* NPr2 support, multiextruder by NicolaP http://www.3dmakerlab.it/extruder-npr2.html
* NPr2 support, multiextruder by NicolaP http://www.3dmakerlab.it/extruder-npr2.html
* Laserbeam support
* Laserbeam support
* Laser for RAMPS buildlog based 3d laser cutter (like modified chinese K40) with both vectorial and raster support
compatible with inkscape plugin at https://github.com/TurnkeyTyranny/laser-gcode-exporter-inkscape-plugin
* Laser pheripherals (water cooling, air assisted lasering)
* Firmware test
* Firmware test
* Support for a filament diameter sensor, which adjusts extrusion volume
* Support for a filament diameter sensor, which adjusts extrusion volume
* Support for a hall effect sensor for calucalte Wh. Example sensor ACS712 20A range Current Sensor Module. http://i.ebayimg.com/images/i/310506962976-0-1/s-l1000.jpg
* Support for a hall effect sensor for calucalte Wh. Example sensor ACS712 20A range Current Sensor Module. http://i.ebayimg.com/images/i/310506962976-0-1/s-l1000.jpg
#define Z_RAISE_BEFORE_HOMING 10 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
#define Z_RAISE_BEFORE_PROBING 10 //How much the extruder will be raised before travelling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when travelling from between next probing points
#define Z_RAISE_AFTER_PROBING 5 //How much the extruder will be raised after the last probing point.
//#define Z_PROBE_END_SCRIPT "G1 Z10 F8000\nG1 X10 Y10\nG1 Z0.5" // These commands will be executed in the end of G29 routine.
// Useful to retract a deployable Z probe.
//#define Z_PROBE_SLED // turn on if you have a z-probe mounted on a sled like those designed by Charles Bell
#define SLED_DOCKING_OFFSET 5 // the extra distance the X axis must travel to pick up the sled. 0 should be fine but you can push it further if you'd like.
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define K1 0.95 // Smoothing factor within the PID
#define MAX_OVERSHOOT_PID_AUTOTUNE 20 // Max valor for overshoot autotune
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
// If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_FUNCTIONAL_RANGE 10 // degC
#define PID_INTEGRAL_DRIVE_MAX PID_MAX // Limit for the integral term
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//#define BED_LIMIT_SWITCHING
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS (works only if BED_LIMIT_SWITCHING is enabled)
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
// This sets the max power delivered to the bed.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#define PID_BED_INTEGRAL_DRIVE_MAX MAX_BED_POWER // limit for the integral term
// 120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
// from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
//#define PID_BED_DEBUG // Sends debug data to the serial port.
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2,3)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define MEASURED_UPPER_LIMIT 2.00 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.35 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
//defines used in the code
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
#define POWER_EFFICIENCY 100.0 //(%) The power efficency of the power supply
//When using an LCD, uncomment the line below to display the Power consumption sensor data on the last line instead of status. Status will appear for 5 sec.
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define SDEXTRASLOW // Use even slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define SD_CHECK_AND_RETRY // Use CRC checks and retries on the SD communication
//#define SD_EXTENDED_DIR // Show extended directory including file length. Don't use this with Pronterface
// Decomment this if you are external SD without DETECT_PIN
//#define SD_DISABLED_DETECT
// Some RAMPS and other boards don't detect when an SD card is inserted. You can work
// around this by connecting a push button or single throw switch to the pin defined
// as SD_DETECT_PIN in your board's pins definitions.
// This setting should be disabled unless you are using a push button, pulling the pin to ground.
// Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER).
#define SD_DETECT_INVERTED
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// using:
//#define MENU_ADDAUTOSTART
// This enable the firmware to write some configuration that require frequent update, on the SD card
//#define SD_SETTINGS // Uncomment to enable
#define SD_CFG_SECONDS 300 // seconds between update
#define CFG_SD_FILE "INFO.CFG" // name of the configuration file
#define DISPLAY_CHARSET_HD44780_JAPAN // this is the most common hardware
//#define DISPLAY_CHARSET_HD44780_WESTERN
//#define DISPLAY_CHARSET_HD44780_CYRILLIC
#define SHOW_BOOTSCREEN
#define STRING_SPLASH_LINE1 "v" SHORT_BUILD_VERSION // will be shown during bootup in line 1
#define STRING_SPLASH_LINE2 STRING_DISTRIBUTION_DATE // will be shown during bootup in line 2
#define SPLASH_SCREEN_DURATION 5000 // SPLASH SCREEN duration in millisecond
//#define LCD_SCREEN_ROT_90 //Rotate screen orientation for graphics display by 90 degree clockwise
//#define LCD_SCREEN_ROT_180 //Rotate screen orientation for graphics display by 180 degree clockwise
//#define LCD_SCREEN_ROT_270 //Rotate screen orientation for graphics display by 270 degree clockwise
//#define INVERT_CLICK_BUTTON // Option for invert encoder button logic
//#define INVERT_BACK_BUTTON // Option for invert back button logic if avaible
//#define INVERT_ROTARY_SWITCH // Option for invert rotary encoder
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value
#define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder
//#define ULTRA_LCD // general LCD support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER // As available from the Ultimaker online store.
