4981
                       option, otherwise the stderr goes to the viewer which
                       will cause it to abort.  Specifying both -inetd and -q
                       and no -o will automatically close the stderr.
4982 4983 4984 4985 4986
-http                  Instead of using -httpdir (see below) to specify
                       where the Java vncviewer applet is, have x11vnc try
                       to *guess* where the directory is by looking relative
                       to the program location and in standard locations
                       (/usr/local/share/x11vnc/classes, etc).
4987
-connect string        For use with "vncviewer -listen" reverse connections.
4988
                       If "string" has the form "host" or "host:port"
4989
                       the connection is made once at startup.  Use commas
4990 4991 4992 4993 4994 4995
                       for a list of host's and host:port's.

                       If "string" contains "/" it is instead interpreted
                       as a file to periodically check for new hosts.
                       The first line is read and then the file is truncated.
                       Be careful for this usage mode if x11vnc is running as
4996
                       root (e.g. via gdm(1), etc).
4997
-vncconnect            Monitor the VNC_CONNECT X property set by the standard
4998 4999 5000
-novncconnect          VNC program vncconnect(1).  When the property is
                       set to "host" or "host:port" establish a reverse
                       connection.  Using xprop(1) instead of vncconnect may
5001 5002
                       work (see the FAQ).  The -remote control mechanism also
                       uses this VNC_CONNECT channel.  Default: -vncconnect
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012

-allow host1[,host2..] Only allow client connections from hosts matching
                       the comma separated list of hostnames or IP addresses.
                       Can also be a numerical IP prefix, e.g. "192.168.100."
                       to match a simple subnet, for more control build
                       libvncserver with libwrap support (See the FAQ).  If the
                       list contains a "/" it instead is a interpreted as a
                       file containing addresses or prefixes that is re-read
                       each time a new client connects.  Lines can be commented
                       out with the "#" character in the usual way.
runge's avatar
runge committed
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
-localhost             Same as "-allow 127.0.0.1".

                       Note: if you want to restrict which network interface
                       x11vnc listens on, see the -listen option below.
                       E.g. "-listen localhost" or "-listen 192.168.3.21".
                       As a special case, the option "-localhost" implies
                       "-listen localhost".

                       For non-localhost -listen usage, if you use the remote
                       control mechanism (-R) to change the -listen interface
                       you may need to manually adjust the -allow list (and
                       vice versa) to avoid situations where no connections
                       (or too many) are allowed.
5026

5027 5028 5029
-nolookup              Do not use gethostbyname() or gethostbyaddr() to look up
                       host names or IP numbers.  Use this if name resolution
                       is incorrectly set up and leads to long pauses as name
5030
                       lookups time out, etc.
5031

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
-input string          Fine tuning of allowed user input.  If "string" does
                       not contain a comma "," the tuning applies only to
                       normal clients.  Otherwise the part before "," is
                       for normal clients and the part after for view-only
                       clients.  "K" is for Keystroke input, "M" for
                       Mouse-motion input, and "B" for Button-click input.
                       Their presence in the string enables that type of input.
                       E.g. "-input M" means normal users can only move
                       the mouse and  "-input KMB,M" lets normal users do
                       anything and enables view-only users to move the mouse.
                       This option is ignored when a global -viewonly is in
5043
                       effect (all input is discarded in that case).
5044 5045
-viewpasswd string     Supply a 2nd password for view-only logins.  The -passwd
                       (full-access) password must also be supplied.
5046 5047 5048 5049 5050 5051 5052 5053 5054
-passwdfile filename   Specify libvncserver -passwd via the first line of the
                       file "filename" instead of via command line (where
                       others might see it via ps(1)).  If a second non blank
                       line exists in the file it is taken as a view-only
                       password (i.e. -viewpasswd) To supply an empty password
                       for either field the string "__EMPTY__" may be used.
                       Note: -passwdfile is a simple plaintext passwd, see
                       also -rfbauth and -storepasswd below for obfuscated
                       VNC password files.  Neither file should be readable
5055 5056 5057
                       by untrusted users.
-nopw                  Disable the big warning message when you use x11vnc
                       without some sort of password.
5058 5059 5060
-storepasswd pass file Store password "pass" as the VNC password in the
                       file "file".  Once the password is stored the
                       program exits.  Use the password via "-rfbauth file"
5061

5062 5063 5064 5065 5066
-accept string         Run a command (possibly to prompt the user at the
                       X11 display) to decide whether an incoming client
                       should be allowed to connect or not.  "string" is
                       an external command run via system(3) or some special
                       cases described below.  Be sure to quote "string"
5067 5068 5069 5070
                       if it contains spaces, shell characters, etc.  If the
                       external command returns 0 the client is accepted,
                       otherwise the client is rejected.  See below for an
                       extension to accept a client view-only.
5071

5072 5073 5074 5075 5076
                       If x11vnc is running as root (say from inetd(1) or from
                       display managers xdm(1), gdm(1), etc), think about the
                       security implications carefully before supplying this
                       option (likewise for the -gone option).

5077 5078 5079 5080 5081 5082 5083 5084
                       Environment: The RFB_CLIENT_IP environment variable will
                       be set to the incoming client IP number and the port
                       in RFB_CLIENT_PORT (or -1 if unavailable).  Similarly,
                       RFB_SERVER_IP and RFB_SERVER_PORT (the x11vnc side
                       of the connection), are set to allow identification
                       of the tcp virtual circuit.  The x11vnc process
                       id will be in RFB_X11VNC_PID, a client id number in
                       RFB_CLIENT_ID, and the number of other connected clients
5085
                       in RFB_CLIENT_COUNT.  RFB_MODE will be "accept"
5086 5087 5088 5089

                       If "string" is "popup" then a builtin popup window
                       is used.  The popup will time out after 120 seconds,
                       use "popup:N" to modify the timeout to N seconds
5090
                       (use 0 for no timeout).
5091 5092

                       If "string" is "xmessage" then an xmessage(1)
5093 5094
                       invocation is used for the command.  xmessage must be
                       installed on the machine for this to work.
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109

                       Both "popup" and "xmessage" will present an option
                       for accepting the client "View-Only" (the client
                       can only watch).  This option will not be presented if
                       -viewonly has been specified, in which case the entire
                       display is view only.

                       If the user supplied command is prefixed with something
                       like "yes:0,no:*,view:3 mycommand ..." then this
                       associates the numerical command return code with
                       the actions: accept, reject, and accept-view-only,
                       respectively.  Use "*" instead of a number to indicate
                       the default action (in case the command returns an
                       unexpected value).  E.g. "no:*" is a good choice.

5110
                       Note that x11vnc blocks while the external command
5111
                       or popup is running (other clients may see no updates
5112 5113 5114
                       during this period).  So a person sitting a the physical
                       display is needed to respond to an popup prompt. (use
                       a 2nd x11vnc if you lock yourself out).
5115 5116 5117

                       More -accept tricks: use "popupmouse" to only allow
                       mouse clicks in the builtin popup to be recognized.
5118 5119 5120 5121
                       Similarly use "popupkey" to only recognize
                       keystroke responses.  These are to help avoid the
                       user accidentally accepting a client by typing or
                       clicking. All 3 of the popup keywords can be followed
5122 5123
                       by +N+M to supply a position for the popup window.
                       The default is to center the popup window.
5124
-gone string           As -accept, except to run a user supplied command when
5125 5126 5127 5128
                       a client goes away (disconnects).  RFB_MODE will be
                       set to "gone" and the other RFB_* variables are as
                       in -accept.  Unlike -accept, the command return code
                       is not interpreted by x11vnc.  Example: -gone 'xlock &'
5129

5130 5131 5132
-users list            If x11vnc is started as root (say from inetd(1) or from
                       display managers xdm(1), gdm(1), etc), then as soon
                       as possible after connections to the X display are
5133 5134 5135
                       established try to switch to one of the users in the
                       comma separated "list".  If x11vnc is not running as
                       root this option is ignored.
5136

5137 5138 5139 5140 5141 5142 5143 5144
                       Why use this option?  In general it is not needed since
                       x11vnc is already connected to the X display and can
                       perform its primary functions.  The option was added
                       to make some of the *external* utility commands x11vnc
                       occasionally runs work properly.  In particular under
                       GNOME and KDE to implement the "-solid color" feature
                       external commands (gconftool-2 and dcop) must be run
                       as the user owning the desktop session.  Since this
5145 5146 5147 5148 5149
                       option switches userid it also affects the userid used
                       to run the processes for the -accept and -gone options.
                       It also affects the ability to read files for options
                       such as -connect, -allow, and -remap.  Note that the
                       -connect file is also sometimes written to.
5150

5151 5152
                       So be careful with this option since in many situations
                       its use can decrease security.
5153

5154 5155 5156 5157 5158 5159 5160
                       The switch to a user will only take place if the
                       display can still be successfully opened as that user
                       (this is primarily to try to guess the actual owner
                       of the session). Example: "-users fred,wilma,betty".
                       Note that a malicious user "barney" by quickly using
                       "xhost +" when logging in may get x11vnc to switch
                       to user "fred".  What happens next?
5161

5162 5163 5164
                       Under display managers it may be a long time before
                       the switch succeeds (i.e. a user logs in).  To make
                       it switch immediately regardless if the display
5165
                       can be reopened prefix the username with the "+"
5166 5167 5168 5169
                       character. E.g. "-users +bob" or "-users +nobody".
                       The latter (i.e. switching immediately to user
                       "nobody") is probably the only use of this option
                       that increases security.
5170

5171 5172 5173 5174
                       To immediately switch to a user *before* connections
                       to the X display are made or any files opened use the
                       "=" character: "-users =bob".  That user needs to
                       be able to open the X display of course.
5175

5176 5177 5178 5179 5180
                       The special user "guess=" means to examine the utmpx
                       database (see who(1)) looking for a user attached to
                       the display number (from DISPLAY or -display option)
                       and try him/her.  To limit the list of guesses, use:
                       "-users guess=bob,betty".
5181

5182 5183 5184 5185 5186
                       Even more sinister is the special user "lurk=" that
                       means to try to guess the DISPLAY from the utmpx login
                       database as well.  So it "lurks" waiting for anyone
                       to log into an X session and then connects to it.
                       Specify a list of users after the = to limit which
runge's avatar
runge committed
5187
                       users will be tried.  To enable a different searching
5188 5189 5190 5191 5192 5193
                       mode, if the first user in the list is something like
                       ":0" or ":0-2" that indicates a range of DISPLAY
                       numbers that will be tried (regardless of whether
                       they are in the utmpx database) for all users that
                       are logged in.  Examples: "-users lurk=" and also
                       "-users lurk=:0-1,bob,mary"
5194

5195 5196 5197
                       Be especially careful using the "guess=" and "lurk="
                       modes.  They are not recommended for use on machines
                       with untrustworthy local users.
5198

5199 5200 5201 5202 5203 5204 5205 5206
-noshm                 Do not use the MIT-SHM extension for the polling.
                       Remote displays can be polled this way: be careful this
                       can use large amounts of network bandwidth.  This is
                       also of use if the local machine has a limited number
                       of shm segments and -onetile is not sufficient.
-flipbyteorder         Sometimes needed if remotely polled host has different
                       endianness.  Ignored unless -noshm is set.
-onetile               Do not use the new copy_tiles() framebuffer mechanism,
5207 5208
                       just use 1 shm tile for polling.  Limits shm segments
                       used to 3.
5209

5210 5211 5212 5213
-solid [color]         To improve performance, when VNC clients are connected
                       try to change the desktop background to a solid color.
                       The [color] is optional: the default color is "cyan4".
                       For a different one specify the X color (rgb.txt name,
5214 5215 5216 5217 5218 5219
                       e.g. "darkblue" or numerical "#RRGGBB").

