Commit 47628402 authored by MagoKimbra's avatar MagoKimbra

Add COREXZ mechanism

parent 6bbb3e37
......@@ -57,6 +57,7 @@
***********************************************************************/
#define CARTESIAN
//#define COREXY
//#define COREXZ
//#define DELTA
//#define SCARA
/***********************************************************************\
......@@ -67,7 +68,9 @@
#if defined(CARTESIAN)
#include "Configuration_Cartesian.h"
#elif defined(COREXY)
#include "Configuration_Corexy.h"
#include "Configuration_Core.h"
#elif defined(COREXZ)
#include "Configuration_Core.h"
#elif defined(DELTA)
#include "Configuration_Delta.h"
#elif defined(SCARA)
......
// Define this to set a custom name for your generic Mendel,
// Displayed in the LCD "Ready" message
#define CUSTOM_MACHINE_NAME "Core XY"
#define CUSTOM_MACHINE_NAME "Core"
//===========================================================================
//=============================Mechanical Settings===========================
......
......@@ -29,11 +29,7 @@
#error Your Configuration.h and Configuration_adv.h files are outdated!
#endif
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "Arduino.h"
// Macros for bit masks
#define BIT(b) (1<<(b))
......@@ -148,7 +144,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
* A_AXIS and B_AXIS are used by COREXY printers
* X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
*/
enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
enum AxisEnum {X_AXIS=0, A_AXIS=0, Y_AXIS=1, B_AXIS=1, Z_AXIS=2, C_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5, Z_HEAD=5};
enum EndstopEnum {X_MIN=0, Y_MIN=1, Z_MIN=2, Z_PROBE=3, X_MAX=4, Y_MAX=5, Z_MAX=6, Z2_MIN=7, Z2_MAX=8};
......
......@@ -1046,7 +1046,7 @@ static const PROGMEM type array##_P[3] = \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
#if defined(CARTESIAN) || defined(COREXY) || defined(SCARA)
#if defined(CARTESIAN) || defined(COREXY) || defined(COREXZ) || defined(SCARA)
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
......@@ -1217,7 +1217,7 @@ static void setup_for_endstop_move() {
enable_endstops(true);
}
#if defined(CARTESIAN) || defined(COREXY) || defined(SCARA)
#if defined(CARTESIAN) || defined(COREXY) || defined(COREXZ) || defined(SCARA)
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
......@@ -1538,7 +1538,7 @@ static void setup_for_endstop_move() {
}
}
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
#endif // Cartesian || CoreXY || Scara
#endif // CARTESIAN || COREXY || COREXZ || SCARA
#ifdef DELTA
......@@ -6754,7 +6754,7 @@ FORCE_INLINE void clamp_to_software_endstops(float target[3]) {
#endif // DUAL_X_CARRIAGE
#if defined(CARTESIAN) || defined(COREXY)
#if defined(CARTESIAN) || defined(COREXY) || defined(COREXZ)
inline bool prepare_move_cartesian() {
// Do not use feedrate_multiplier for E or Z only moves
......@@ -6767,7 +6767,7 @@ FORCE_INLINE void clamp_to_software_endstops(float target[3]) {
return true;
}
#endif // CARTESIAN || COREXY
#endif // CARTESIAN || COREXY || COREXZ
/**
* Prepare a single move and get ready for the next one
......@@ -6790,7 +6790,7 @@ void prepare_move() {
if (!prepare_move_dual_x_carriage()) return;
#endif
#if defined(CARTESIAN) || defined(COREXY)
#if defined(CARTESIAN) || defined(COREXY) || defined(COREXZ)
if (!prepare_move_cartesian()) return;
#endif
......