//#define ULTIPANEL // The UltiPanel as on Thingiverse
//#define SPEAKER // The sound device is a speaker - not a buzzer. A buzzer resonates with his own frequency.
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
// 0 to disable buzzer feedback. Test with M300 S<frequency Hz> P<duration ms>
//Display Voltage Logic Selector on Alligator Board
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
// Laser control is used by the Muve1 3D printer and the Buildlog.net laser cutter
//
//// The following define selects how to control the laser. Please choose the one that matches your setup.
// 1 = Single pin control - LOW when off, HIGH when on, PWM to adjust intensity
// 2 = Two pin control - A firing pin for which LOW = off, HIGH = on, and a seperate intensity pin which carries a constant PWM signal and adjusts duty cycle to control intensity
// mUVe, buildlog.net and K40 chinese machines uses 2, AMRI ablative uses 1, AMRI SLS uses 2
#define LASER_CONTROL 2
// Uncomment the following if your laser firing pin (not the PWM pin) for two pin control requires a HIGH signal to fire rather than a low (eg Red Sail M300 RS 3040)
/// #define HIGH_TO_FIRE
// Uncomment the following to enable the use of the PWM (the one for the extruder 0) to drive a peltier cell or any PWM driven cooler for the laser
#define LASER_WATER_COOLING
#define LASER_WATER_MAXTEMP 25
//// The following defines select which G codes tell the laser to fire. It's OK to uncomment more than one.
#define LASER_FIRE_G1 10 // fire the laser on a G1 move, extinguish when the move ends
#define LASER_FIRE_SPINDLE 11 // fire the laser on M3, extinguish on M5
#define LASER_FIRE_E 12 // fire the laser when the E axis moves
//// Raster mode enables the laser to etch bitmap data at high speeds. Increases command buffer size substantially.
#define LASER_RASTER
#define LASER_MAX_RASTER_LINE 68 // maximum number of base64 encoded pixels per raster gcode command
#define LASER_RASTER_ASPECT_RATIO 1 // pixels aren't square on most displays, 1.33 == 4:3 aspect ratio.
#define LASER_RASTER_MM_PER_PULSE 0.2 //Can be overridden by providing an R value in M649 command : M649 S17 B2 D0 R0.1 F4000
//// Uncomment the following if the laser cutter is equipped with a peripheral relay board
//// to control power to an exhaust fan, water pump, laser power supply, etc.
//#define LASER_PERIPHERALS
//#define LASER_PERIPHERALS_TIMEOUT 30000 // Number of milliseconds to wait for status signal from peripheral control board
//// Uncomment the following line to enable cubic bezier curve movement with the G5 code
// #define G5_BEZIER
// Uncomment these options for the mUVe 1 3D printer
// #define CUSTOM_MENDEL_NAME "mUVe1 Printer"
// #define LASER_WATTS 0.05
// #define LASER_DIAMETER 0.1 // milimeters
// #define LASER_PWM 8000 // hertz
// #define MUVE_Z_PEEL // The mUVe 1 uses a special peel maneuver between each layer, it requires independent control of each Z motor
// Uncomment these options for the Buildlog.net laser cutter, and other similar models
#define CUSTOM_MENDEL_NAME "Laser Cutter"
#define LASER_WATTS 40.0
#define LASER_DIAMETER 0.1 // milimeters
#define LASER_PWM 50000 // hertz
#define LASER_FOCAL_HEIGHT 74.50 // z axis position at which the laser is focused
//Uncomment for AMRI Ablative or SLS
//#define CUSTOM_MENDEL_NAME "Laser Cutter"
//#define LASER_WATTS 40.0
//#define LASER_DIAMETER 0.1 // milimeters
//#define LASER_PWM 25000 // hertz
//#define LASER_FOCAL_HEIGHT 74.50 // z axis position at which the laser is focused