                       Currently this option only works on GNOME, KDE, CDE,
                       and classic X (i.e. with the background image on the
                       root window).  The "gconftool-2" and "dcop" external
                       commands are run for GNOME and KDE respectively.
5220
                       Other desktops won't work, e.g. Xfce (send us the
5221 5222 5223 5224 5225
                       corresponding commands if you find them).  If x11vnc is
                       running as root (inetd(1) or gdm(1)), the -users option
                       may be needed for GNOME and KDE.  If x11vnc guesses
                       your desktop incorrectly, you can force it by prefixing
                       color with "gnome:", "kde:", "cde:" or "root:".
5226 5227 5228
-blackout string       Black out rectangles on the screen. "string" is a
                       comma separated list of WxH+X+Y type geometries for
                       each rectangle.
5229 5230
-xinerama              If your screen is composed of multiple monitors
                       glued together via XINERAMA, and that screen is
5231
                       not a rectangle this option will try to guess the
5232
                       areas to black out (if your system has libXinerama).
5233

5234 5235 5236
                       In general, we have noticed on XINERAMA displays you
                       may need to use the "-xwarppointer" option if the mouse
                       pointer misbehaves.
5237

5238 5239 5240 5241 5242 5243 5244
-xtrap                 Use the DEC-XTRAP extension for keystroke and mouse
                       input insertion.  For use on legacy systems, e.g. X11R5,
                       running an incomplete or missing XTEST extension.
                       By default DEC-XTRAP will be used if XTEST server grab
                       control is missing, use -xtrap to do the keystroke and
                       mouse insertion via DEC-XTRAP as well.

5245 5246 5247 5248 5249 5250 5251 5252 5253
-xrandr [mode]         If the display supports the XRANDR (X Resize, Rotate
                       and Reflection) extension, and you expect XRANDR events
                       to occur to the display while x11vnc is running, this
                       options indicates x11vnc should try to respond to
                       them (as opposed to simply crashing by assuming the
                       old screen size).  See the xrandr(1) manpage and run
                       'xrandr -q' for more info.  [mode] is optional and
                       described below.

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
                       Since watching for XRANDR events and trapping errors
                       increases polling overhead, only use this option if
                       XRANDR changes are expected.  For example on a rotatable
                       screen PDA or laptop, or using a XRANDR-aware Desktop
                       where you resize often.  It is best to be viewing with a
                       vncviewer that supports the NewFBSize encoding, since it
                       knows how to react to screen size changes.  Otherwise,
                       libvncserver tries to do so something reasonable for
                       viewers that cannot do this (portions of the screen
                       may be clipped, unused, etc).
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278

                       "mode" defaults to "resize", which means create a
                       new, resized, framebuffer and hope all viewers can cope
                       with the change.  "newfbsize" means first disconnect
                       all viewers that do not support the NewFBSize VNC
                       encoding, and then resize the framebuffer.  "exit"
                       means disconnect all viewer clients, and then terminate
                       x11vnc.
-padgeom WxH           Whenever a new vncviewer connects, the framebuffer is
                       replaced with a fake, solid black one of geometry WxH.
                       Shortly afterwards the framebuffer is replaced with the
                       real one.  This is intended for use with vncviewers
                       that do not support NewFBSize and one wants to make
                       sure the initial viewer geometry will be big enough
                       to handle all subsequent resizes (e.g. under -xrandr,
5279
                       -remote id:windowid, rescaling, etc.)
5280

5281
-o logfile             Write stderr messages to file "logfile" instead of
5282 5283
                       to the terminal.  Same as "-logfile file".  To append
                       to the file use "-oa file" or "-logappend file".
5284 5285 5286
-flag file             Write the "PORT=NNNN" (e.g. PORT=5900) string to
                       "file" in addition to stdout.  This option could be
                       useful by wrapper script to detect when x11vnc is ready.
5287

5288
-rc filename           Use "filename" instead of $HOME/.x11vncrc for rc file.
5289
-norc                  Do not process any .x11vncrc file for options.
5290

5291
-h, -help              Print this help text.
5292
-?, -opts              Only list the x11vnc options.
5293
-V, -version           Print program version and last modification date.
5294

5295
-dbg                   Instead of exiting after cleaning up, run a simple
5296 5297
                       "debug crash shell" when fatal errors are trapped.

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
-q                     Be quiet by printing less informational output to
                       stderr.  Same as -quiet.
-bg                    Go into the background after screen setup.  Messages to
                       stderr are lost unless -o logfile is used.  Something
                       like this could be useful in a script:
                         port=`ssh $host "x11vnc -display :0 -bg" | grep PORT`
                         port=`echo "$port" | sed -e 's/PORT=//'`
                         port=`expr $port - 5900`
                         vncviewer $host:$port

-modtweak              Option -modtweak automatically tries to adjust the AltGr
-nomodtweak            and Shift modifiers for differing language keyboards
                       between client and host.  Otherwise, only a single key
                       press/release of a Keycode is simulated (i.e. ignoring
                       the state of the modifiers: this usually works for
                       identical keyboards).  Also useful in resolving cases
                       where a Keysym is bound to multiple keys (e.g. "<" + ">"
                       and "," + "<" keys).  Default: -modtweak
5316
-xkb                   When in modtweak mode, use the XKEYBOARD extension (if
5317
-noxkb                 the X display supports it) to do the modifier tweaking.
5318 5319
                       This is powerful and should be tried if there are still
                       keymapping problems when using -modtweak by itself.
5320 5321 5322 5323
                       The default is to check whether some common keysyms,
                       e.g. !, @, [, are only accessible via -xkb mode and if
                       so then automatically enable the mode.  To disable this
                       automatic detection use -noxkb.
5324 5325 5326 5327 5328 5329 5330
-skip_keycodes string  Ignore the comma separated list of decimal keycodes.
                       Perhaps these are keycodes not on your keyboard but
                       your X server thinks exist.  Currently only applies
                       to -xkb mode.  Use this option to help x11vnc in the
                       reverse problem it tries to solve: Keysym -> Keycode(s)
                       when ambiguities exist (more than one Keycode per
                       Keysym).  Run 'xmodmap -pk' to see your keymapping.
5331
                       Example: "-skip_keycodes 94,114"
5332 5333 5334 5335 5336 5337
-sloppy_keys           Experimental option that tries to correct some
                       "sloppy" key behavior.  E.g. if at the viewer you
                       press Shift+Key but then release the Shift before
                       Key that could give rise to extra unwanted characters
                       (usually only between keyboards of different languages).
                       Only use this option if you observe problems with
5338
                       some keystrokes.
5339
-skip_dups             Some VNC viewers send impossible repeated key events,
5340 5341
-noskip_dups           e.g. key-down, key-down, key-up, key-up all for the same
                       key, or 20 downs in a row for the same modifier key!
5342
                       Setting -skip_dups means to skip these duplicates and
5343 5344 5345 5346 5347
                       just process the first event. Note: some VNC viewers
                       assume they can send down's without the corresponding
                       up's and so you should not set this option for
                       these viewers (symptom: some keys do not autorepeat)
                       Default: -noskip_dups
5348 5349 5350 5351 5352
-add_keysyms           If a Keysym is received from a VNC viewer and that
-noadd_keysyms         Keysym does not exist in the X server, then add the
                       Keysym to the X server's keyboard mapping on an unused
                       key.  Added Keysyms will be removed periodically and
                       also when x11vnc exits.  Default: -add_keysyms
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
-clear_mods            At startup and exit clear the modifier keys by sending
                       KeyRelease for each one. The Lock modifiers are skipped.
                       Used to clear the state if the display was accidentally
                       left with any pressed down.
-clear_keys            As -clear_mods, except try to release any pressed key.
                       Note that this option and -clear_mods can interfere
                       with a person typing at the physical keyboard.
-remap string          Read Keysym remappings from file named "string".
                       Format is one pair of Keysyms per line (can be name
                       or hex value) separated by a space.  If no file named
                       "string" exists, it is instead interpreted as this
                       form: key1-key2,key3-key4,...  See <X11/keysymdef.h>
5365 5366 5367 5368
                       header file for a list of Keysym names, or use xev(1).
                       To map a key to a button click, use the fake Keysyms
                       "Button1", ..., etc. E.g: "-remap Super_R-Button2"
                       (useful for pasting on a laptop)
5369 5370 5371 5372

                       Dead keys: "dead" (or silent, mute) keys are keys that
                       do not produce a character but must be followed by a 2nd
                       keystroke.  This is often used for accenting characters,
5373
                       e.g. to put "`" on top of "a" by pressing the dead
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
                       key and then "a".  Note that this interpretation
                       is not part of core X11, it is up to the toolkit or
                       application to decide how to react to the sequence.
                       The X11 names for these keysyms are "dead_grave",
                       "dead_acute", etc.  However some VNC viewers send the
                       keysyms "grave", "acute" instead thereby disabling
                       the accenting.  To work around this -remap can be used.
                       For example "-remap grave-dead_grave,acute-dead_acute"
                       As a convenience, "-remap DEAD" applies these remaps:

                               g     grave-dead_grave
                               a     acute-dead_acute
                               c     asciicircum-dead_circumflex
                               t     asciitilde-dead_tilde
                               m     macron-dead_macron
                               b     breve-dead_breve
                               D     abovedot-dead_abovedot
                               d     diaeresis-dead_diaeresis
                               o     degree-dead_abovering
                               A     doubleacute-dead_doubleacute
                               r     caron-dead_caron
                               e     cedilla-dead_cedilla

                       If you just want a subset use the first letter
                       label, e.g. "-remap DEAD=ga" to get the first two.
                       Additional remaps may also be supplied via commas,
                       e.g.  "-remap DEAD=ga,Super_R-Button2".  Finally,
                       "DEAD=missing" means to apply all of the above as
                       long as the left hand member is not already in the
                       X11 keymap.