......@@ -2,12 +2,8 @@
blinkm.h
Library header file for BlinkM library
*/
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "Arduino.h"
#include "Wire.h"
void SendColors(byte red, byte grn, byte blu);
......@@ -19,6 +19,7 @@
#define BOARD_RAMPS_13_EFF 35 // RAMPS 1.3 / 1.4 (Power outputs: Hotend, Fan, Fan)
#define BOARD_RAMPS_13_EEF 36 // RAMPS 1.3 / 1.4 (Power outputs: Hotend0, Hotend1, Fan)
#define BOARD_RAMBO 301 // Rambo
#define BOARD_MINIRAMBO 302 // Mini-Rambo
#define BOARD_DUEMILANOVE_328P 4 // Duemilanove w/ ATMega328P pin assignments
#define BOARD_RADDS 402 // RADDS
......@@ -42,7 +43,7 @@
#define BOARD_ULTIMAKER 7 // Ultimaker
#define BOARD_MEGATRONICS 70 // Megatronics
#define BOARD_MEGATRONICS_2 701 // Megatronics v2.0
#define BOARD_MEGATRONICS_1 702 // Minitronics v1.0
#define BOARD_MINITRONICS 702 // Minitronics v1.0
#define BOARD_MEGATRONICS_3 703 // Megatronics v3.0
#define BOARD_ULTIMAKER_OLD 71 // Ultimaker (Older electronics. Pre 1.5.4. This is rare)
#define BOARD_ULTIMAIN_2 72 // Ultimainboard 2.x (Uses TEMP_SENSOR 20)
......
......@@ -381,15 +381,15 @@
* MAX_STEP_FREQUENCY differs for TOSHIBA OR ARDUINO DUE OR ARDUINO MEGA
*/
#ifdef __SAM3X8E__
#ifdef CONFIG_STEPPERS_TOSHIBA
#define MAX_STEP_FREQUENCY 120000 // Max step frequency for Toshiba Stepper Controllers
#if defined(CONFIG_STEPPERS_TOSHIBA) || !defined(ENABLE_HIGH_SPEED_STEPPING)
#define MAX_STEP_FREQUENCY 150000 // Max step frequency for Toshiba Stepper Controllers
#define DOUBLE_STEP_FREQUENCY MAX_STEP_FREQUENCY
#else
#define MAX_STEP_FREQUENCY 500000 // Max step frequency for the Due is approx. 330kHz
#define DOUBLE_STEP_FREQUENCY 120000 //96kHz is close to maximum for an Arduino Due
#endif
#else
#ifdef CONFIG_STEPPERS_TOSHIBA
#if defined(CONFIG_STEPPERS_TOSHIBA) || !defined(ENABLE_HIGH_SPEED_STEPPING)
#define MAX_STEP_FREQUENCY 10000 // Max step frequency for Toshiba Stepper Controllers
#define DOUBLE_STEP_FREQUENCY MAX_STEP_FREQUENCY
#else
......
......@@ -20,6 +20,7 @@
* 36 BOARD_RAMPS_13_EEF - RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Fan)
*
*301 BOARD_RAMBO - Rambo
*302 BOARD_MINIRAMBO - Mini Rambo
*
* 4 BOARD_DUEMILANOVE_328P - Duemilanove w/ ATMega328P pin assignment
*401 BOARD_RADDS - Radds Arduino DUE
......@@ -45,7 +46,7 @@
*
* 70 BOARD_MEGATRONICS - Megatronics
*701 BOARD_MEGATRONICS_2 - Megatronics v2.0
*702 BOARD_MEGATRONICS_1 - Minitronics v1.0
*702 BOARD_MINITRONICS - Minitronics v1.0
*703 BOARD_MEGATRONICS_3 - Megatronics v3.0
* 71 BOARD_ULTIMAKER_OLD - Ultimaker (Older electronics. Pre 1.5.4. This is rare)
* 72 BOARD_ULTIMAIN_2 - Ultimainboard 2.x (Uses TEMP_SENSOR 20)
......@@ -3327,7 +3328,7 @@
* Minitronics v1.0
****************************************************************************************/
#if MB(MEGATRONICS_1)
#if MB(MINITRONICS)
#define KNOWN_BOARD 1
......
......@@ -552,13 +552,19 @@ float junction_deviation = 0.1;
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps[A_AXIS] = labs(dx + dy);
block->steps[B_AXIS] = labs(dx - dy);
block->steps[Z_AXIS] = labs(dz);
#elif defined(COREXZ)
// corexz planning
block->steps[A_AXIS] = labs(dx + dz);
block->steps[Y_AXIS] = labs(dy);
block->steps[C_AXIS] = labs(dx - dz);
#else
// default non-h-bot planning
block->steps[X_AXIS] = labs(dx);
block->steps[Y_AXIS] = labs(dy);
block->steps[Z_AXIS] = labs(dz);
#endif
block->steps[Z_AXIS] = labs(dz);
block->steps[E_AXIS] = labs(de);
block->steps[E_AXIS] *= volumetric_multiplier[extruder];
block->steps[E_AXIS] *= extruder_multiplier[extruder];
......@@ -584,13 +590,20 @@ float junction_deviation = 0.1;
#ifdef COREXY
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
if (dz < 0) db |= BIT(Z_AXIS);
if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
#elif defined(COREXZ)
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
if (dy < 0) db |= BIT(Y_AXIS);
if (dz < 0) db |= BIT(Z_HEAD); // ...and Z
if (dx + dz < 0) db |= BIT(A_AXIS); // Motor A direction
if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction
#else
if (dx < 0) db |= BIT(X_AXIS);
if (dy < 0) db |= BIT(Y_AXIS);
if (dz < 0) db |= BIT(Z_AXIS);
#endif
if (dz < 0) db |= BIT(Z_AXIS);
if (de < 0) db |= BIT(E_AXIS);
block->direction_bits = db;
......@@ -602,13 +615,20 @@ float junction_deviation = 0.1;
enable_x();
enable_y();
}
#ifndef Z_LATE_ENABLE
if (block->steps[Z_AXIS]) enable_z();
#endif
#elif defined(COREXZ)
if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
enable_x();
enable_z();
}
#else
if (block->steps[X_AXIS]) enable_x();
if (block->steps[Y_AXIS]) enable_y();
#endif
#ifndef Z_LATE_ENABLE
if (block->steps[Z_AXIS]) enable_z();
#ifndef Z_LATE_ENABLE
if (block->steps[Z_AXIS]) enable_z();
#endif
#endif
// Enable extruder(s)
......@@ -711,14 +731,22 @@ float junction_deviation = 0.1;
float delta_mm[6];
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
#elif defined(COREXZ)
float delta_mm[6];
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
#else
float delta_mm[4];
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
#endif
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS + extruder]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
......@@ -727,11 +755,12 @@ float junction_deviation = 0.1;
else {
block->millimeters = sqrt(
#ifdef COREXY
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
#elif defined(COREXZ)
square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
#else
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
#endif
+ square(delta_mm[Z_AXIS])
);
}
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
......
......@@ -350,34 +350,38 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
return timer;
}
// set the stepper direction of each axis
/**
* Set the stepper direction of each axis
*
* X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
* X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
*/
void set_stepper_direction() {
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if (TEST(out_bits, X_AXIS)) {
X_APPLY_DIR(INVERT_X_DIR,0);
if (TEST(out_bits, X_AXIS)) { // A_AXIS
X_APPLY_DIR(INVERT_X_DIR, 0);
count_direction[X_AXIS] = -1;
}
else {
X_APPLY_DIR(!INVERT_X_DIR,0);
X_APPLY_DIR(!INVERT_X_DIR, 0);
count_direction[X_AXIS] = 1;
}
if (TEST(out_bits, Y_AXIS)) {
Y_APPLY_DIR(INVERT_Y_DIR,0);
if (TEST(out_bits, Y_AXIS)) { // B_AXIS
Y_APPLY_DIR(INVERT_Y_DIR, 0);
count_direction[Y_AXIS] = -1;
}
else {
Y_APPLY_DIR(!INVERT_Y_DIR,0);
Y_APPLY_DIR(!INVERT_Y_DIR, 0);
count_direction[Y_AXIS] = 1;
}
if (TEST(out_bits, Z_AXIS)) {
Z_APPLY_DIR(INVERT_Z_DIR,0);
if (TEST(out_bits, Z_AXIS)) { // C_AXIS
Z_APPLY_DIR(INVERT_Z_DIR, 0);
count_direction[Z_AXIS] = -1;
}
else {
Z_APPLY_DIR(!INVERT_Z_DIR,0);
Z_APPLY_DIR(!INVERT_Z_DIR, 0);
count_direction[Z_AXIS] = 1;
}
......@@ -513,6 +517,11 @@ ISR(TIMER1_COMPA_vect) {
// If DeltaX == -DeltaY, the movement is only in Y axis
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
if (TEST(out_bits, X_HEAD))
#elif defined(COREXZ)
// Head direction in -X axis for CoreXZ bots.