-norepeat              Option -norepeat disables X server key auto repeat when
-repeat                VNC clients are connected and VNC keyboard input is
                       not idle for more than 5 minutes.  This works around a
5408
                       repeating keystrokes bug (triggered by long processing
5409 5410 5411 5412
                       delays between key down and key up client events: either
                       from large screen changes or high latency).
                       Default: -norepeat

5413 5414
                       Note: your VNC viewer side will likely do autorepeating,
                       so this is no loss unless someone is simultaneously at
5415
                       the real X display.
5416

5417 5418
                       Use "-norepeat N" to set how many times norepeat will
                       be reset if something else (e.g. X session manager)
5419
                       undoes it.  The default is 2.  Use a negative value
5420 5421
                       for unlimited resets.

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
-nofb                  Ignore video framebuffer: only process keyboard and
                       pointer.  Intended for use with Win2VNC and x2vnc
                       dual-monitor setups.
-nobell                Do not watch for XBell events. (no beeps will be heard)
                       Note: XBell monitoring requires the XKEYBOARD extension.
-nosel                 Do not manage exchange of X selection/cutbuffer between
                       VNC viewers and the X server.
-noprimary             Do not poll the PRIMARY selection for changes to send
                       back to clients.  (PRIMARY is still set on received
                       changes, however).
5432 5433 5434 5435 5436 5437
-seldir string         If direction string is "send", only send the selection
                       to viewers, and if it is "recv" only receive it from
                       viewers.  To work around apps setting the selection
                       too frequently and messing up the other end.  You can
                       actually supply a comma separated list of directions,
                       including "debug" to turn on debugging output.
5438

5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
-cursor [mode]         Sets how the pointer cursor shape (little icon at the
-nocursor              mouse pointer) should be handled.  The "mode" string
                       is optional and is described below.  The default
                       is to show some sort of cursor shape(s).  How this
                       is done depends on the VNC viewer and the X server.
                       Use -nocursor to disable cursor shapes completely.

                       Some VNC viewers support the TightVNC CursorPosUpdates
                       and CursorShapeUpdates extensions (cuts down on
                       network traffic by not having to send the cursor image
                       every time the pointer is moved), in which case these
                       extensions are used (see -nocursorshape and -nocursorpos
5451 5452 5453 5454 5455 5456
                       below to disable).  For other viewers the cursor shape
                       is written directly to the framebuffer every time the
                       pointer is moved or changed and gets sent along with
                       the other framebuffer updates.  In this case, there
                       will be some lag between the vnc viewer pointer and
                       the remote cursor position.
5457 5458

                       If the X display supports retrieving the cursor shape
5459 5460 5461
                       information from the X server, then the default is
                       to use that mode.  On Solaris this can be done with
                       the SUN_OVL extension using -overlay (see also the
5462
                       -overlay_nocursor option).  A similar overlay scheme
5463 5464 5465 5466 5467 5468 5469
                       is used on IRIX.  Xorg (e.g. Linux) and recent Solaris
                       Xsun servers support the XFIXES extension to retrieve
                       the exact cursor shape from the X server.  If XFIXES
                       is present it is preferred over Overlay and is used by
                       default (see -noxfixes below).  This can be disabled
                       with -nocursor, and also some values of the "mode"
                       option below.
5470

5471
                       Note that under XFIXES cursors with transparency (alpha
5472 5473 5474 5475
                       channel) will usually not be exactly represented and one
                       may find Overlay preferable.  See also the -alphacut
                       and -alphafrac options below as fudge factors to try
                       to improve the situation for cursors with transparency
5476
                       for a given theme.
5477 5478 5479 5480 5481

                       The "mode" string can be used to fine-tune the
                       displaying of cursor shapes.  It can be used the
                       following ways:

5482 5483 5484 5485 5486
                       "-cursor arrow" - just show the standard arrow
                       nothing more or nothing less.

                       "-cursor none" - same as "-nocursor"

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
                       "-cursor X" - when the cursor appears to be on the
                       root window, draw the familiar X shape.  Some desktops
                       such as GNOME cover up the root window completely,
                       and so this will not work, try "X1", etc, to try to
                       shift the tree depth.  On high latency links or slow
                       machines there will be a time lag between expected and
                       the actual cursor shape.

                       "-cursor some" - like "X" but use additional
                       heuristics to try to guess if the window should have
                       a windowmanager-like resizer cursor or a text input
                       I-beam cursor.  This is a complete hack, but may be
                       useful in some situations because it provides a little
                       more feedback about the cursor shape.

                       "-cursor most" - try to show as many cursors as
5503 5504 5505 5506
                       possible.  Often this will only be the same as "some"
                       unless the display has overlay visuals or XFIXES
                       extensions available.  On Solaris and IRIX if XFIXES
                       is not available, -overlay mode will be attempted.
5507

5508 5509
-arrow n               Choose an alternate "arrow" cursor from a set of
                       some common ones.  n can be 1 to 6.  Default is: 1
5510
                       Ignored when in XFIXES cursor-grabbing mode.
5511

5512 5513
-noxfixes              Do not use the XFIXES extension to draw the exact cursor
                       shape even if it is available.
5514
-alphacut n            When using the XFIXES extension for the cursor shape,
5515 5516 5517 5518 5519 5520 5521 5522
                       cursors with transparency will not usually be displayed
                       exactly (but opaque ones will).  This option sets n as
                       a cutoff for cursors that have transparency ("alpha
                       channel" with values ranging from 0 to 255) Any cursor
                       pixel with alpha value less than n becomes completely
                       transparent.  Otherwise the pixel is completely opaque.
                       Default 240

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
-alphafrac fraction    With the threshold in -alphacut some cursors will become
                       almost completely transparent because their alpha values
                       are not high enough.  For those cursors adjust the
                       alpha threshold until fraction of the non-zero alpha
                       channel pixels become opaque.  Default 0.33
-alpharemove           By default, XFIXES cursors pixels with transparency have
                       the alpha factor multiplied into the RGB color values
                       (i.e. that corresponding to blending the cursor with a
                       black background).  Specify this option to remove the
                       alpha factor. (useful for light colored semi-transparent
                       cursors).
5534 5535 5536 5537 5538 5539 5540 5541
-noalphablend          In XFIXES mode do not send cursor alpha channel data
                       to libvncserver.  The default is to send it.  The
                       alphablend effect will only be visible in -nocursorshape
                       mode or for clients with cursorshapeupdates turned
                       off. (However there is a hack for 32bpp with depth 24,
                       it uses the extra 8 bits to store cursor transparency
                       for use with a hacked vncviewer that applies the
                       transparency locally.  See the FAQ for more info).
5542

5543 5544
-nocursorshape         Do not use the TightVNC CursorShapeUpdates extension
                       even if clients support it.  See -cursor above.
5545 5546
-cursorpos             Option -cursorpos enables sending the X cursor position
-nocursorpos           back to all vnc clients that support the TightVNC
5547 5548
                       CursorPosUpdates extension.  Other clients will be able
                       to see the pointer motions. Default: -cursorpos
5549 5550 5551 5552 5553
-xwarppointer          Move the pointer with XWarpPointer(3X) instead of
                       the XTEST extension.  Use this as a workaround
                       if the pointer motion behaves incorrectly, e.g.
                       on touchscreens or other non-standard setups.
                       Also sometimes needed on XINERAMA displays.
5554

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
-buttonmap string      String to remap mouse buttons.  Format: IJK-LMN, this
                       maps buttons I -> L, etc., e.g.  -buttonmap 13-31

                       Button presses can also be mapped to keystrokes: replace
                       a button digit on the right of the dash with :<sym>:
                       or :<sym1>+<sym2>: etc. for multiple keys. For example,
                       if the viewing machine has a mouse-wheel (buttons 4 5)
                       but the x11vnc side does not, these will do scrolls:
                              -buttonmap 12345-123:Prior::Next:
                              -buttonmap 12345-123:Up+Up+Up::Down+Down+Down:

                       See <X11/keysymdef.h> header file for a list of Keysyms,
                       or use the xev(1) program.  Note: mapping of button
                       clicks to Keysyms may not work if -modtweak or -xkb is
                       needed for the Keysym.

                       If you include a modifier like "Shift_L" the
                       modifier's up/down state is toggled, e.g. to send
                       "The" use :Shift_L+t+Shift_L+h+e: (the 1st one is
                       shift down and the 2nd one is shift up). (note: the
                       initial state of the modifier is ignored and not reset)
                       To include button events use "Button1", ... etc.

5578 5579 5580 5581
-nodragging            Do not update the display during mouse dragging events
                       (mouse button held down).  Greatly improves response on
                       slow setups, but you lose all visual feedback for drags,
                       text selection, and some menu traversals.  It overrides
5582
                       any -pointer_mode setting.
5583 5584 5585 5586 5587 5588 5589

-wireframe [str]       Try to detect window moves or resizes when a mouse
-nowireframe           button is held down and show a wireframe instead of
                       the full opaque window.  This is based completely on
                       heuristics and may not always work: it depends on your
                       window manager and even how you move things around.
                       See -pointer_mode below for discussion of the "bogging
5590 5591 5592 5593
                       down" problem this tries to avoid.
                       Default: -wireframe

                       Shorter aliases:  -wf [str]  and -nowf
5594 5595 5596 5597

                       The value "str" is optional and, of course, is
                       packed with many tunable parameters for this scheme:

5598 5599
                       Format: shade,linewidth,percent,T+B+L+R,mod,t1+t2+t3+t4
                       Default: 0xff,3,0,32+8+8+8,all,0.15+0.30+5.0+0.125
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620

                       If you leave nothing between commas: ",," the default
                       value is used.  If you don't specify enough commas,
                       the trailing parameters are set to their defaults.

                       "shade" indicate the "color" for the wireframe,
                       usually a greyscale: 0-255, however for 16 and 32bpp you
                       can specify an rgb.txt X color (e.g. "dodgerblue") or
                       a value > 255 is treated as RGB (e.g. red is 0xff0000).
                       "linewidth" sets the width of the wireframe in pixels.
                       "percent" indicates to not apply the wireframe scheme
                       to windows with area less than this percent of the
                       full screen.

                       "T+B+L+R" indicates four integers for how close in
                       pixels the pointer has to be from the Top, Bottom, Left,
                       or Right edges of the window to consider wireframing.
                       This is a speedup to quickly exclude a window from being
                       wireframed: set them all to zero to not try the speedup
                       (scrolling and selecting text will likely be slower).

5621 5622 5623 5624 5625 5626 5627 5628
                       "mod" specifies if a button down event in the
                       interior of the window with a modifier key (Alt, Shift,
                       etc.) down should indicate a wireframe opportunity.
                       It can be "0" or "none" to skip it, "1" or "all"
                       to apply it to any modifier, or "Shift", "Alt",
                       "Control", "Meta", "Super", or "Hyper" to only
                       apply for that type of modifier key.

5629 5630 5631 5632 5633 5634
                       "t1+t2+t3+t4" specify four floating point times in
                       seconds: t1 is how long to wait for the pointer to move,
                       t2 is how long to wait for the window to start moving
                       or being resized (for some window managers this can be
                       rather long), t3 is how long to keep a wireframe moving
                       before repainting the window. t4 is the minimum time
5635 5636 5637
                       between sending wireframe "animations".  If a slow
                       link is detected, these values may be automatically
                       changed to something better for a slow link.
5638 5639

-wirecopyrect mode     Since the -wireframe mechanism evidently tracks moving
5640 5641 5642 5643 5644 5645 5646 5647
-nowirecopyrect        windows accurately, a speedup can be obtained by
                       telling the VNC viewers to locally copy the translated
                       window region.  This is the VNC CopyRect encoding:
                       the framebuffer update doesn't need to send the actual
                       new image data.

                       Shorter aliases:  -wcr [mode]  and -nowcr

5648 5649 5650 5651 5652
                       "mode" can be "never" (same as -nowirecopyrect)
                       to never try the copyrect, "top" means only do it if
                       the window was not covered by any other windows, and
                       "always" means to translate the orginally unobscured
                       region (this may look odd as the remaining pieces come
5653 5654
                       in, but helps on a slow link).  Default: "always"

5655 5656 5657 5658 5659
                       Note: there can be painting errors or slow response
                       when using -scale so you may want to disable CopyRect
                       in this case "-wirecopyrect never" on the command
                       line or by remote-control.  Or you can also use the
                       "-scale xxx:nocr" scale option.
5660

5661 5662 5663 5664
-debug_wireframe       Turn on debugging info printout for the wireframe
                       heuristics.  "-dwf" is an alias.  Specify multiple
                       times for more output.

5665 5666 5667 5668 5669 5670 5671 5672
-scrollcopyrect mode   Like -wirecopyrect, but use heuristics to try to guess
-noscrollcopyrect      if a window has scrolled its contents (either vertically
                       or horizontally).  This requires the RECORD X extension
                       to "snoop" on X applications (currently for certain
                       XCopyArea and XConfigureWindow X protocol requests).
                       Examples: Hitting <Return> in a terminal window when the
                       cursor was at the bottom, the text scrolls up one line.
                       Hitting <Down> arrow in a web browser window, the web
5673 5674
                       page scrolls up a small amount.  Or scrolling with a
                       scrollbar or mouse wheel.
5675 5676 5677 5678 5679 5680 5681

                       Shorter aliases:  -scr [mode]  and -noscr

                       This scheme will not always detect scrolls, but when
                       it does there is a nice speedup from using the VNC
                       CopyRect encoding (see -wirecopyrect).  The speedup
                       is both in reduced network traffic and reduced X
5682 5683 5684 5685 5686 5687 5688
                       framebuffer polling/copying.  On the other hand, it may
                       induce undesired transients (e.g. a terminal cursor
                       being scrolled up when it should not be) or other
                       painting errors (window tearing, bunching-up, etc).
                       These are automatically repaired in a short period
                       of time.  If this is unacceptable disable the feature
                       with -noscrollcopyrect.
5689

5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
                       Screen clearing kludges:  for testing at least, there
                       are some "magic key sequences" (must be done in less
                       than 1 second) to aid repairing painting errors that
                       may be seen when using this mode:

                       3 Alt_L's   in a row: resend whole screen,
                       4 Alt_L's   in a row: reread and resend whole screen,
                       3 Super_L's in a row: mark whole screen for polling,
                       4 Super_L's in a row: reset RECORD context,
                       5 Super_L's in a row: try to push a black screen

5701 5702 5703 5704 5705 5706 5707
                       note: Alt_L is the Left "Alt" key (a single key)
                       Super_L is the Left "Super" key (Windows flag).
                       Both of these are modifier keys, and so should not
                       generate characters when pressed by themselves.  Also,
                       your VNC viewer may have its own refresh hot-key
                       or button.

5708 5709 5710 5711 5712 5713
                       "mode" can be "never" (same as -noscrollcopyrect)
                       to never try the copyrect, "keys" means to try it
                       in response to keystrokes only, "mouse" means to
                       try it in response to mouse events only, "always"
                       means to do both. Default: "always"

5714 5715 5716 5717 5718
                       Note: there can be painting errors or slow response
                       when using -scale so you may want to disable CopyRect
                       in this case "-scrollcopyrect never" on the command
                       line or by remote-control.  Or you can also use the
                       "-scale xxx:nocr" scale option.
5719 5720 5721 5722 5723 5724 5725 5726 5727

-scr_area n            Set the minimum area in pixels for a rectangle
                       to be considered for the -scrollcopyrect detection
                       scheme.  This is to avoid wasting the effort on small
                       rectangles that would be quickly updated the normal way.
                       E.g. suppose an app updated the position of its skinny
                       scrollbar first and then shifted the large panel
                       it controlled.  We want to be sure to skip the small
                       scrollbar and get the large panel. Default: 60000
5728

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
-scr_skip list         Skip scroll detection for applications matching
                       the comma separated list of strings in "list".
                       Some applications implement their scrolling in
                       strange ways where the XCopyArea, etc, also applies
                       to invisible portions of the window: if we CopyRect
                       those areas it looks awful during the scroll and
                       there may be painting errors left after the scroll.
                       Soffice.bin is the worst known offender.

                       Use "##" to denote the start of the application class
                       (e.g. "##XTerm") and "++" to denote the start
                       of the application instance name (e.g. "++xterm").
                       The string your list is matched against is of the form
                       "^^WM_NAME##Class++Instance<same-for-any-subwindows>"
                       The "xlsclients -la" command will provide this info.

                       If a pattern is prefixed with "KEY:" it only applies
                       to Keystroke generated scrolls (e.g. Up arrow).  If it
                       is prefixed with "MOUSE:" it only applies to Mouse
                       induced scrolls (e.g. dragging on a scrollbar).
5749
                       Default: ##Soffice.bin,##StarOffice
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778

-scr_inc list          Opposite of -scr_skip: this list is consulted first
                       and if there is a match the window will be monitored
                       via RECORD for scrolls irrespective of -scr_skip.
                       Use -scr_skip '*' to skip anything that does not match
                       your -scr_inc.  Use -scr_inc '*' to include everything.

-scr_keys list         For keystroke scroll detection, only apply the RECORD
                       heuristics to the comma separated list of keysyms in
                       "list".  You may find the RECORD overhead for every
                       one of your keystrokes disrupts typing too much, but you
                       don't want to turn it off completely with "-scr mouse"
                       and -scr_parms does not work or is too confusing.

                       The listed keysyms can be numeric or the keysym
                       names in the <X11/keysymdef.h> header file or from the
                       xev(1) program.  Example: "-scr_keys Up,Down,Return".
                       One probably wants to have application specific lists
                       (e.g. for terminals, etc) but that is too icky to think
                       about for now...

                       If "list" begins with the "-" character the list
                       is taken as an exclude list: all keysyms except those
                       list will be considered.  The special string "builtin"
                       expands to an internal list of keysyms that are likely
                       to cause scrolls.  BTW, by default modifier keys,
                       Shift_L, Control_R, etc, are skipped since they almost
                       never induce scrolling by themselves.

5779
-scr_term list         Yet another cosmetic kludge.  Apply shell/terminal
5780 5781 5782 5783 5784 5785 5786 5787
                       heuristics to applications matching comma separated
                       list (same as for -scr_skip/-scr_inc).  For example an
                       annoying transient under scroll detection is if you
                       hit Enter in a terminal shell with full text window,
                       the solid text cursor block will be scrolled up.
                       So for a short time there are two (or more) block
                       cursors on the screen.  There are similar scenarios,
                       (e.g. an output line is duplicated).
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801

                       These transients are induced by the approximation of
                       scroll detection (e.g. it detects the scroll, but not
                       the fact that the block cursor was cleared just before
                       the scroll).  In nearly all cases these transient errors
                       are repaired when the true X framebuffer is consulted
                       by the normal polling.  But they are distracting, so
                       what this option provides is extra "padding" near the
                       bottom of the terminal window: a few extra lines near
                       the bottom will not be scrolled, but rather updated
                       from the actual X framebuffer.  This usually reduces
                       the annoying artifacts.  Use "none" to disable.
                       Default: "term"

5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
-scr_keyrepeat lo-hi   If a key is held down (or otherwise repeats rapidly) and
                       this induces a rapid sequence of scrolls (e.g. holding
                       down an Arrow key) the "scrollcopyrect" detection
                       and overhead may not be able to keep up.  A time per
                       single scroll estimate is performed and if that estimate
                       predicts a sustainable scrollrate of keys per second
                       between "lo" and "hi" then repeated keys will be
                       DISCARDED to maintain the scrollrate. For example your
                       key autorepeat may be 25 keys/sec, but for a large
                       window or slow link only 8 scrolls per second can be
                       sustained, then roughly 2 out of every 3 repeated keys
                       will be discarded during this period. Default: "4-20"

5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
-scr_parms string      Set various parameters for the scrollcopyrect mode.
                       The format is similar to that for -wireframe and packed
                       with lots of parameters:

                       Format: T+B+L+R,t1+t2+t3,s1+s2+s3+s4+s5
                       Default: 0+64+32+32,0.02+0.10+0.9,0.03+0.06+0.5+0.1+5.0

                       If you leave nothing between commas: ",," the default
                       value is used.  If you don't specify enough commas,
                       the trailing parameters are set to their defaults.

                       "T+B+L+R" indicates four integers for how close in
                       pixels the pointer has to be from the Top, Bottom, Left,
                       or Right edges of the window to consider scrollcopyrect.
                       If -wireframe overlaps it takes precedence.  This is a
                       speedup to quickly exclude a window from being watched
                       for scrollcopyrect: set them all to zero to not try
                       the speedup (things like selecting text will likely
                       be slower).

                       "t1+t2+t3" specify three floating point times in
                       seconds that apply to scrollcopyrect detection with
                       *Keystroke* input: t1 is how long to wait after a key
                       is pressed for the first scroll, t2 is how long to keep
                       looking after a Keystroke scroll for more scrolls.
                       t3 is how frequently to try to update surrounding
                       scrollbars outside of the scrolling area (0.0 to
                       disable)

                       "s1+s2+s3+s4+s5" specify five floating point times
                       in seconds that apply to scrollcopyrect detection with
                       *Mouse* input: s1 is how long to wait after a mouse
                       button is pressed for the first scroll, s2 is how long
                       to keep waiting for additional scrolls after the first
                       Mouse scroll was detected.  s3 is how frequently to
                       try to update surrounding scrollbars outside of the
                       scrolling area (0.0 to disable).  s4 is how long to
                       buffer pointer motion (to try to get fewer, bigger
                       mouse scrolls). s5 is the maximum time to spend just
                       updating the scroll window without updating the rest
                       of the screen.

5857 5858 5859 5860 5861 5862 5863
-fixscreen string      Periodically "repair" the screen based on settings
                       in "string".  Hopefully you won't need this option,
                       it is intended for cases when the -scrollcopyrect or
                       -wirecopyrect features leave too many painting errors,
                       but it can be used for any scenario.  This option
                       periodically performs costly operations and so
                       interactive response may be reduced when it is on.
5864 5865 5866
                       You can use 3 Alt_L's (the Left "Alt" key) taps in a
                       row described under -scrollcopyrect instead to manually
                       request a screen repaint when it is needed.
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879

                       "string" is a comma separated list of one or more of
                       the following: "V=t", "C=t", and "X=t".  In these
                       "t" stands for a time in seconds (it is a floating
                       point even though one should usually use values > 2 to
                       avoid wasting resources).  V sets how frequently the
                       entire screen should be sent to viewers (it is like the
                       3 Alt_L's).  C sets how long to wait after a CopyRect
                       to repaint the full screen.  X sets how frequently
                       to reread the full X11 framebuffer from the X server
                       and push it out to connected viewers.  Use of X should
                       be rare, please report a bug if you find you need it.
                       Examples: -fixscreen V=10 -fixscreen C=10
5880

5881 5882 5883 5884
-debug_scroll          Turn on debugging info printout for the scroll
                       heuristics.  "-ds" is an alias.  Specify it multiple
                       times for more output.

5885 5886 5887 5888
-noxrecord             Disable any use of the RECORD extension.  This is
                       currently used by the -scrollcopyrect scheme and to
                       monitor X server grabs.

5889 5890
-grab_buster           Some of the use of the RECORD extension can leave a
-nograb_buster         tiny window for XGrabServer deadlock.  This is only if
5891 5892 5893 5894 5895 5896 5897 5898
                       the whole-server grabbing application expects mouse or
                       keyboard input before releasing the grab.  It is usually
                       a window manager that does this.  x11vnc takes care to
                       avoid the the problem, but if caught x11vnc will freeze.
                       Without -grab_buster, the only solution is to go the
                       physical display and give it some input to satisfy the
                       grabbing app.  Or manually kill and restart the window
                       manager if that is feasible.  With -grab_buster, x11vnc
5899
                       will fork a helper thread and if x11vnc appears to be
5900 5901 5902 5903
                       stuck in a grab after a period of time (20-30 sec) then
                       it will inject some user input: button clicks, Escape,
                       mouse motion, etc to try to break the grab.  If you
                       experience a lot of grab deadlock, please report a bug.
5904

5905 5906 5907
-debug_grabs           Turn on debugging info printout with respect to
                       XGrabServer() deadlock for -scrollcopyrect mode.

5908 5909
-pointer_mode n        Various pointer motion update schemes. "-pm" is
                       an alias.  The problem is pointer motion can cause
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
                       rapid changes on the screen: consider the rapid
                       changes when you drag a large window around opaquely.
                       Neither x11vnc's screen polling and vnc compression
                       routines nor the bandwidth to the vncviewers can keep
                       up these rapid screen changes: everything will bog down
                       when dragging or scrolling.  So a scheme has to be used
                       to "eat" much of that pointer input before re-polling
                       the screen and sending out framebuffer updates. The
                       mode number "n" can be 0 to 4 and selects one of
                       the schemes desribed below.

                       Note that the -wireframe and -scrollcopyrect modes
                       complement -pointer_mode by detecting (and improving)
                       certain periods of "rapid screen change".
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934

                       n=0: does the same as -nodragging. (all screen polling
                       is suspended if a mouse button is pressed.)

                       n=1: was the original scheme used to about Jan 2004:
                       it basically just skips -input_skip keyboard or pointer
                       events before repolling the screen.

                       n=2 is an improved scheme: by watching the current rate
                       of input events it tries to detect if it should try to
                       "eat" additional pointer events before continuing.
5935

5936
                       n=3 is basically a dynamic -nodragging mode: it detects
5937 5938 5939
                       when the mouse motion has paused and then refreshes
                       the display.

5940
                       n=4 attempts to measures network rates and latency,
5941 5942 5943 5944 5945
                       the video card read rate, and how many tiles have been
                       changed on the screen.  From this, it aggressively tries
                       to push screen "frames" when it decides it has enough
                       resources to do so.  NOT FINISHED.

5946 5947
                       The default n is 2. Note that modes 2, 3, 4 will skip
                       -input_skip keyboard events (but it will not count
5948 5949 5950 5951
                       pointer events).  Also note that these modes are not
                       available in -threads mode which has its own pointer
                       event handling mechanism.

5952 5953 5954 5955 5956
                       To try out the different pointer modes to see which
                       one gives the best response for your usage, it is
                       convenient to use the remote control function, for
                       example "x11vnc -R pm:4" or the tcl/tk gui (Tuning ->
                       pointer_mode -> n).
5957

5958
-input_skip n          For the pointer handling when non-threaded: try to
5959 5960
                       read n user input events before scanning display. n < 0
                       means to act as though there is always user input.
5961
                       Default: 10
5962

5963 5964
-speeds rd,bw,lat      x11vnc tries to estimate some speed parameters that
                       are used to optimize scheduling (e.g. -pointer_mode
5965 5966 5967 5968 5969 5970 5971 5972
                       4, -wireframe, -scrollcopyrect) and other things.
                       Use the -speeds option to set these manually.
                       The triple "rd,bw,lat" corresponds to video h/w
                       read rate in MB/sec, network bandwidth to clients in
                       KB/sec, and network latency to clients in milliseconds,
                       respectively.  If a value is left blank, e.g. "-speeds
                       ,100,15", then the internal scheme is used to estimate
                       the empty value(s).
5973 5974 5975

                       Typical PC video cards have read rates of 5-10 MB/sec.
                       If the framebuffer is in main memory instead of video
5976 5977 5978 5979 5980 5981
                       h/w (e.g. SunRay, shadowfb, dummy driver, Xvfb), the
                       read rate may be much faster.  "x11perf -getimage500"
                       can be used to get a lower bound (remember to factor
                       in the bytes per pixel).  It is up to you to estimate
                       the network bandwith and latency to clients.  For the
                       latency the ping(1) command can be used.
5982 5983 5984 5985 5986

                       For convenience there are some aliases provided,
                       e.g. "-speeds modem".  The aliases are: "modem" for
                       6,4,200; "dsl" for 6,100,50; and "lan" for 6,5000,1

5987 5988 5989 5990 5991 5992 5993 5994 5995
-wmdt string           For some features, e.g. -wireframe and -scrollcopyrect,
                       x11vnc has to work around issues for certain window
                       managers or desktops (currently kde and xfce).
                       By default it tries to guess which one, but it can
                       guess incorrectly.  Use this option to indicate which
                       wm/dt.  "string" can be "gnome", "kde", "cde",
                       "xfce", or "root" (classic X wm).  Anything else
                       is interpreted as "root".

5996 5997 5998 5999 6000 6001
-debug_pointer         Print debugging output for every pointer event.
-debug_keyboard        Print debugging output for every keyboard event.
                       Same as -dp and -dk, respectively.  Use multiple
                       times for more output.

-defer time            Time in ms to wait for updates before sending to client
6002
                       (deferUpdateTime)  Default: 30
6003 6004
-wait time             Time in ms to pause between screen polls.  Used to cut
                       down on load.  Default: 30
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
-wait_ui factor        Factor by which to cut the -wait time if there
                       has been recent user input (pointer or keyboard).
                       Improves response, but increases the load whenever you
                       are moving the mouse or typing.  Default: 2.00
-nowait_bog            Do not detect if the screen polling is "bogging down"
                       and sleep more.  Some activities with no user input can
                       slow things down a lot: consider a large terminal window
                       with a long build running in it continously streaming
                       text output.  By default x11vnc will try to detect this
                       (3 screen polls in a row each longer than 0.25 sec with
                       no user input), and sleep up to 1.5 secs to let things
6016
                       "catch up".  Use this option to disable that detection.
6017 6018 6019 6020
-readtimeout n         Set libvncserver rfbMaxClientWait to n seconds. On
                       slow links that take a long time to paint the first
                       screen libvncserver may hit the timeout and drop the
                       connection.  Default: 20 seconds.
6021 6022 6023
-nap                   Monitor activity and if it is low take longer naps
-nonap                 between screen polls to really cut down load when idle.
                       Default: take naps
6024 6025 6026
-sb time               Time in seconds after NO activity (e.g. screen blank)
                       to really throttle down the screen polls (i.e. sleep
                       for about 1.5 secs). Use 0 to disable.  Default: 60
6027

6028
-noxdamage             Do not use the X DAMAGE extension to detect framebuffer
6029 6030
                       changes even if it is available.  Use -xdamage if your
                       default is to have it off.
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058

                       x11vnc's use of the DAMAGE extension: 1) significantly
                       reduces the load when the screen is not changing much,
                       and 2) detects changed areas (small ones by default)
                       more quickly.

                       Currently the DAMAGE extension is overly conservative
                       and often reports large areas (e.g. a whole terminal
                       or browser window) as damaged even though the actual
                       changed region is much smaller (sometimes just a few
                       pixels).  So heuristics were introduced to skip large
                       areas and use the damage rectangles only as "hints"
                       for the traditional scanline polling.  The following
                       tuning parameters are introduced to adjust this
                       behavior:

-xd_area A             Set the largest DAMAGE rectangle area "A" (in
                       pixels: width * height) to trust as truly damaged:
                       the rectangle will be copied from the framebuffer
                       (slow) no matter what.  Set to zero to trust *all*
                       rectangles. Default: 20000
-xd_mem f              Set how long DAMAGE rectangles should be "remembered",
                       "f" is a floating point number and is in units of the
                       scanline repeat cycle time (32 iterations).  The default
                       (1.0) should give no painting problems. Increase it if
                       there are problems or decrease it to live on the edge
                       (perhaps useful on a slow machine).

6059 6060 6061 6062
-sigpipe string        Broken pipe (SIGPIPE) handling.  "string" can be
                       "ignore" or "exit".  For "ignore" libvncserver
                       will handle the abrupt loss of a client and continue,
                       for "exit" x11vnc will cleanup and exit at the 1st
6063 6064
                       broken connection.  Default: "ignore".  This option
                       is obsolete.
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
-threads               Whether or not to use the threaded libvncserver
-nothreads             algorithm [rfbRunEventLoop] if libpthread is available
                       Default: -nothreads

-fs f                  If the fraction of changed tiles in a poll is greater
                       than f, the whole screen is updated.  Default: 0.75
-gaps n                Heuristic to fill in gaps in rows or cols of n or
                       less tiles.  Used to improve text paging.  Default: 4
-grow n                Heuristic to grow islands of changed tiles n or wider
                       by checking the tile near the boundary.  Default: 3
-fuzz n                Tolerance in pixels to mark a tiles edges as changed.
                       Default: 2
6077
-debug_tiles           Print debugging output for tiles, fb updates, etc.
6078

6079 6080 6081 6082 6083
-snapfb                Instead of polling the X display framebuffer (fb) for
                       changes, periodically copy all of X display fb into main
                       memory and examine that copy for changes.  Under some
                       circumstances this will improve interactive response,
                       or at least make things look smoother, but in others
6084
                       (most!) it will make the response worse.  If the video
6085 6086 6087 6088 6089 6090 6091
                       h/w fb is such that reading small tiles is very slow
                       this mode could help.  To keep the "framerate" up
                       the screen size x bpp cannot be too large.  Note that
                       this mode is very wasteful of memory I/O resources
                       (it makes full screen copies even if nothing changes).
                       It may be of use in video capture-like applications,
                       or where window tearing is a problem.
6092

6093 6094 6095 6096 6097 6098
-rawfb string          Experimental option, instead of polling X, poll the
                       memory object specified in "string".  For shared
                       memory segments it is of the form: "shm:N@WxHxB"
                       which specifies a shmid N and framebuffer Width, Height,
                       and Bits per pixel.  To memory map mmap(2) a file use:
                       "map:/path/to/a/file@WxHxB".  If there is trouble
6099 6100 6101
                       with mmap, use  "file:/..." for slower lseek(2)
                       based reading.  If you do not supply a type "map"
                       is assumed if the file exists.
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121

                       If string is "setup:cmd", then the command "cmd"
                       is run and the first line from it is read and used
                       as "string".  This allows initializing the device,
                       determining WxHxB, etc. These are often done as root
                       so take care.

                       Optional suffixes are ":R/G/B" and "+O" to specify
                       red, green, and blue masks and an offset into the
                       memory object.  If the masks are not provided x11vnc
                       guesses them based on the bpp.

                       Examples:
                           -rawfb shm:210337933@800x600x32:ff/ff00/ff0000
                           -rawfb map:/dev/fb0@1024x768x32
                           -rawfb map:/tmp/Xvfb_screen0@640x480x8+3232
                           -rawfb file:/tmp/my.pnm@250x200x24+37

                       (see ipcs(1) and fbset(1) for the first two examples)

6122 6123 6124 6125 6126
                       All user input is discarded by default (but see the
                       -pipeinput option).  Most of the X11 (screen, keyboard,
                       mouse) options do not make sense and many will cause
                       this mode to crash, so please think twice before
                       setting/changing them.
6127 6128 6129 6130 6131 6132

                       If you don't want x11vnc to close the X DISPLAY in
                       rawfb mode, then capitalize the prefix, SHM:, MAP:,
                       FILE:   Keeping the display open enables the default
                       remote-control channel, which could be useful.  Also,
                       if you also specify -noviewonly, then the mouse and
6133
                       keyboard input are STILL sent to the X display, this
6134 6135
                       usage should be very rare, i.e. doing something strange
                       with /dev/fb0.
6136

6137 6138
-pipeinput cmd         Another experimental option: it lets you supply an
                       external command in "cmd" that x11vnc will pipe
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
                       all of the user input events to in a simple format.
                       In -pipeinput mode by default x11vnc will not process
                       any of the user input events.  If you prefix "cmd"
                       with "tee:" it will both send them to the pipe
                       command and process them.  For a description of the
                       format run "-pipeinput tee:/bin/cat".  Another prefix
                       is "reopen" which means to reopen pipe if it exits.
                       Separate multiple prefixes with commas.

                       In combination with -rawfb one might be able to
                       do amusing things (e.g. control non-X devices).
                       To facilitate this, if -rawfb is in effect then the
                       value is stored in X11VNC_RAWFB_STR for the pipe command
                       to use if it wants. Do 'env | grep X11VNC' for more.

6154 6155
-gui [gui-opts]        Start up a simple tcl/tk gui based on the the remote
                       control options -remote/-query described below.
6156
                       Requires the "wish" program to be installed on the
6157 6158 6159 6160
                       machine.  "gui-opts" is not required: the default
                       is to start up both the full gui and x11vnc with the
                       gui showing up on the X display in the environment
                       variable DISPLAY.
6161 6162

                       "gui-opts" can be a comma separated list of items.
6163 6164 6165 6166
                       Currently there are these types of items: 1) a gui
                       mode, a 2) gui "simplicity", 3) the X display the
                       gui should display on, 4) a "tray" or "icon" mode,
                       and 5) a gui geometry.
6167 6168

                       1) The gui mode can be "start", "conn", or "wait"
6169 6170 6171 6172 6173
                       "start" is the default mode above and is not required.
                       "conn" means do not automatically start up x11vnc,
                       but instead just try to connect to an existing x11vnc
                       process.  "wait" means just start the gui and nothing
                       else (you will later instruct the gui to start x11vnc
6174
                       or connect to an existing one.)
6175

6176 6177 6178 6179 6180 6181 6182 6183
                       2) The gui simplicity is off by default (a power-user
                       gui with all options is presented) To start with
                       something less daunting supply the string "simple"
                       ("ez" is an alias for this).  Once the gui is
                       started you can toggle between the two with "Misc ->
                       simple_gui".

                       3) Note the possible confusion regarding the potentially
6184 6185 6186 6187 6188
                       two different X displays: x11vnc polls one, but you
                       may want the gui to appear on another.  For example, if
                       you ssh in and x11vnc is not running yet you may want
                       the gui to come back to you via your ssh redirected X
                       display (e.g. localhost:10).
6189 6190 6191 6192

                       If you do not specify a gui X display in "gui-opts"
                       then the DISPLAY environment variable and -display
                       option are tried (in that order).  Regarding the x11vnc
6193 6194 6195 6196 6197 6198
                       X display the gui will try to communication with, it
                       first tries -display and then DISPLAY.  For example,
                       "x11vnc -display :0 -gui otherhost:0", will remote
                       control an x11vnc polling :0 and display the gui on
                       otherhost:0 The "tray/icon" mode below reverses this
                       preference, preferring to display on the x11vnc display.
6199

6200 6201
                       4) When "tray" or "icon" is specified, the gui
                       presents itself as a small icon with behavior typical
6202
                       of a "system tray" or "dock applet".  The color
6203 6204 6205 6206 6207 6208 6209 6210 6211
                       of the icon indicates status (connected clients) and
                       there is also a balloon status.  Clicking on the icon
                       gives a menu from which properties, etc, can be set and
                       the full gui is available under "Advanced".  To be
                       fully functional, the gui mode should be "start"
                       (the default).

                       For "icon" the gui just a small standalone window.
                       For "tray" it will attempt to embed itself in the
6212 6213
                       "system tray" if possible. If "=setpass" is appended the
n
6214 6215 6216 6217 6218 6219 6220
                       at startup the X11 user will be prompted to set the
                       VNC session password.  If =<hexnumber> is appended
                       that icon will attempt to embed itself in the window
                       given by hexnumber.  Use =noadvanced to disable the
                       full gui. (To supply more than one, use "+" sign).
                       E.g. -gui tray=setpass and -gui icon=0x3600028

6221 6222 6223 6224
                       Other modes: "full", the default and need not be
                       specified.  "-gui none", do not show a gui, useful
                       to override a ~/.x11vncrc setting, etc.

6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
                       5) When "geom=+X+Y" is specified, that geometry
                       is passed to the gui toplevel.  This is the icon in
                       icon/tray mode, or the full gui otherwise.  You can
                       also specify width and height, i.e. WxH+X+Y, but it
                       is not recommended.  In "tray" mode the geometry is
                       ignored unless the system tray manager does not seem
                       to be running.  One could imagine using something like
                       "-gui tray,geom=+4000+4000" with a display manager
                       to keep the gui invisible until someone logs in...

                       More icon tricks, "icon=minimal" gives an icon just
                       with the VNC display number.  You can also set the font
                       with "iconfont=...".  The following could be useful:
                       "-gui icon=minimal,iconfont=5x8,geom=24x10+0-0"

                       General examples of the -gui option: "x11vnc -gui",
                       "x11vnc -gui ez" "x11vnc -gui localhost:10",
                       "x11vnc -gui conn,host:0", "x11vnc -gui tray,ez"
6243
                       "x11vnc -gui tray=setpass"
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276

                       If you do not intend to start x11vnc from the gui
                       (i.e. just remote control an existing one), then the
                       gui process can run on a different machine from the
                       x11vnc server as long as X permissions, etc. permit
                       communication between the two.

-remote command        Remotely control some aspects of an already running
                       x11vnc server.  "-R" and "-r" are aliases for
                       "-remote".  After the remote control command is
                       sent to the running server the 'x11vnc -remote ...'
                       command exits.  You can often use the -query command
                       (see below) to see if the x11vnc server processed your
                       -remote command.

                       The default communication channel is that of X
                       properties (specifically VNC_CONNECT), and so this
                       command must be run with correct settings for DISPLAY
                       and possibly XAUTHORITY to connect to the X server
                       and set the property.  Alternatively, use the -display
                       and -auth options to set them to the correct values.
                       The running server cannot use the -novncconnect option
                       because that disables the communication channel.
                       See below for alternate channels.

                       For example: 'x11vnc -remote stop' (which is the same as
                       'x11vnc -R stop') will close down the x11vnc server.
                       'x11vnc -R shared' will enable shared connections, and
                       'x11vnc -R scale:3/4' will rescale the desktop.

                       The following -remote/-R commands are supported:

                       stop            terminate the server, same as "quit"
6277
                                       "exit" or "shutdown".
6278 6279 6280 6281 6282 6283 6284
                       ping            see if the x11vnc server responds.
                                       Return is: ans=ping:<xdisplay>
                       blacken         try to push a black fb update to all
                                       clients (due to timings a client
                                       could miss it). Same as "zero", also
                                       "zero:x1,y1,x2,y2" for a rectangle.
                       refresh         send the entire fb to all clients.
6285 6286 6287
                       reset           recreate the fb, polling memory, etc.
                       id:windowid     set -id window to "windowid". empty
                                       or "root" to go back to root window
6288
                       sid:windowid    set -sid window to "windowid"
6289 6290
                       waitmapped      wait until subwin is mapped.
                       nowaitmapped    do not wait until subwin is mapped.
6291
                       clip:WxH+X+Y    set -clip mode to "WxH+X+Y"
6292 6293
                       flashcmap       enable  -flashcmap mode.
                       noflashcmap     disable -flashcmap mode.
6294
                       shiftcmap:n     set -shiftcmap to n.
6295 6296 6297 6298 6299 6300 6301 6302 6303
                       notruecolor     enable  -notruecolor mode.
                       truecolor       disable -notruecolor mode.
                       overlay         enable  -overlay mode (if applicable).
                       nooverlay       disable -overlay mode.
                       overlay_cursor  in -overlay mode, enable cursor drawing.
                       overlay_nocursor disable cursor drawing. same as
                                        nooverlay_cursor.
                       visual:vis      set -visual to "vis"
                       scale:frac      set -scale to "frac"
6304
                       scale_cursor:f  set -scale_cursor to "f"
6305 6306 6307 6308 6309 6310
                       viewonly        enable  -viewonly mode.
                       noviewonly      disable -viewonly mode.
                       shared          enable  -shared mode.
                       noshared        disable -shared mode.
                       forever         enable  -forever mode.
                       noforever       disable -forever mode.
6311 6312 6313
                       timeout:n       reset -timeout to n, if there are
                                       currently no clients, exit unless one
                                       connects in the next n secs.
6314 6315
                       http            enable  http client connections.
                       nohttp          disable http client connections.
6316 6317 6318 6319 6320 6321 6322 6323 6324
                       deny            deny any new connections, same as "lock"
                       nodeny          allow new connections, same as "unlock"
                       connect:host    do reverse connection to host, "host"
                                       may be a comma separated list of hosts
                                       or host:ports.  See -connect.
                       disconnect:host disconnect any clients from "host"
                                       same as "close:host".  Use host
                                       "all" to close all current clients.
                                       If you know the client internal hex ID,
6325 6326
                                       e.g. 0x3 (returned by "-query clients"
                                       and RFB_CLIENT_ID) you can use that too.
6327 6328 6329 6330 6331 6332 6333 6334 6335
                       allowonce:host  For the next connection only, allow
                                       connection from "host".
                       allow:hostlist  set -allow list to (comma separated)
                                       "hostlist". See -allow and -localhost.
                                       Do not use with -allow /path/to/file
                                       Use "+host" to add a single host, and
                                       use "-host" to delete a single host
                       localhost       enable  -localhost mode
                       nolocalhost     disable -localhost mode
runge's avatar
runge committed
6336
                       listen:str      set -listen to str, empty to disable.
6337 6338
                       nolookup        enable  -nolookup mode.
                       lookup          disable -nolookup mode.
6339 6340 6341 6342 6343
                       input:str       set -input to "str", empty to disable.
                       client_input:str set the K, M, B -input on a per-client
                                       basis.  select which client as for
                                       disconnect, e.g. client_input:host:MB
                                       or client_input:0x2:K
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
                       accept:cmd      set -accept "cmd" (empty to disable).
                       gone:cmd        set -gone "cmd" (empty to disable).
                       noshm           enable  -noshm mode.
                       shm             disable -noshm mode (i.e. use shm).
                       flipbyteorder   enable -flipbyteorder mode, you may need
                                       to set noshm for this to do something.
                       noflipbyteorder disable -flipbyteorder mode.
                       onetile         enable  -onetile mode. (you may need to
                                       set shm for this to do something)
                       noonetile       disable -onetile mode.
6354 6355 6356
                       solid           enable  -solid mode
                       nosolid         disable -solid mode.
                       solid_color:color set -solid color (and apply it).
6357 6358 6359 6360 6361 6362 6363
                       blackout:str    set -blackout "str" (empty to disable).
                                       See -blackout for the form of "str"
                                       (basically: WxH+X+Y,...)
                                       Use "+WxH+X+Y" to append a single
                                       rectangle use "-WxH+X+Y" to delete one
                       xinerama        enable  -xinerama mode. (if applicable)
                       noxinerama      disable -xinerama mode.
6364
                       xtrap           enable  -xtrap input mode(if applicable)
6365
                       noxtrap         disable -xtrap input mode.
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
                       xrandr          enable  -xrandr mode. (if applicable)
                       noxrandr        disable -xrandr mode.
                       xrandr_mode:mode set the -xrandr mode to "mode".
                       padgeom:WxH     set -padgeom to WxH (empty to disable)
                                       If WxH is "force" or "do" the padded
                                       geometry fb is immediately applied.
                       quiet           enable  -quiet mode.
                       noquiet         disable -quiet mode.
                       modtweak        enable  -modtweak mode.
                       nomodtweak      enable  -nomodtweak mode.
                       xkb             enable  -xkb modtweak mode.
                       noxkb           disable -xkb modtweak mode.
                       skip_keycodes:str enable -xkb -skip_keycodes "str".
6379 6380
                       sloppy_keys     enable  -sloppy_keys mode.
                       nosloppy_keys   disable -sloppy_keys mode.
6381 6382
                       skip_dups       enable  -skip_dups mode.
                       noskip_dups     disable -skip_dups mode.
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
                       add_keysyms     enable -add_keysyms mode.
                       noadd_keysyms   stop adding keysyms. those added will
                                       still be removed at exit.
                       clear_mods      enable  -clear_mods mode and clear them.
                       noclear_mods    disable -clear_mods mode.
                       clear_keys      enable  -clear_keys mode and clear them.
                       noclear_keys    disable -clear_keys mode.
                       remap:str       set -remap "str" (empty to disable).
                                       See -remap for the form of "str"
                                       (basically: key1-key2,key3-key4,...)
                                       Use "+key1-key2" to append a single
                                       keymapping, use "-key1-key2" to delete.
                       norepeat        enable  -norepeat mode.
                       repeat          disable -norepeat mode.
6397 6398
                       nofb            enable  -nofb mode.
                       fb              disable -nofb mode.
6399 6400 6401
                       bell            enable  bell (if supported).
                       nobell          disable bell.
                       nosel           enable  -nosel mode.
6402
                       sel             disable -nosel mode.
6403
                       noprimary       enable  -noprimary mode.
6404
                       primary         disable -noprimary mode.
6405
                       seldir:str      set -seldir to "str"
6406 6407 6408 6409
                       cursor:mode     enable  -cursor "mode".
                       show_cursor     enable  showing a cursor.
                       noshow_cursor   disable showing a cursor. (same as
                                       "nocursor")
6410
                       arrow:n         set -arrow to alternate n.
6411 6412
                       xfixes          enable  xfixes cursor shape mode.
                       noxfixes        disable xfixes cursor shape mode.
6413 6414 6415 6416
                       alphacut:n      set -alphacut to n.
                       alphafrac:f     set -alphafrac to f.
                       alpharemove     enable  -alpharemove mode.
                       noalpharemove   disable -alpharemove mode.
6417 6418
                       alphablend      disable -noalphablend mode.
                       noalphablend    enable  -noalphablend mode.
6419 6420 6421 6422 6423 6424
                       cursorshape     disable -nocursorshape mode.
                       nocursorshape   enable  -nocursorshape mode.
                       cursorpos       disable -nocursorpos mode.
                       nocursorpos     enable  -nocursorpos mode.
                       xwarp           enable  -xwarppointer mode.
                       noxwarp         disable -xwarppointer mode.
6425
                       buttonmap:str   set -buttonmap "str", empty to disable
6426 6427
                       dragging        disable -nodragging mode.
                       nodragging      enable  -nodragging mode.
6428 6429
                       wireframe       enable  -wireframe mode. same as "wf"
                       nowireframe     disable -wireframe mode. same as "nowf"
6430 6431
                       wireframe:str   enable  -wireframe mode string.
                       wireframe_mode:str enable  -wireframe mode string.
6432 6433 6434 6435 6436 6437
                       wirecopyrect:str set -wirecopyrect string. same as "wcr:
"
                       scrollcopyrect:str set -scrollcopyrect string. same "scr
"
                       noscrollcopyrect disable -scrollcopyrect mode. "noscr"
                       scr_area:n      set -scr_area to n
6438 6439 6440
                       scr_skip:list   set -scr_skip to "list"
                       scr_inc:list    set -scr_inc to "list"
                       scr_keys:list   set -scr_keys to "list"
6441
                       scr_term:list   set -scr_term to "list"
6442
                       scr_keyrepeat:str set -scr_keyrepeat to "str"
6443
                       scr_parms:str   set -scr_parms parameters.
6444
                       fixscreen:str   set -fixscreen to "str".
6445 6446
                       noxrecord       disable all use of RECORD extension.
                       xrecord         enable  use of RECORD extension.
6447
                       reset_record    reset RECORD extension (if avail.)
6448 6449 6450
                       pointer_mode:n  set -pointer_mode to n. same as "pm"
                       input_skip:n    set -input_skip to n.
                       speeds:str      set -speeds to str.
6451
                       wmdt:str        set -wmdt to str.
6452 6453 6454 6455 6456 6457
                       debug_pointer   enable  -debug_pointer, same as "dp"
                       nodebug_pointer disable -debug_pointer, same as "nodp"
                       debug_keyboard   enable  -debug_keyboard, same as "dk"
                       nodebug_keyboard disable -debug_keyboard, same as "nodk"
                       defer:n         set -defer to n ms,same as deferupdate:n
                       wait:n          set -wait to n ms.
6458 6459 6460
                       wait_ui:f       set -wait_ui factor to f.
                       wait_bog        disable -nowait_bog mode.
                       nowait_bog      enable  -nowait_bog mode.
6461
                       readtimeout:n   set read timeout to n seconds.
6462 6463 6464
                       nap             enable  -nap mode.
                       nonap           disable -nap mode.
                       sb:n            set -sb to n s, same as screen_blank:n
6465 6466 6467 6468
                       xdamage         enable  xdamage polling hints.
                       noxdamage       disable xdamage polling hints.
                       xd_area:A       set -xd_area max pixel area to "A"
                       xd_mem:f        set -xd_mem remembrance to "f"
6469 6470 6471 6472
                       fs:frac         set -fs fraction to "frac", e.g. 0.5
                       gaps:n          set -gaps to n.
                       grow:n          set -grow to n.
                       fuzz:n          set -fuzz to n.
6473 6474
                       snapfb          enable  -snapfb mode.
                       nosnapfb        disable -snapfb mode.
6475
                       rawfb:str       set -rawfb mode to "str".
6476 6477
                       progressive:n   set libvncserver -progressive slice
                                       height parameter to n.
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
                       desktop:str     set -desktop name to str for new clients
.
                       rfbport:n       set -rfbport to n.
                       httpport:n      set -httpport to n.
                       httpdir:dir     set -httpdir to dir (and enable http).
                       enablehttpproxy   enable  -enablehttpproxy mode.
                       noenablehttpproxy disable -enablehttpproxy mode.
                       alwaysshared     enable  -alwaysshared mode.
                       noalwaysshared   disable -alwaysshared mode.
                                        (may interfere with other options)
                       nevershared      enable  -nevershared mode.
                       nonevershared    disable -nevershared mode.
                                        (may interfere with other options)
                       dontdisconnect   enable  -dontdisconnect mode.
                       nodontdisconnect disable -dontdisconnect mode.
                                        (may interfere with other options)
6494 6495 6496 6497 6498 6499 6500 6501
                       debug_xevents   enable  debugging X events.
                       nodebug_xevents disable debugging X events.
                       debug_xdamage   enable  debugging X DAMAGE mechanism.
                       nodebug_xdamage disable debugging X DAMAGE mechanism.
                       debug_wireframe enable   debugging wireframe mechanism.
                       nodebug_wireframe disable debugging wireframe mechanism.
                       debug_scroll    enable  debugging scrollcopy mechanism.
                       nodebug_scroll  disable debugging scrollcopy mechanism.
6502 6503
                       debug_tiles     enable  -debug_tiles
                       nodebug_tiles   disable -debug_tiles
6504 6505
                       debug_grabs     enable  -debug_grabs
                       nodebug_grabs   disable -debug_grabs
6506 6507
                       dbg             enable  -dbg crash shell
                       nodbg           disable -dbg crash shell
6508

6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
                       noremote        disable the -remote command processing,
                                       it cannot be turned back on.

                       The vncconnect(1) command from standard VNC
                       distributions may also be used if string is prefixed
                       with "cmd=" E.g. 'vncconnect cmd=stop'.  Under some
                       circumstances xprop(1) can used if it supports -set
                       (see the FAQ).

                       If "-connect /path/to/file" has been supplied to the
                       running x11vnc server then that file can be used as a
                       communication channel (this is the only way to remote
                       control one of many x11vnc's polling the same X display)
                       Simply run: 'x11vnc -connect /path/to/file -remote ...'
                       or you can directly write to the file via something
                       like: "echo cmd=stop > /path/to/file", etc.

-query variable        Like -remote, except just query the value of
                       "variable".  "-Q" is an alias for "-query".
                       Multiple queries can be done by separating variables
                       by commas, e.g. -query var1,var2. The results come
                       back in the form ans=var1:value1,ans=var2:value2,...
                       to the standard output.  If a variable is read-only,
                       it comes back with prefix "aro=" instead of "ans=".

                       Some -remote commands are pure actions that do not make
                       sense as variables, e.g. "stop" or "disconnect",
                       in these cases the value returned is "N/A".  To direct
                       a query straight to the VNC_CONNECT property or connect
                       file use "qry=..." instead of "cmd=..."

6540 6541 6542 6543 6544 6545 6546 6547
                       Here is the current list of "variables" that can
                       be supplied to the -query command. This includes the
                       "N/A" ones that return no useful info.  For variables
                       names that do not correspond to an x11vnc option or
                       remote command, we hope the name makes it obvious what
                       the returned value corresponds to (hint: the ext_*
                       variables correspond to the presence of X extensions):

6548 6549 6550 6551 6552 6553
                       ans= stop quit exit shutdown ping blacken zero
                       refresh reset close disconnect id sid waitmapped
                       nowaitmapped clip flashcmap noflashcmap shiftcmap
                       truecolor notruecolor overlay nooverlay overlay_cursor
                       overlay_yescursor nooverlay_nocursor nooverlay_cursor
                       nooverlay_yescursor overlay_nocursor visual scale
6554 6555 6556 6557
                       scale_cursor viewonly noviewonly shared noshared
                       forever noforever once timeout deny lock nodeny unlock
                       connect allowonce allow localhost nolocalhost listen
                       lookup nolookup accept gone shm noshm flipbyteorder
6558 6559 6560
                       noflipbyteorder onetile noonetile solid_color solid
                       nosolid blackout xinerama noxinerama xtrap noxtrap
                       xrandr noxrandr xrandr_mode padgeom quiet q noquiet
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
                       modtweak nomodtweak xkb noxkb skip_keycodes sloppy_keys
                       nosloppy_keys skip_dups noskip_dups add_keysyms
                       noadd_keysyms clear_mods noclear_mods clear_keys
                       noclear_keys remap repeat norepeat fb nofb bell
                       nobell sel nosel primary noprimary seldir cursorshape
                       nocursorshape cursorpos nocursorpos cursor show_cursor
                       noshow_cursor nocursor arrow xfixes noxfixes xdamage
                       noxdamage xd_area xd_mem alphacut alphafrac alpharemove
                       noalpharemove alphablend noalphablend xwarppointer
                       xwarp noxwarppointer noxwarp buttonmap dragging
                       nodragging wireframe_mode wireframe wf nowireframe
                       nowf wirecopyrect wcr nowirecopyrect nowcr scr_area
                       scr_skip scr_inc scr_keys scr_term scr_keyrepeat
                       scr_parms scrollcopyrect scr noscrollcopyrect
                       noscr fixscreen noxrecord xrecord reset_record
                       pointer_mode pm input_skip input client_input
                       speeds wmdt debug_pointer dp nodebug_pointer nodp
                       debug_keyboard dk nodebug_keyboard nodk deferupdate
6579 6580 6581
                       defer wait_ui wait_bog nowait_bog wait readtimeout
                       nap nonap sb screen_blank fs gaps grow fuzz snapfb
                       nosnapfb rawfb progressive rfbport http nohttp httpport
6582 6583 6584 6585 6586 6587
                       httpdir enablehttpproxy noenablehttpproxy alwaysshared
                       noalwaysshared nevershared noalwaysshared dontdisconnect
                       nodontdisconnect desktop debug_xevents nodebug_xevents
                       debug_xevents debug_xdamage nodebug_xdamage
                       debug_xdamage debug_wireframe nodebug_wireframe
                       debug_wireframe debug_scroll nodebug_scroll debug_scroll
6588 6589
                       debug_tiles dbt nodebug_tiles nodbt debug_tiles
                       debug_grabs nodebug_grabs dbg nodbg noremote
6590

6591 6592 6593
                       aro=  noop display vncdisplay desktopname guess_desktop
                       http_url auth xauth users rootshift clipshift
                       scale_str scaled_x scaled_y scale_numer scale_denom
6594 6595 6596 6597 6598 6599 6600 6601 6602
                       scale_fac scaling_blend scaling_nomult4 scaling_pad
                       scaling_interpolate inetd privremote unsafe safer nocmds
                       passwdfile using_shm logfile o flag rc norc h help V
                       version lastmod bg sigpipe threads readrate netrate
                       netlatency pipeinput clients client_count pid ext_xtest
                       ext_xtrap ext_xrecord ext_xkb ext_xshm ext_xinerama
                       ext_overlay ext_xfixes ext_xdamage ext_xrandr rootwin
                       num_buttons button_mask mouse_x mouse_y bpp depth
                       indexed_color dpy_x dpy_y wdpy_x wdpy_y off_x off_y
6603 6604 6605 6606 6607
                       cdpy_x cdpy_y coff_x coff_y rfbauth passwd viewpasswd

-QD variable           Just like -query variable, but returns the default
                       value for that parameter (no running x11vnc server
                       is consulted)
6608

6609 6610 6611
-sync                  By default -remote commands are run asynchronously, that
                       is, the request is posted and the program immediately
                       exits.  Use -sync to have the program wait for an
6612 6613 6614
                       acknowledgement from the x11vnc server that command was
                       processed (somehow).  On the other hand -query requests
                       are always processed synchronously because they have
6615
                       to wait for the answer.
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627

                       Also note that if both -remote and -query requests are
                       supplied on the command line, the -remote is processed
                       first (synchronously: no need for -sync), and then
                       the -query request is processed in the normal way.
                       This allows for a reliable way to see if the -remote
                       command was processed by querying for any new settings.
                       Note however that there is timeout of a few seconds so
                       if the x11vnc takes longer than that to process the
                       requests the requestor will think that a failure has
                       taken place.

6628
-noremote              Do not process any remote control commands or queries.
6629 6630
-yesremote             Do process remote control commands or queries.
                       Default: -yesremote
6631 6632

                       A note about security wrt remote control commands.
6633 6634 6635 6636 6637 6638
                       If someone can connect to the X display and change
                       the property VNC_CONNECT, then they can remotely
                       control x11vnc.  Normally access to the X display is
                       protected.  Note that if they can modify VNC_CONNECT
                       on the X server, they have enough permissions to also
                       run their own x11vnc and thus have complete control
6639
                       of the desktop.  If the  "-connect /path/to/file"
6640 6641 6642
                       channel is being used, obviously anyone who can write
                       to /path/to/file can remotely control x11vnc.  So be
                       sure to protect the X display and that file's write
6643
                       permissions.  See -privremote below.
6644 6645 6646

                       If you are paranoid and do not think -noremote is
                       enough, to disable the VNC_CONNECT property channel
6647 6648 6649 6650 6651 6652 6653 6654 6655
                       completely use -novncconnect, or use the -safer
                       option that shuts many things off.

-unsafe                A few remote commands are disabled by default
                       (currently: id:pick, accept:<cmd>, gone:<cmd>, and
                       rawfb:setup:<cmd>) because they are associated with
                       running external programs.  If you specify -unsafe, then
                       these remote-control commands are allowed.  Note that
                       you can still specify these parameters on the command
6656
                       line, they just cannot be invoked via remote-control.
6657 6658 6659
-safer                 Equivalent to: -novncconnect -noremote and prohibiting
                       -gui and the -connect file. Shuts off communcation
                       channels.
6660
-privremote            Perform some sanity checks and disable remote-control
6661
                       commands if it appears that the X DISPLAY and/or
6662 6663
                       connectfile can be accessed by other users.  Once
                       remote-control is disabled it cannot be turned back on.
6664 6665
-nocmds                No external commands (e.g. system(3), popen(3), exec(3))
                       will be run.
6666 6667 6668 6669 6670

-deny_all              For use with -remote nodeny: start out denying all
                       incoming clients until "-remote nodeny" is used to
                       let them in.

6671 6672 6673 6674 6675 6676 6677

These options are passed to libvncserver:

-rfbport port          TCP port for RFB protocol
-rfbwait time          max time in ms to wait for RFB client
-rfbauth passwd-file   use authentication on RFB protocol
                       (use 'storepasswd' to create a password file)
6678
-passwd plain-password use authentication
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
                       (use plain-password as password, USE AT YOUR RISK)
-deferupdate time      time in ms to defer updates (default 40)
-desktop name          VNC desktop name (default "LibVNCServer")
-alwaysshared          always treat new clients as shared
-nevershared           never treat new clients as shared
-dontdisconnect        don't disconnect existing clients when a new non-shared
                       connection comes in (refuse new connection instead)
-httpdir dir-path      enable http server using dir-path home
-httpport portnum      use portnum for http connection
-enablehttpproxy       enable http proxy support
-progressive height    enable progressive updating for slow links
runge's avatar
runge committed
6690 6691
-listen ipaddr         listen for connections only on network interface with
                       addr ipaddr. '-listen localhost' and hostname work too.
6692 6693 6694 6695

   Pretty wild huh? [1]Contact me if you have any questions or problems.

   Personally, I use:
6696 6697
x11vnc -rfbauth $HOME/.vnc/passwd -flashcmap -solid -gui icon,geom=+870+0 -rema
p Super_R-Button4,Menu-Button5
6698 6699 6700 6701 6702 6703

   (the -flashcmap only matters on old 8-bit X displays)

References

   1. mailto:xvml@karlrunge.com