// If DeltaX == -DeltaZ, the movement is only in Z axis
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
if (TEST(out_bits, X_HEAD))
#else
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
#endif
......@@ -538,8 +547,11 @@ ISR(TIMER1_COMPA_vect) {
#endif
}
}
#ifdef COREXY
#if defined(COREXY) || defined(COREXZ)
}
#endif
#ifdef COREXY
// Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
......@@ -560,70 +572,82 @@ ISR(TIMER1_COMPA_vect) {
#ifdef COREXY
}
#endif
if (TEST(out_bits, Z_AXIS)) { // z -direction
#if HAS_Z_MIN
#ifdef Z_DUAL_ENDSTOPS
SET_ENDSTOP_BIT(Z, MIN);
#if HAS_Z2_MIN
SET_ENDSTOP_BIT(Z2, MIN);
#else
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
#endif
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_MIN);
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count;
}
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(Z, MIN);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MIN_PIN
#ifdef Z_PROBE_ENDSTOP
UPDATE_ENDSTOP(Z, PROBE);
if (TEST_ENDSTOP(Z_PROBE)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_PROBE);
#ifdef COREXZ
// Head direction in -Z axis for CoreXZ bots.
// If DeltaX == DeltaZ, the movement is only in X axis
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
if (TEST(out_bits, Z_HEAD))
#else
if (TEST(out_bits, Z_AXIS))
#endif
{ // z -direction
#if HAS_Z_MIN
#ifdef Z_DUAL_ENDSTOPS
SET_ENDSTOP_BIT(Z, MIN);
#if HAS_Z2_MIN
SET_ENDSTOP_BIT(Z2, MIN);
#else
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
#endif
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_MIN);
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count;
}
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(Z, MIN);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MIN_PIN
#ifdef Z_PROBE_ENDSTOP
UPDATE_ENDSTOP(Z, PROBE);
if (TEST_ENDSTOP(Z_PROBE)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_PROBE);
}
#endif
}
#endif
}
else { // z +direction
#if HAS_Z_MAX
else { // z +direction
#if HAS_Z_MAX
#ifdef Z_DUAL_ENDSTOPS
#ifdef Z_DUAL_ENDSTOPS
SET_ENDSTOP_BIT(Z, MAX);
#if HAS_Z2_MAX
SET_ENDSTOP_BIT(Z2, MAX);
#else
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
#endif
SET_ENDSTOP_BIT(Z, MAX);
#if HAS_Z2_MAX
SET_ENDSTOP_BIT(Z2, MAX);
#else
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
#endif
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_MIN);
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count;
}
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_MIN);
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count;
}
#else // !Z_DUAL_ENDSTOPS
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(Z, MAX);
UPDATE_ENDSTOP(Z, MAX);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN
}
old_endstop_bits = current_endstop_bits;
}
old_endstop_bits = current_endstop_bits;
#ifdef COREXZ
}
#endif
}
#ifdef ENABLE_HIGH_SPEED_STEPPING
......@@ -664,6 +688,7 @@ ISR(TIMER1_COMPA_vect) {
#endif
step_events_completed++;
#endif
// Calculate new timer value
unsigned short timer;
unsigned short step_rate;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment