Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
M
MarlinKimbra
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
machinery
MarlinKimbra
Commits
2ddac526
Commit
2ddac526
authored
May 08, 2016
by
MagoKimbra
Browse files
Options
Browse Files
Download
Plain Diff
Merge remote-tracking branch 'refs/remotes/origin/master' into dev
parents
43a5e682
8ee235df
Changes
15
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
766 additions
and
614 deletions
+766
-614
Configuration_Basic.h
MK/Configuration_Basic.h
+0
-31
Configuration_Feature.h
MK/Configuration_Feature.h
+44
-3
base.h
MK/base.h
+1
-0
MK_Main.cpp
MK/module/MK_Main.cpp
+129
-126
conditionals.h
MK/module/conditionals.h
+15
-0
language.h
MK/module/language/language.h
+11
-66
ultralcd.h
MK/module/lcd/ultralcd.h
+2
-2
macros.h
MK/module/macros.h
+2
-0
endstops.cpp
MK/module/motion/endstops.cpp
+362
-0
endstops.h
MK/module/motion/endstops.h
+105
-0
planner.cpp
MK/module/motion/planner.cpp
+1
-1
stepper.cpp
MK/module/motion/stepper.cpp
+61
-366
stepper.h
MK/module/motion/stepper.h
+21
-7
stopwatch.cpp
MK/module/stopwatch/stopwatch.cpp
+10
-10
stopwatch.h
MK/module/stopwatch/stopwatch.h
+2
-2
No files found.
MK/Configuration_Basic.h
View file @
2ddac526
...
@@ -9,7 +9,6 @@
...
@@ -9,7 +9,6 @@
* - Extruders number
* - Extruders number
* - Thermistor type
* - Thermistor type
* - Temperature limits
* - Temperature limits
* - UI Language
*
*
* Mechanisms-settings can be found in Configuration_Xxxxxx.h (where Xxxxxx can be: Cartesian - Delta - Core - Scara)
* Mechanisms-settings can be found in Configuration_Xxxxxx.h (where Xxxxxx can be: Cartesian - Delta - Core - Scara)
* Feature-settings can be found in Configuration_Feature.h
* Feature-settings can be found in Configuration_Feature.h
...
@@ -239,34 +238,4 @@
...
@@ -239,34 +238,4 @@
#define GUM_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define GUM_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
/*****************************************************************************************************/
/*****************************************************************************************************/
/***********************************************************************
*************************** UI Language ******************************
***********************************************************************
* *
* Select the language that you prefer and change LANGUAGE_CHOICE *
* *
* 1 English *
* 2 Polish *
* 3 French *
* 4 German *
* 5 Spanish *
* 6 Russian *
* 7 Italian *
* 8 Portuguese *
* 9 Finnish *
* 10 Aragonese *
* 11 Dutch *
* 12 Danish *
* 13 Catalan *
* 14 Basque-Euskera *
* 15 Portuguese (Brazil) *
* 16 Bulgarian *
* 17 Japanese *
* 18 Japanese utf *
* 19 Chinese *
* *
***********************************************************************/
#define LANGUAGE_CHOICE 1
/***********************************************************************/
#endif
#endif
MK/Configuration_Feature.h
View file @
2ddac526
...
@@ -50,9 +50,11 @@
...
@@ -50,9 +50,11 @@
* - Filament diameter sensor
* - Filament diameter sensor
* - Filament Runout sensor
* - Filament Runout sensor
* - Power consumption sensor
* - Power consumption sensor
* - RFID card sensor
* ADDON FEATURES:
* ADDON FEATURES:
* - EEPROM
* - EEPROM
* - SDCARD
* - SDCARD
* - LCD Language
* - LCD
* - LCD
* - Canon RC-1 Remote
* - Canon RC-1 Remote
* - Camera trigger
* - Camera trigger
...
@@ -1045,6 +1047,29 @@
...
@@ -1045,6 +1047,29 @@
/**************************************************************************/
/**************************************************************************/
/**************************************************************************
*********************** RIFD module card reader **************************
**************************************************************************
* *
* Support RFID module card reader width UART interface. *
* This module mount chip MFRC522 designed to communicate with *
* ISO/IEC 14443 A/MIFARE cards and transponders without additional *
* active circuitry *
* *
* New command for this system is: *
* M522 T<extruder> R<read> or W<write> *
* *
* Define if you used and Serial used. *
* *
**************************************************************************/
//#define RFID_MODULE
#define RFID_SERIAL 1
/**************************************************************************/
//===========================================================================
//===========================================================================
//============================= ADDON FEATURES ==============================
//============================= ADDON FEATURES ==============================
//===========================================================================
//===========================================================================
...
@@ -1101,9 +1126,25 @@
...
@@ -1101,9 +1126,25 @@
/*****************************************************************************************/
/*****************************************************************************************/
/************************************************************************************************
/***********************************************************************
********************************************* LCD **********************************************
*************************** LCD Language ******************************
************************************************************************************************/
***********************************************************************
* *
* Here you may choose the language used by MK or MK4due *
* on the LCD menus, the following *
* *
* list of languages are available: *
* en, pl, fr, de, es, ru, it, pt, fi, an, nl, ca, eu *
* pt-br, bg, kana, kana_utf8, cn *
* *
***********************************************************************/
#define LCD_LANGUAGE en
/***********************************************************************/
/***********************************************************************
******************************* LCD ***********************************
***********************************************************************/
//Charset type
//Charset type
//Choose ONE of these 3 charsets. This has to match your hardware.
//Choose ONE of these 3 charsets. This has to match your hardware.
...
...
MK/base.h
View file @
2ddac526
...
@@ -51,6 +51,7 @@
...
@@ -51,6 +51,7 @@
#include "module/motion/planner.h"
#include "module/motion/planner.h"
#include "module/motion/stepper_indirection.h"
#include "module/motion/stepper_indirection.h"
#include "module/motion/stepper.h"
#include "module/motion/stepper.h"
#include "module/motion/endstops.h"
#include "module/motion/vector_3.h"
#include "module/motion/vector_3.h"
#include "module/motion/qr_solve.h"
#include "module/motion/qr_solve.h"
#include "module/motion/cartesian_correction.h"
#include "module/motion/cartesian_correction.h"
...
...
MK/module/MK_Main.cpp
View file @
2ddac526
...
@@ -120,7 +120,6 @@ Stopwatch print_job_timer = Stopwatch();
...
@@ -120,7 +120,6 @@ Stopwatch print_job_timer = Stopwatch();
static
uint8_t
target_extruder
;
static
uint8_t
target_extruder
;
bool
no_wait_for_cooling
=
true
;
bool
software_endstops
=
true
;
bool
software_endstops
=
true
;
unsigned
long
printer_usage_seconds
;
unsigned
long
printer_usage_seconds
;
...
@@ -811,7 +810,7 @@ void loop() {
...
@@ -811,7 +810,7 @@ void loop() {
commands_in_queue
--
;
commands_in_queue
--
;
cmd_queue_index_r
=
(
cmd_queue_index_r
+
1
)
%
BUFSIZE
;
cmd_queue_index_r
=
(
cmd_queue_index_r
+
1
)
%
BUFSIZE
;
}
}
checkHitEndstops
();
endstops
.
report_state
();
idle
();
idle
();
}
}
...
@@ -1338,17 +1337,17 @@ static void setup_for_endstop_move() {
...
@@ -1338,17 +1337,17 @@ static void setup_for_endstop_move() {
saved_feedrate_multiplier
=
feedrate_multiplier
;
saved_feedrate_multiplier
=
feedrate_multiplier
;
feedrate_multiplier
=
100
;
feedrate_multiplier
=
100
;
refresh_cmd_timeout
();
refresh_cmd_timeout
();
en
able_endstops
(
true
);
en
dstops
.
enable
(
);
}
}
static
void
clean_up_after_endstop_move
()
{
static
void
clean_up_after_endstop_move
()
{
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
enable_endstops
(
false
);
if
(
DEBUGGING
(
INFO
))
ECHO_LM
(
INFO
,
"clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()"
);
#endif
#endif
endstops
.
not_homing
();
feedrate
=
saved_feedrate
;
feedrate
=
saved_feedrate
;
feedrate_multiplier
=
saved_feedrate_multiplier
;
feedrate_multiplier
=
saved_feedrate_multiplier
;
refresh_cmd_timeout
();
refresh_cmd_timeout
();
endstops_hit_on_purpose
();
// clear endstop hit flags
}
}
static
void
axis_unhomed_error
()
{
static
void
axis_unhomed_error
()
{
...
@@ -1466,6 +1465,12 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1466,6 +1465,12 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
static
void
run_z_probe
()
{
static
void
run_z_probe
()
{
/**
* To prevent stepper_inactive_time from running out and
* EXTRUDER_RUNOUT_PREVENT from extruding
*/
refresh_cmd_timeout
();
plan_bed_level_matrix
.
set_to_identity
();
plan_bed_level_matrix
.
set_to_identity
();
feedrate
=
homing_feedrate
[
Z_AXIS
];
feedrate
=
homing_feedrate
[
Z_AXIS
];
...
@@ -1482,7 +1487,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1482,7 +1487,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
zPosition
+=
home_bump_mm
(
Z_AXIS
);
zPosition
+=
home_bump_mm
(
Z_AXIS
);
line_to_z
(
zPosition
);
line_to_z
(
zPosition
);
st_synchronize
();
st_synchronize
();
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
// move back down slowly to find bed
// move back down slowly to find bed
set_homing_bump_feedrate
(
Z_AXIS
);
set_homing_bump_feedrate
(
Z_AXIS
);
...
@@ -1490,7 +1495,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1490,7 +1495,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
zPosition
-=
home_bump_mm
(
Z_AXIS
)
*
2
;
zPosition
-=
home_bump_mm
(
Z_AXIS
)
*
2
;
line_to_z
(
zPosition
);
line_to_z
(
zPosition
);
st_synchronize
();
st_synchronize
();
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
// Get the current stepper position after bumping an endstop
// Get the current stepper position after bumping an endstop
current_position
[
Z_AXIS
]
=
st_get_axis_position_mm
(
Z_AXIS
);
current_position
[
Z_AXIS
]
=
st_get_axis_position_mm
(
Z_AXIS
);
...
@@ -1504,16 +1509,22 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1504,16 +1509,22 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
if
(
DEBUGGING
(
INFO
))
if
(
DEBUGGING
(
INFO
))
DEBUG_POS
(
"deploy_z_probe"
,
current_position
);
DEBUG_POS
(
"deploy_z_probe"
,
current_position
);
if
(
endstops
.
z_probe_enabled
)
return
;
#if HAS(SERVO_ENDSTOPS)
#if HAS(SERVO_ENDSTOPS)
// Engage Z Servo endstop if enabled
// Engage Z Servo endstop if enabled
if
(
servo_endstop_id
[
Z_AXIS
]
>=
0
)
servo
[
servo_endstop_id
[
Z_AXIS
]].
move
(
servo_endstop_angle
[
Z_AXIS
][
0
]);
if
(
servo_endstop_id
[
Z_AXIS
]
>=
0
)
servo
[
servo_endstop_id
[
Z_AXIS
]].
move
(
servo_endstop_angle
[
Z_AXIS
][
0
]);
#endif
#endif
endstops
.
enable_z_probe
();
}
}
static
void
stow_z_probe
(
bool
doRaise
=
true
)
{
static
void
stow_z_probe
(
bool
doRaise
=
true
)
{
if
(
DEBUGGING
(
INFO
))
if
(
DEBUGGING
(
INFO
))
DEBUG_POS
(
"stow_z_probe"
,
current_position
);
DEBUG_POS
(
"stow_z_probe"
,
current_position
);
if
(
!
endstops
.
z_probe_enabled
)
return
;
#if HAS(SERVO_ENDSTOPS)
#if HAS(SERVO_ENDSTOPS)
// Retract Z Servo endstop if enabled
// Retract Z Servo endstop if enabled
if
(
servo_endstop_id
[
Z_AXIS
]
>=
0
)
{
if
(
servo_endstop_id
[
Z_AXIS
]
>=
0
)
{
...
@@ -1533,6 +1544,8 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1533,6 +1544,8 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
servo
[
servo_endstop_id
[
Z_AXIS
]].
move
(
servo_endstop_angle
[
Z_AXIS
][
1
]);
servo
[
servo_endstop_id
[
Z_AXIS
]].
move
(
servo_endstop_angle
[
Z_AXIS
][
1
]);
}
}
#endif
#endif
endstops
.
enable_z_probe
(
false
);
}
}
enum
ProbeAction
{
enum
ProbeAction
{
...
@@ -1661,14 +1674,14 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1661,14 +1674,14 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
current_position
[
axis
]
=
0
;
current_position
[
axis
]
=
0
;
sync_plan_position
();
sync_plan_position
();
en
able_endstops
(
false
);
// Disable endstops while moving away
en
dstops
.
enable
(
false
);
// Disable endstops while moving away
// Move away from the endstop by the axis HOME_BUMP_MM
// Move away from the endstop by the axis HOME_BUMP_MM
destination
[
axis
]
=
-
home_bump_mm
(
axis
)
*
axis_home_dir
;
destination
[
axis
]
=
-
home_bump_mm
(
axis
)
*
axis_home_dir
;
line_to_destination
();
line_to_destination
();
st_synchronize
();
st_synchronize
();
en
able_endstops
(
true
);
// Enable endstops for next homing move
en
dstops
.
enable
(
);
// Enable endstops for next homing move
// Slow down the feedrate for the next move
// Slow down the feedrate for the next move
set_homing_bump_feedrate
(
axis
);
set_homing_bump_feedrate
(
axis
);
...
@@ -1715,7 +1728,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1715,7 +1728,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
destination
[
axis
]
=
current_position
[
axis
];
destination
[
axis
]
=
current_position
[
axis
];
feedrate
=
0.0
;
feedrate
=
0.0
;
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
axis_known_position
[
axis
]
=
true
;
axis_known_position
[
axis
]
=
true
;
axis_homed
[
axis
]
=
true
;
axis_homed
[
axis
]
=
true
;
...
@@ -1778,14 +1791,14 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1778,14 +1791,14 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
current_position
[
axis
]
=
0
;
current_position
[
axis
]
=
0
;
sync_plan_position
();
sync_plan_position
();
en
able_endstops
(
false
);
// Disable endstops while moving away
en
dstops
.
enable
(
false
);
// Disable endstops while moving away
// Move away from the endstop by the axis HOME_BUMP_MM
// Move away from the endstop by the axis HOME_BUMP_MM
destination
[
axis
]
=
-
home_bump_mm
(
axis
)
*
axis_home_dir
;
destination
[
axis
]
=
-
home_bump_mm
(
axis
)
*
axis_home_dir
;
line_to_destination
();
line_to_destination
();
st_synchronize
();
st_synchronize
();
en
able_endstops
(
true
);
// Enable endstops for next homing move
en
dstops
.
enable
(
);
// Enable endstops for next homing move
// Slow down the feedrate for the next move
// Slow down the feedrate for the next move
set_homing_bump_feedrate
(
axis
);
set_homing_bump_feedrate
(
axis
);
...
@@ -1797,7 +1810,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1797,7 +1810,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
// retrace by the amount specified in endstop_adj
// retrace by the amount specified in endstop_adj
if
(
endstop_adj
[
axis
]
*
axis_home_dir
<
0
)
{
if
(
endstop_adj
[
axis
]
*
axis_home_dir
<
0
)
{
en
able_endstops
(
false
);
// Disable Endstops while moving away
en
dstops
.
enable
(
false
);
// Disable Endstops while moving away
sync_plan_position
();
sync_plan_position
();
destination
[
axis
]
=
endstop_adj
[
axis
];
destination
[
axis
]
=
endstop_adj
[
axis
];
if
(
DEBUGGING
(
INFO
))
{
if
(
DEBUGGING
(
INFO
))
{
...
@@ -1806,7 +1819,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1806,7 +1819,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
}
}
line_to_destination
();
line_to_destination
();
st_synchronize
();
st_synchronize
();
en
able_endstops
(
true
);
// Enable Endstops for next homing move
en
dstops
.
enable
(
);
// Enable Endstops for next homing move
}
}
if
(
DEBUGGING
(
INFO
))
ECHO_LMV
(
INFO
,
" > endstop_adj * axis_home_dir = "
,
endstop_adj
[
axis
]
*
axis_home_dir
);
if
(
DEBUGGING
(
INFO
))
ECHO_LMV
(
INFO
,
" > endstop_adj * axis_home_dir = "
,
endstop_adj
[
axis
]
*
axis_home_dir
);
...
@@ -1820,7 +1833,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1820,7 +1833,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
destination
[
axis
]
=
current_position
[
axis
];
destination
[
axis
]
=
current_position
[
axis
];
feedrate
=
0.0
;
feedrate
=
0.0
;
endstops
_
hit_on_purpose
();
// clear Endstop hit flags
endstops
.
hit_on_purpose
();
// clear Endstop hit flags
axis_known_position
[
axis
]
=
true
;
axis_known_position
[
axis
]
=
true
;
axis_homed
[
axis
]
=
true
;
axis_homed
[
axis
]
=
true
;
}
}
...
@@ -1905,6 +1918,9 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1905,6 +1918,9 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
}
}
static
void
deploy_z_probe
()
{
static
void
deploy_z_probe
()
{
if
(
endstops
.
z_probe_enabled
)
return
;
#if HAS(SERVO_ENDSTOPS)
#if HAS(SERVO_ENDSTOPS)
feedrate
=
homing_feedrate
[
Z_AXIS
];
feedrate
=
homing_feedrate
[
Z_AXIS
];
do_blocking_move_to_z
(
z_probe_deploy_start_location
[
Z_AXIS
]);
do_blocking_move_to_z
(
z_probe_deploy_start_location
[
Z_AXIS
]);
...
@@ -1932,19 +1948,23 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1932,19 +1948,23 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
z_probe_deploy_start_location
[
Z_AXIS
]);
z_probe_deploy_start_location
[
Z_AXIS
]);
#endif
#endif
endstops
.
enable_z_probe
();
sync_plan_position_delta
();
sync_plan_position_delta
();
}
}
static
void
retract_z_probe
()
{
static
void
retract_z_probe
()
{
if
(
!
endstops
.
z_probe_enabled
)
return
;
#if HAS(SERVO_ENDSTOPS)
#if HAS(SERVO_ENDSTOPS)
// Retract Z Servo endstop if enabled
if
(
servo_endstop_id
[
Z_AXIS
]
>=
0
)
servo
[
servo_endstop_id
[
Z_AXIS
]].
move
(
servo_endstop_angle
[
Z_AXIS
][
1
]);
feedrate
=
homing_feedrate
[
Z_AXIS
];
feedrate
=
homing_feedrate
[
Z_AXIS
];
do_blocking_move_to
(
z_probe_retract_start_location
[
X_AXIS
],
do_blocking_move_to
(
z_probe_retract_start_location
[
X_AXIS
],
z_probe_retract_start_location
[
Y_AXIS
],
z_probe_retract_start_location
[
Y_AXIS
],
z_probe_retract_start_location
[
Z_AXIS
]);
z_probe_retract_start_location
[
Z_AXIS
]);
// Retract Z Servo endstop if enabled
if
(
servo_endstop_id
[
Z_AXIS
]
>=
0
)
servo
[
servo_endstop_id
[
Z_AXIS
]].
move
(
servo_endstop_angle
[
Z_AXIS
][
1
]);
#else
#else
feedrate
=
homing_feedrate
[
Z_AXIS
];
feedrate
=
homing_feedrate
[
Z_AXIS
];
do_blocking_move_to
(
z_probe_retract_start_location
[
X_AXIS
],
do_blocking_move_to
(
z_probe_retract_start_location
[
X_AXIS
],
...
@@ -1963,13 +1983,14 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1963,13 +1983,14 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
z_probe_retract_start_location
[
Z_AXIS
]);
z_probe_retract_start_location
[
Z_AXIS
]);
#endif
#endif
endstops
.
enable_z_probe
(
false
);
sync_plan_position_delta
();
sync_plan_position_delta
();
}
}
static
void
run_z_probe
()
{
static
void
run_z_probe
()
{
refresh_cmd_timeout
();
refresh_cmd_timeout
();
en
able_endstops
(
true
);
en
dstops
.
enable
(
);
float
start_z
=
current_position
[
Z_AXIS
];
float
start_z
=
current_position
[
Z_AXIS
];
long
start_steps
=
st_get_position
(
Z_AXIS
);
long
start_steps
=
st_get_position
(
Z_AXIS
);
...
@@ -1977,9 +1998,9 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -1977,9 +1998,9 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
destination
[
Z_AXIS
]
=
-
20
;
destination
[
Z_AXIS
]
=
-
20
;
prepare_move_raw
();
prepare_move_raw
();
st_synchronize
();
st_synchronize
();
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
en
able_endstops
(
false
);
en
dstops
.
enable
(
false
);
long
stop_steps
=
st_get_position
(
Z_AXIS
);
long
stop_steps
=
st_get_position
(
Z_AXIS
);
float
mm
=
start_z
-
float
(
start_steps
-
stop_steps
)
/
axis_steps_per_unit
[
Z_AXIS
];
float
mm
=
start_z
-
float
(
start_steps
-
stop_steps
)
/
axis_steps_per_unit
[
Z_AXIS
];
current_position
[
Z_AXIS
]
=
mm
;
current_position
[
Z_AXIS
]
=
mm
;
...
@@ -2606,7 +2627,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -2606,7 +2627,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
feedrate_multiplier
=
100
;
feedrate_multiplier
=
100
;
refresh_cmd_timeout
();
refresh_cmd_timeout
();
en
able_endstops
(
true
);
en
dstops
.
enable
(
);
set_destination_to_current
();
set_destination_to_current
();
...
@@ -2621,7 +2642,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -2621,7 +2642,7 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
feedrate
=
1.732
*
homing_feedrate
[
X_AXIS
];
feedrate
=
1.732
*
homing_feedrate
[
X_AXIS
];
line_to_destination
();
line_to_destination
();
st_synchronize
();
st_synchronize
();
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
// Destination reached
// Destination reached
set_current_to_destination
();
set_current_to_destination
();
...
@@ -2634,13 +2655,13 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -2634,13 +2655,13 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
sync_plan_position_delta
();
sync_plan_position_delta
();
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
en
able_endstops
(
false
);
en
dstops
.
enable
(
false
);
#endif
#endif
feedrate
=
saved_feedrate
;
feedrate
=
saved_feedrate
;
feedrate_multiplier
=
saved_feedrate_multiplier
;
feedrate_multiplier
=
saved_feedrate_multiplier
;
refresh_cmd_timeout
();
refresh_cmd_timeout
();
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
}
}
static
void
prepare_move_raw
()
{
static
void
prepare_move_raw
()
{
...
@@ -2779,12 +2800,12 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -2779,12 +2800,12 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
if
(
retracting
)
{
if
(
retracting
)
{
feedrate
=
retract_feedrate
*
60
;
feedrate
=
retract_feedrate
*
60
;
current_position
[
E_AXIS
]
+=
(
swapping
?
retract_length_swap
:
retract_length
)
/
volumetric_multiplier
[
active_extruder
];
current_position
[
E_AXIS
]
+=
(
swapping
?
retract_length_swap
:
retract_length
)
/
volumetric_multiplier
[
active_extruder
];
plan_set_e_position
(
current_position
[
E_AXIS
]
);
sync_plan_position_e
(
);
prepare_move
();
prepare_move
();
if
(
retract_zlift
>
0.01
)
{
if
(
retract_zlift
>
0.01
)
{
current_position
[
Z_AXIS
]
-=
retract_zlift
;
current_position
[
Z_AXIS
]
-=
retract_zlift
;
#if MECH(DELTA)
|| MECH(SCARA)
#if MECH(DELTA)
sync_plan_position_delta
();
sync_plan_position_delta
();
#else
#else
sync_plan_position
();
sync_plan_position
();
...
@@ -2795,12 +2816,11 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -2795,12 +2816,11 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
else
{
else
{
if
(
retract_zlift
>
0.01
)
{
if
(
retract_zlift
>
0.01
)
{
current_position
[
Z_AXIS
]
+=
retract_zlift
;
current_position
[
Z_AXIS
]
+=
retract_zlift
;
#if MECH(DELTA)
|| MECH(SCARA)
#if MECH(DELTA)
sync_plan_position_delta
();
sync_plan_position_delta
();
#else
#else
sync_plan_position
();
sync_plan_position
();
#endif
#endif
//prepare_move();
}
}
feedrate
=
retract_recover_feedrate
*
60
;
feedrate
=
retract_recover_feedrate
*
60
;
...
@@ -2813,8 +2833,8 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -2813,8 +2833,8 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
feedrate
=
oldFeedrate
;
feedrate
=
oldFeedrate
;
retracted
[
active_extruder
]
=
retracting
;
retracted
[
active_extruder
]
=
retracting
;
}
// retract()
}
#endif //FWRETRACT
#endif //
FWRETRACT
#if HAS(Z_PROBE_SLED)
#if HAS(Z_PROBE_SLED)
...
@@ -2912,18 +2932,10 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
...
@@ -2912,18 +2932,10 @@ inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_positio
}
}
#endif
#endif
inline
void
wait_heater
()
{
inline
void
wait_heater
(
bool
no_wait_for_cooling
=
true
)
{
bool
wants_to_cool
=
isCoolingHotend
(
target_extruder
);
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if
(
no_wait_for_cooling
&&
wants_to_cool
)
return
;
// Prevents a wait-forever situation if R is misused i.e. M109 R0
// Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
if
(
wants_to_cool
&&
degTargetHotend
(
target_extruder
)
<
(
EXTRUDE_MINTEMP
)
/
2
)
return
;
#if ENABLED(TEMP_RESIDENCY_TIME)
#if ENABLED(TEMP_RESIDENCY_TIME)
long
residency_start_ms
=
-
1
;
millis_t
residency_start_ms
=
-
1
;
// Loop until the temperature has stabilized
// Loop until the temperature has stabilized
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
#else
#else
...
@@ -2931,13 +2943,18 @@ inline void wait_heater() {
...
@@ -2931,13 +2943,18 @@ inline void wait_heater() {
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
#endif // TEMP_RESIDENCY_TIME
#endif // TEMP_RESIDENCY_TIME
float
theTarget
=
-
1
;
bool
wants_to_cool
;
cancel_heatup
=
false
;
cancel_heatup
=
false
;
millis_t
now
,
next_temp_ms
=
0
;
millis_t
now
,
next_temp_ms
=
0
;
KEEPALIVE_STATE
(
NOT_BUSY
);
do
{
do
{
now
=
millis
();
now
=
millis
();
if
(
ELAPSED
(
now
,
next_temp_ms
))
{
//Print temp & remaining time every 1s while waiting
if
(
ELAPSED
(
now
,
next_temp_ms
))
{
//Print temp & remaining time every 1s while waiting
next_temp_ms
=
now
+
1000UL
;
next_temp_ms
=
now
+
1000UL
;
#if HAS(TEMP_
0) || HAS(TEMP_BED) || ENABLED(HEATER_0_USES_MAX6675
)
#if HAS(TEMP_
HOTEND) || HAS(TEMP_BED
)
print_heaterstates
();
print_heaterstates
();
#endif
#endif
#if TEMP_RESIDENCY_TIME > 0
#if TEMP_RESIDENCY_TIME > 0
...
@@ -2954,11 +2971,24 @@ inline void wait_heater() {
...
@@ -2954,11 +2971,24 @@ inline void wait_heater() {
#endif
#endif
}
}
// Target temperature might be changed during the loop
if
(
theTarget
!=
degTargetHotend
(
target_extruder
))
{
wants_to_cool
=
isCoolingHotend
(
target_extruder
);
theTarget
=
degTargetHotend
(
target_extruder
);
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if
(
no_wait_for_cooling
&&
wants_to_cool
)
break
;
// Prevent a wait-forever situation if R is misused i.e. M109 R0
// Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
if
(
wants_to_cool
&&
theTarget
<
(
EXTRUDE_MINTEMP
)
/
2
)
break
;
}
idle
();
idle
();
refresh_cmd_timeout
();
// to prevent stepper_inactive_time from running out
refresh_cmd_timeout
();
// to prevent stepper_inactive_time from running out
#if TEMP_RESIDENCY_TIME > 0
#if TEMP_RESIDENCY_TIME > 0
float
temp_diff
=
fabs
(
degTargetHotend
(
target_extruder
)
-
degHotend
(
target_extruder
));
float
temp_diff
=
fabs
(
theTarget
-
degHotend
(
target_extruder
));
if
(
!
residency_start_ms
)
{
if
(
!
residency_start_ms
)
{
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
...
@@ -2973,13 +3003,10 @@ inline void wait_heater() {
...
@@ -2973,13 +3003,10 @@ inline void wait_heater() {
}
while
(
!
cancel_heatup
&&
TEMP_CONDITIONS
);
}
while
(
!
cancel_heatup
&&
TEMP_CONDITIONS
);
LCD_MESSAGEPGM
(
MSG_HEATING_COMPLETE
);
LCD_MESSAGEPGM
(
MSG_HEATING_COMPLETE
);
KEEPALIVE_STATE
(
IN_HANDLER
);
}
}
inline
void
wait_bed
()
{
inline
void
wait_bed
(
bool
no_wait_for_cooling
=
true
)
{
bool
wants_to_cool
=
isCoolingBed
();
// Exit if the temperature is above target and not waiting for cooling
if
(
no_wait_for_cooling
&&
wants_to_cool
)
return
;
#if TEMP_BED_RESIDENCY_TIME > 0
#if TEMP_BED_RESIDENCY_TIME > 0
millis_t
residency_start_ms
=
0
;
millis_t
residency_start_ms
=
0
;
...
@@ -2990,9 +3017,13 @@ inline void wait_bed() {
...
@@ -2990,9 +3017,13 @@ inline void wait_bed() {
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
#endif // TEMP_BED_RESIDENCY_TIME > 0
#endif // TEMP_BED_RESIDENCY_TIME > 0
float
theTarget
=
-
1
;
bool
wants_to_cool
;
cancel_heatup
=
false
;
cancel_heatup
=
false
;
millis_t
now
,
next_temp_ms
=
0
;
millis_t
now
,
next_temp_ms
=
0
;
KEEPALIVE_STATE
(
NOT_BUSY
);
// Wait for temperature to come close enough
// Wait for temperature to come close enough
do
{
do
{
now
=
millis
();
now
=
millis
();
...
@@ -3013,11 +3044,24 @@ inline void wait_bed() {
...
@@ -3013,11 +3044,24 @@ inline void wait_bed() {
#endif
#endif
}
}
// Target temperature might be changed during the loop
if
(
theTarget
!=
degTargetBed
())
{
wants_to_cool
=
isCoolingBed
();
theTarget
=
degTargetBed
();
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if
(
no_wait_for_cooling
&&
wants_to_cool
)
break
;
// Prevent a wait-forever situation if R is misused i.e. M190 R0
// Simply don't wait to cool a bed under 30C
if
(
wants_to_cool
&&
theTarget
<
30
)
break
;
}
idle
();
idle
();
refresh_cmd_timeout
();
// to prevent stepper_inactive_time from running out
refresh_cmd_timeout
();
// to prevent stepper_inactive_time from running out
#if TEMP_BED_RESIDENCY_TIME > 0
#if TEMP_BED_RESIDENCY_TIME > 0
float
temp_diff
=
fabs
(
degBed
()
-
degTargetBed
());
float
temp_diff
=
fabs
(
theTarget
-
degTargetBed
());
if
(
!
residency_start_ms
)
{
if
(
!
residency_start_ms
)
{
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
...
@@ -3031,6 +3075,7 @@ inline void wait_bed() {
...
@@ -3031,6 +3075,7 @@ inline void wait_bed() {
}
while
(
!
cancel_heatup
&&
TEMP_BED_CONDITIONS
);
}
while
(
!
cancel_heatup
&&
TEMP_BED_CONDITIONS
);
LCD_MESSAGEPGM
(
MSG_BED_DONE
);
LCD_MESSAGEPGM
(
MSG_BED_DONE
);
KEEPALIVE_STATE
(
IN_HANDLER
);
}
}
...
@@ -3297,7 +3342,7 @@ inline void gcode_G28() {
...
@@ -3297,7 +3342,7 @@ inline void gcode_G28() {
feedrate
=
1.732
*
homing_feedrate
[
X_AXIS
];
feedrate
=
1.732
*
homing_feedrate
[
X_AXIS
];
line_to_destination
();
line_to_destination
();
st_synchronize
();
st_synchronize
();
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
// Destination reached
// Destination reached
for
(
int
i
=
X_AXIS
;
i
<=
Z_AXIS
;
i
++
)
current_position
[
i
]
=
destination
[
i
];
for
(
int
i
=
X_AXIS
;
i
<=
Z_AXIS
;
i
++
)
current_position
[
i
]
=
destination
[
i
];
...
@@ -3376,7 +3421,7 @@ inline void gcode_G28() {
...
@@ -3376,7 +3421,7 @@ inline void gcode_G28() {
line_to_destination
();
line_to_destination
();
feedrate
=
0.0
;
feedrate
=
0.0
;
st_synchronize
();
st_synchronize
();
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
current_position
[
X_AXIS
]
=
destination
[
X_AXIS
];
current_position
[
X_AXIS
]
=
destination
[
X_AXIS
];
current_position
[
Y_AXIS
]
=
destination
[
Y_AXIS
];
current_position
[
Y_AXIS
]
=
destination
[
Y_AXIS
];
...
@@ -3445,7 +3490,7 @@ inline void gcode_G28() {
...
@@ -3445,7 +3490,7 @@ inline void gcode_G28() {
feedrate_multiplier
=
100
;
feedrate_multiplier
=
100
;
refresh_cmd_timeout
();
refresh_cmd_timeout
();
en
able_endstops
(
true
);
en
dstops
.
enable
(
);
for
(
uint8_t
i
=
0
;
i
<
NUM_AXIS
;
i
++
)
{
for
(
uint8_t
i
=
0
;
i
<
NUM_AXIS
;
i
++
)
{
destination
[
i
]
=
current_position
[
i
];
destination
[
i
]
=
current_position
[
i
];
}
}
...
@@ -3461,13 +3506,13 @@ inline void gcode_G28() {
...
@@ -3461,13 +3506,13 @@ inline void gcode_G28() {
sync_plan_position
();
sync_plan_position
();
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
en
able_endstops
(
false
);
en
dstops
.
enable
(
false
);
#endif
#endif
feedrate
=
saved_feedrate
;
feedrate
=
saved_feedrate
;
feedrate_multiplier
=
saved_feedrate_multiplier
;
feedrate_multiplier
=
saved_feedrate_multiplier
;
refresh_cmd_timeout
();
refresh_cmd_timeout
();
endstops
_
hit_on_purpose
();
// clear endstop hit flags
endstops
.
hit_on_purpose
();
// clear endstop hit flags
sync_plan_position
();
sync_plan_position
();
...
@@ -5435,9 +5480,7 @@ inline void gcode_M109() {
...
@@ -5435,9 +5480,7 @@ inline void gcode_M109() {
if
(
target_extruder
!=
active_extruder
)
return
;
if
(
target_extruder
!=
active_extruder
)
return
;
#endif
#endif
LCD_MESSAGEPGM
(
MSG_HEATING
);
bool
no_wait_for_cooling
=
code_seen
(
'S'
);
no_wait_for_cooling
=
code_seen
(
'S'
);
if
(
no_wait_for_cooling
||
code_seen
(
'R'
))
{
if
(
no_wait_for_cooling
||
code_seen
(
'R'
))
{
float
temp
=
code_value
();
float
temp
=
code_value
();
setTargetHotend
(
temp
,
target_extruder
);
setTargetHotend
(
temp
,
target_extruder
);
...
@@ -5451,7 +5494,7 @@ inline void gcode_M109() {
...
@@ -5451,7 +5494,7 @@ inline void gcode_M109() {
* stand by mode, for instance in a dual extruder setup, without affecting
* stand by mode, for instance in a dual extruder setup, without affecting
* the running print timer.
* the running print timer.
*/
*/
if
(
temp
<=
(
EXTRUDE_MINTEMP
)
/
2
)
{
if
(
temp
<=
(
EXTRUDE_MINTEMP
)
/
2
)
{
print_job_timer
.
stop
();
print_job_timer
.
stop
();
LCD_MESSAGEPGM
(
WELCOME_MSG
);
LCD_MESSAGEPGM
(
WELCOME_MSG
);
}
}
...
@@ -5472,7 +5515,7 @@ inline void gcode_M109() {
...
@@ -5472,7 +5515,7 @@ inline void gcode_M109() {
if
(
code_seen
(
'B'
))
autotemp_max
=
code_value
();
if
(
code_seen
(
'B'
))
autotemp_max
=
code_value
();
#endif
#endif
wait_heater
();
wait_heater
(
no_wait_for_cooling
);
}
}
/**
/**
...
@@ -5550,50 +5593,17 @@ inline void gcode_M115() {
...
@@ -5550,50 +5593,17 @@ inline void gcode_M115() {
/**
/**
* M119: Output endstop states to serial output
* M119: Output endstop states to serial output
*/
*/
inline
void
gcode_M119
()
{
inline
void
gcode_M119
()
{
endstops
.
M119
();
}
ECHO_LM
(
DB
,
SERIAL_M119_REPORT
);
#if HAS(X_MIN)
ECHO_EMT
(
SERIAL_X_MIN
,
((
READ
(
X_MIN_PIN
)
^
X_MIN_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(X_MAX)
ECHO_EMT
(
SERIAL_X_MAX
,
((
READ
(
X_MAX_PIN
)
^
X_MAX_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Y_MIN)
ECHO_EMT
(
SERIAL_Y_MIN
,
((
READ
(
Y_MIN_PIN
)
^
Y_MIN_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Y_MAX)
ECHO_EMT
(
SERIAL_Y_MAX
,
((
READ
(
Y_MAX_PIN
)
^
Y_MAX_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Z_MIN)
ECHO_EMT
(
SERIAL_Z_MIN
,
((
READ
(
Z_MIN_PIN
)
^
Z_MIN_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Z_MAX)
ECHO_EMT
(
SERIAL_Z_MAX
,
((
READ
(
Z_MAX_PIN
)
^
Z_MAX_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Z2_MAX)
ECHO_EMT
(
SERIAL_Z2_MAX
,
((
READ
(
Z2_MAX_PIN
)
^
Z2_MAX_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Z_PROBE)
ECHO_EMT
(
SERIAL_Z_PROBE
,
((
READ
(
Z_PROBE_PIN
)
^
Z_PROBE_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(E_MIN)
ECHO_EMT
(
SERIAL_E_MIN
,
((
READ
(
E_MIN_PIN
)
^
E_MIN_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(FILRUNOUT)
ECHO_EMT
(
SERIAL_FILRUNOUT_PIN
,
((
READ
(
FILRUNOUT_PIN
)
^
FILRUNOUT_PIN_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
ECHO_E
;
}
/**
/**
* M120: Enable endstops
* M120: Enable endstops
and set non-homing endstop state to "enabled"
*/
*/
inline
void
gcode_M120
()
{
en
able_endstops
(
true
);
}
inline
void
gcode_M120
()
{
en
dstops
.
enable_globally
(
true
);
}
/**
/**
* M121: Disable endstops
* M121: Disable endstops
and set non-homing endstop state to "disabled"
*/
*/
inline
void
gcode_M121
()
{
en
able_endstops
(
false
);
}
inline
void
gcode_M121
()
{
en
dstops
.
enable_globally
(
false
);
}
/**
/**
* M122: Disable or enable software endstops
* M122: Disable or enable software endstops
...
@@ -5792,10 +5802,10 @@ inline void gcode_M140() {
...
@@ -5792,10 +5802,10 @@ inline void gcode_M140() {
if
(
DEBUGGING
(
DRYRUN
))
return
;
if
(
DEBUGGING
(
DRYRUN
))
return
;
LCD_MESSAGEPGM
(
MSG_BED_HEATING
);
LCD_MESSAGEPGM
(
MSG_BED_HEATING
);
no_wait_for_cooling
=
code_seen
(
'S'
);
bool
no_wait_for_cooling
=
code_seen
(
'S'
);
if
(
no_wait_for_cooling
||
code_seen
(
'R'
))
setTargetBed
(
code_value
());
if
(
no_wait_for_cooling
||
code_seen
(
'R'
))
setTargetBed
(
code_value
());
wait_bed
();
wait_bed
(
no_wait_for_cooling
);
}
}
#endif // HAS(TEMP_BED)
#endif // HAS(TEMP_BED)
...
@@ -7329,6 +7339,7 @@ inline void gcode_M999() {
...
@@ -7329,6 +7339,7 @@ inline void gcode_M999() {
*/
*/
inline
void
gcode_T
(
uint8_t
tmp_extruder
)
{
inline
void
gcode_T
(
uint8_t
tmp_extruder
)
{
bool
good_extruder
=
false
;
bool
good_extruder
=
false
;
float
stored_feedrate
=
feedrate
;
#if ENABLED(COLOR_MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
#if ENABLED(COLOR_MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
...
@@ -7347,21 +7358,18 @@ inline void gcode_T(uint8_t tmp_extruder) {
...
@@ -7347,21 +7358,18 @@ inline void gcode_T(uint8_t tmp_extruder) {
good_extruder
=
true
;
good_extruder
=
true
;
target_extruder
=
tmp_extruder
;
target_extruder
=
tmp_extruder
;
#if ENABLED(DONDOLO)
bool
make_move
=
true
;
#else
bool
make_move
=
false
;
#endif
if
(
code_seen
(
'F'
))
{
if
(
code_seen
(
'F'
))
{
#if EXTRUDERS > 1
make_move
=
true
;
#endif
float
next_feedrate
=
code_value
();
float
next_feedrate
=
code_value
();
if
(
next_feedrate
>
0.0
)
feedrate
=
next_feedrate
;
if
(
next_feedrate
>
0.0
)
stored_feedrate
=
feedrate
=
next_feedrate
;
}
else
{
#if ENABLED(XY_TRAVEL_SPEED)
feedrate
=
XY_TRAVEL_SPEED
;
#else
feedrate
=
min
(
max_feedrate
[
X_AXIS
],
max_feedrate
[
Y_AXIS
]);
#endif
}
}
#if EXTRUDERS > 1
#if EXTRUDERS > 1
#if ENABLED(NPR2)
#if ENABLED(NPR2)
if
(
target_extruder
!=
old_color
)
if
(
target_extruder
!=
old_color
)
...
@@ -7603,7 +7611,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
...
@@ -7603,7 +7611,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
sync_plan_position
();
sync_plan_position
();
#endif // !DELTA
#endif // !DELTA
// Move to the old position if 'F' was in the parameters
// Move to the old position if 'F' was in the parameters
if
(
make_move
&&
IsRunning
())
prepare_move
();
if
(
IsRunning
())
prepare_move
();
}
}
#if ENABLED(EXT_SOLENOID)
#if ENABLED(EXT_SOLENOID)
...
@@ -7616,6 +7624,8 @@ inline void gcode_T(uint8_t tmp_extruder) {
...
@@ -7616,6 +7624,8 @@ inline void gcode_T(uint8_t tmp_extruder) {
}
}
#endif // !COLOR_MIXING_EXTRUDER
#endif // !COLOR_MIXING_EXTRUDER
feedrate
=
stored_feedrate
;
if
(
!
good_extruder
)
{
if
(
!
good_extruder
)
{
ECHO_SMV
(
DB
,
"T"
,
(
int
)
tmp_extruder
);
ECHO_SMV
(
DB
,
"T"
,
(
int
)
tmp_extruder
);
ECHO_EM
(
" "
SERIAL_INVALID_EXTRUDER
);
ECHO_EM
(
" "
SERIAL_INVALID_EXTRUDER
);
...
@@ -8314,12 +8324,8 @@ static void report_current_position() {
...
@@ -8314,12 +8324,8 @@ static void report_current_position() {
adjust_delta
(
target
);
adjust_delta
(
target
);
if
(
DEBUGGING
(
DEBUG
))
{
if
(
DEBUGGING
(
DEBUG
))
{
ECHO_LMV
(
DEB
,
"target[X_AXIS]="
,
target
[
X_AXIS
]);
DEBUG_POS
(
"prepare_move_delta"
,
target
);
ECHO_LMV
(
DEB
,
"target[Y_AXIS]="
,
target
[
Y_AXIS
]);
DEBUG_POS
(
"prepare_move_delta"
,
delta
);
ECHO_LMV
(
DEB
,
"target[Z_AXIS]="
,
target
[
Z_AXIS
]);
ECHO_LMV
(
DEB
,
"delta[TOWER_1]="
,
delta
[
TOWER_1
]);
ECHO_LMV
(
DEB
,
"delta[TOWER_2]="
,
delta
[
TOWER_2
]);
ECHO_LMV
(
DEB
,
"delta[TOWER_3]="
,
delta
[
TOWER_3
]);
}
}
plan_buffer_line
(
delta
[
TOWER_1
],
delta
[
TOWER_2
],
delta
[
TOWER_3
],
target
[
E_AXIS
],
frfm
,
active_extruder
,
active_driver
);
plan_buffer_line
(
delta
[
TOWER_1
],
delta
[
TOWER_2
],
delta
[
TOWER_3
],
target
[
E_AXIS
],
frfm
,
active_extruder
,
active_driver
);
...
@@ -8404,13 +8410,10 @@ void prepare_move() {
...
@@ -8404,13 +8410,10 @@ void prepare_move() {
if
(
!
prepare_move_scara
(
destination
))
return
;
if
(
!
prepare_move_scara
(
destination
))
return
;
#elif MECH(DELTA)
#elif MECH(DELTA)
if
(
!
prepare_move_delta
(
destination
))
return
;
if
(
!
prepare_move_delta
(
destination
))
return
;
#endif
#else
#if ENABLED(DUAL_X_CARRIAGE)
#if ENABLED(DUAL_X_CARRIAGE)
if
(
!
prepare_move_dual_x_carriage
())
return
;
if
(
!
prepare_move_dual_x_carriage
())
return
;
#endif
#endif
#if MECH(CARTESIAN) || MECH(COREXY) || MECH(COREYX) || MECH(COREXZ) || MECH(COREZX)
if
(
!
prepare_move_cartesian
())
return
;
if
(
!
prepare_move_cartesian
())
return
;
#endif
#endif
...
...
MK/module/conditionals.h
View file @
2ddac526
...
@@ -368,6 +368,17 @@
...
@@ -368,6 +368,17 @@
#define Y_MAX_LENGTH (Y_MAX_POS - (Y_MIN_POS))
#define Y_MAX_LENGTH (Y_MAX_POS - (Y_MIN_POS))
#define Z_MAX_LENGTH (Z_MAX_POS - (Z_MIN_POS))
#define Z_MAX_LENGTH (Z_MAX_POS - (Z_MIN_POS))
/**
* CoreXY or CoreYX or CoreXZ or CoreZX
*/
#if MECH(COREXY) || MECH(COREYX)
#define CORE_AXIS_2 B_AXIS
#define CORE_AXIS_3 Z_AXIS
#elif MECH(COREXZ) || MECH(COREZX)
#define CORE_AXIS_2 C_AXIS
#define CORE_AXIS_3 Y_AXIS
#endif
/**
/**
* SCARA
* SCARA
*/
*/
...
@@ -740,6 +751,10 @@
...
@@ -740,6 +751,10 @@
#define HAS_DIGIPOTSS (PIN_EXISTS(DIGIPOTSS))
#define HAS_DIGIPOTSS (PIN_EXISTS(DIGIPOTSS))
#define HAS_TEMP_HOTEND (HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675))
#define HAS_THERMALLY_PROTECTED_BED (HAS_TEMP_BED && HAS_HEATER_BED && ENABLED(THERMAL_PROTECTION_BED))
/**
/**
* Shorthand for filament sensor and power sensor for ultralcd.cpp, dogm_lcd_implementation.h, ultralcd_implementation_hitachi_HD44780.h
* Shorthand for filament sensor and power sensor for ultralcd.cpp, dogm_lcd_implementation.h, ultralcd_implementation_hitachi_HD44780.h
*/
*/
...
...
MK/module/language/language.h
View file @
2ddac526
...
@@ -23,32 +23,9 @@
...
@@ -23,32 +23,9 @@
#ifndef LANGUAGE_H
#ifndef LANGUAGE_H
#define LANGUAGE_H
#define LANGUAGE_H
// NOTE: IF YOU CHANGE LANGUAGE FILES OR MERGE A FILE WITH CHANGES
#ifndef LCD_LANGUAGE
//
#define LCD_LANGUAGE en
// ==> ALWAYS TRY TO COMPILE MARLIN WITH/WITHOUT "ULTIPANEL" / "ULTRALCD" / "SDSUPPORT" #define IN "Configuration_Basic.h"
#endif
// ==> ALSO TRY ALL AVAILABLE "LANGUAGE_CHOICE" OPTIONS
// See also documentation/LCDLanguageFont.md
// Languages
// 1 English // Language base
// 2 Polish
// 3 French
// 4 German
// 5 Spanish
// 6 Russian
// 7 Italian
// 8 Portuguese
// 9 Finnish
// 10 Aragonese
// 11 Dutch
// 12 Danish
// 13 Catalan
// 14 Basque-Euskera
// 15 Portuguese (Brazil)
// 16 Bulgarian
// 17 Japanese
// 18 Japanese utf
// 19 Chinese
#define PROTOCOL_VERSION "2.0"
#define PROTOCOL_VERSION "2.0"
...
@@ -251,45 +228,13 @@
...
@@ -251,45 +228,13 @@
#define SERIAL_BED_LEVELLING_Y " Y: "
#define SERIAL_BED_LEVELLING_Y " Y: "
#define SERIAL_BED_LEVELLING_Z " Z: "
#define SERIAL_BED_LEVELLING_Z " Z: "
#if LANGUAGE_CHOICE == 1 // English
// LCD Menu Messages
#include "language_en.h"
#elif LANGUAGE_CHOICE == 2 // Polish
#define LANGUAGE_INCL_(M) STRINGIFY_(language_##M.h)
#include "language_pl.h"
#define LANGUAGE_INCL(M) LANGUAGE_INCL_(M)
#elif LANGUAGE_CHOICE == 3 // French
#define INCLUDE_LANGUAGE LANGUAGE_INCL(LCD_LANGUAGE)
#include "language_fr.h"
#elif LANGUAGE_CHOICE == 4 // German
#include "language_en.h"
#include "language_de.h"
#include INCLUDE_LANGUAGE
#elif LANGUAGE_CHOICE == 5 // Spanish
#include "language_es.h"
#elif LANGUAGE_CHOICE == 6 // Russian
#define MAPPER_D0D1 // For Cyrillic
#include "language_ru.h"
#elif LANGUAGE_CHOICE == 7 // Italian
#include "language_it.h"
#elif LANGUAGE_CHOICE == 8 // Portuguese
#include "language_pt.h"
#elif LANGUAGE_CHOICE == 9 // Finnish
#include "language_fi.h"
#elif LANGUAGE_CHOICE == 10 // Aragonese
#include "language_an.h"
#elif LANGUAGE_CHOICE == 11 // Dutch
#include "language_nl.h"
#elif LANGUAGE_CHOICE == 12 // Danish
#include "language_da.h"
#elif LANGUAGE_CHOICE == 13 // Catalan
#include "language_ca.h"
#elif LANGUAGE_CHOICE == 14 // Basque-Euskera
#include "language_eu.h"
#elif LANGUAGE_CHOICE == 15 // Portuguese - Brasil
#include "language_pt-br.h"
#elif LANGUAGE_CHOICE == 16 // Bulgarian
#include "language_bg.h"
#elif LANGUAGE_CHOICE == 17 // Japanese
#include "language_kana.h"
#elif LANGUAGE_CHOICE == 18 // Japanese utf
#include "language_kana_utf8.h"
#elif LANGUAGE_CHOICE == 19 // Chinese
#include "language_cn.h"
#endif
#endif //__LANGUAGE_H
#endif //__LANGUAGE_H
MK/module/lcd/ultralcd.h
View file @
2ddac526
...
@@ -195,8 +195,8 @@
...
@@ -195,8 +195,8 @@
FORCE_INLINE
void
lcd_reset_alert_level
()
{}
FORCE_INLINE
void
lcd_reset_alert_level
()
{}
FORCE_INLINE
bool
lcd_detected
(
void
)
{
return
true
;
}
FORCE_INLINE
bool
lcd_detected
(
void
)
{
return
true
;
}
#define LCD_MESSAGEPGM(x)
do{}while(0)
#define LCD_MESSAGEPGM(x)
NOOP
#define LCD_ALERTMESSAGEPGM(x)
do{}while(0)
#define LCD_ALERTMESSAGEPGM(x)
NOOP
#endif //ULTRA_LCD
#endif //ULTRA_LCD
...
...
MK/module/macros.h
View file @
2ddac526
...
@@ -76,4 +76,6 @@
...
@@ -76,4 +76,6 @@
#define NOOP do{}while(0)
#define NOOP do{}while(0)
#define _AXIS(AXIS) AXIS ##_AXIS
#endif //__MACROS_H
#endif //__MACROS_H
MK/module/motion/endstops.cpp
0 → 100644
View file @
2ddac526
/**
* MK & MK4due 3D Printer Firmware
*
* Based on Marlin, Sprinter and grbl
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
* Copyright (C) 2013 - 2016 Alberto Cotronei @MagoKimbra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* endstops.cpp - A singleton object to manage endstops
*/
#include "../../base.h"
#include "endstops.h"
// TEST_ENDSTOP: test the old and the current status of an endstop
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
Endstops
endstops
;
Endstops
::
Endstops
()
{
enable_globally
(
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
true
#else
false
#endif
);
enable
(
true
);
#if ENABLED(HAS_Z_PROBE)
enable_z_probe
(
false
);
#endif
}
// Endstops::Endstops
void
Endstops
::
init
()
{
#if HAS(X_MIN)
SET_INPUT
(
X_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_XMIN)
PULLUP
(
X_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(Y_MIN)
SET_INPUT
(
Y_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_YMIN)
PULLUP
(
Y_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z_MIN)
SET_INPUT
(
Z_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_ZMIN)
PULLUP
(
Z_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z2_MIN)
SET_INPUT
(
Z2_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_Z2MIN)
PULLUP
(
Z2_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(E_MIN)
SET_INPUT
(
E_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_EMIN)
PULLUP
(
E_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(X_MAX)
SET_INPUT
(
X_MAX_PIN
);
#if ENABLED(ENDSTOPPULLUP_XMAX)
PULLUP
(
X_MAX_PIN
,
HIGH
);
#endif
#endif
#if HAS(Y_MAX)
SET_INPUT
(
Y_MAX_PIN
);
#if ENABLED(ENDSTOPPULLUP_YMAX)
PULLUP
(
Y_MAX_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z_MAX)
SET_INPUT
(
Z_MAX_PIN
);
#if ENABLED(ENDSTOPPULLUP_ZMAX)
PULLUP
(
Z_MAX_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z2_MAX)
SET_INPUT
(
Z2_MAX_PIN
);
#if ENABLED(ENDSTOPPULLUP_Z2MAX)
PULLUP
(
Z2_MAX_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z_PROBE) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
SET_INPUT
(
Z_PROBE_PIN
);
#if ENABLED(ENDSTOPPULLUP_ZPROBE)
PULLUP
(
Z_PROBE_PIN
,
HIGH
);
#endif
#endif
}
// Endstops::init
void
Endstops
::
report_state
()
{
if
(
endstop_hit_bits
)
{
#if ENABLED(ULTRA_LCD)
char
chrX
=
' '
,
chrY
=
' '
,
chrZ
=
' '
,
chrP
=
' '
;
#define _SET_STOP_CHAR(A,C) (chr## A = C)
#else
#define _SET_STOP_CHAR(A,C) ;
#endif
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
ECHO_MV(" " STRINGIFY(A) ":", triggered_position_mm(A ##_AXIS)); \
_SET_STOP_CHAR(A,C); }while(0)
#define _ENDSTOP_HIT_TEST(A,C) \
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
_ENDSTOP_HIT_ECHO(A,C)
ECHO_SM
(
ER
,
SERIAL_ENDSTOPS_HIT
);
_ENDSTOP_HIT_TEST
(
X
,
'X'
);
_ENDSTOP_HIT_TEST
(
Y
,
'Y'
);
_ENDSTOP_HIT_TEST
(
Z
,
'Z'
);
#if ENABLED(Z_PROBE_ENDSTOP)
#define P_AXIS Z_AXIS
if
(
TEST
(
endstop_hit_bits
,
Z_PROBE
))
_ENDSTOP_HIT_ECHO
(
P
,
'P'
);
#endif
ECHO_E
;
#if ENABLED(ULTRA_LCD)
char
msg
[
3
*
strlen
(
MSG_ENDSTOPS_HIT
)
+
8
+
1
];
// Room for a UTF 8 string
sprintf_P
(
msg
,
PSTR
(
MSG_ENDSTOPS_HIT
" %c %c %c %c"
),
chrX
,
chrY
,
chrZ
,
chrP
);
lcd_setstatus
(
msg
);
#endif
hit_on_purpose
();
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
if
(
abort_on_endstop_hit
)
{
card
.
sdprinting
=
false
;
card
.
closefile
();
quickStop
();
disable_all_heaters
();
// switch off all heaters.
}
#endif
}
}
// Endstops::report_state
void
Endstops
::
M119
()
{
ECHO_LM
(
DB
,
SERIAL_M119_REPORT
);
#if HAS(X_MIN)
ECHO_EMT
(
SERIAL_X_MIN
,
((
READ
(
X_MIN_PIN
)
^
X_MIN_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(X_MAX)
ECHO_EMT
(
SERIAL_X_MAX
,
((
READ
(
X_MAX_PIN
)
^
X_MAX_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Y_MIN)
ECHO_EMT
(
SERIAL_Y_MIN
,
((
READ
(
Y_MIN_PIN
)
^
Y_MIN_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Y_MAX)
ECHO_EMT
(
SERIAL_Y_MAX
,
((
READ
(
Y_MAX_PIN
)
^
Y_MAX_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Z_MIN)
ECHO_EMT
(
SERIAL_Z_MIN
,
((
READ
(
Z_MIN_PIN
)
^
Z_MIN_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Z_MAX)
ECHO_EMT
(
SERIAL_Z_MAX
,
((
READ
(
Z_MAX_PIN
)
^
Z_MAX_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Z2_MAX)
ECHO_EMT
(
SERIAL_Z2_MAX
,
((
READ
(
Z2_MAX_PIN
)
^
Z2_MAX_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(Z_PROBE)
ECHO_EMT
(
SERIAL_Z_PROBE
,
((
READ
(
Z_PROBE_PIN
)
^
Z_PROBE_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(E_MIN)
ECHO_EMT
(
SERIAL_E_MIN
,
((
READ
(
E_MIN_PIN
)
^
E_MIN_ENDSTOP_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
#if HAS(FILRUNOUT)
ECHO_EMT
(
SERIAL_FILRUNOUT_PIN
,
((
READ
(
FILRUNOUT_PIN
)
^
FILRUNOUT_PIN_INVERTING
)
?
SERIAL_ENDSTOP_HIT
:
SERIAL_ENDSTOP_OPEN
));
#endif
}
// Endstops::M119
#if ENABLED(Z_DUAL_ENDSTOPS)
// Pass the result of the endstop test
void
Endstops
::
test_dual_z_endstops
(
EndstopEnum
es1
,
EndstopEnum
es2
)
{
byte
z_test
=
TEST_ENDSTOP
(
es1
)
|
(
TEST_ENDSTOP
(
es2
)
<<
1
);
// bit 0 for Z, bit 1 for Z2
if
(
current_block
->
steps
[
Z_AXIS
]
>
0
)
{
endstop_triggered
(
Z_AXIS
);
SBI
(
endstop_hit_bits
,
Z_MIN
);
if
(
!
performing_homing
||
(
z_test
==
0x3
))
//if not performing home or if both endstops were trigged during homing...
kill_current_block
();
}
}
#endif
// Check endstops - Called from ISR!
void
Endstops
::
update
()
{
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
// UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \
endstop_triggered(_AXIS(AXIS)); \
} \
} while(0)
#if MECH(COREXY) || MECH(COREYX)|| MECH(COREXZ) || MECH(COREZX)
// Head direction in -X axis for CoreXY and CoreXZ bots.
// If Delta1 == -Delta2, the movement is only in Y or Z axis
if
((
current_block
->
steps
[
A_AXIS
]
!=
current_block
->
steps
[
CORE_AXIS_2
])
||
(
motor_direction
(
A_AXIS
)
==
motor_direction
(
CORE_AXIS_2
)))
{
if
(
motor_direction
(
X_HEAD
))
#else
if
(
motor_direction
(
X_AXIS
))
// stepping along -X axis (regular Cartesian bot)
#endif
{
// -direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if
((
current_block
->
active_driver
==
0
&&
X_HOME_DIR
==
-
1
)
||
(
current_block
->
active_driver
!=
0
&&
X2_HOME_DIR
==
-
1
))
#endif
{
#if HAS(X_MIN)
UPDATE_ENDSTOP
(
X
,
MIN
);
#endif
}
}
else
{
// +direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if
((
current_block
->
active_driver
==
0
&&
X_HOME_DIR
==
1
)
||
(
current_block
->
active_driver
!=
0
&&
X2_HOME_DIR
==
1
))
#endif
{
#if HAS(X_MAX)
UPDATE_ENDSTOP
(
X
,
MAX
);
#endif
}
}
#if MECH(COREXY) || MECH(COREYX) || MECH(COREXZ) || MECH(COREZX)
}
#endif
#if MECH(COREXY) || MECH(COREYX)
// Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis
if
((
current_block
->
steps
[
A_AXIS
]
!=
current_block
->
steps
[
B_AXIS
])
||
(
motor_direction
(
A_AXIS
)
!=
motor_direction
(
B_AXIS
)))
{
if
(
motor_direction
(
Y_HEAD
))
#else
if
(
motor_direction
(
Y_AXIS
))
// -direction
#endif
{
// -direction
#if HAS(Y_MIN)
UPDATE_ENDSTOP
(
Y
,
MIN
);
#endif
}
else
{
// +direction
#if HAS(Y_MAX)
UPDATE_ENDSTOP
(
Y
,
MAX
);
#endif
}
#if MECH(COREXY) || MECH(COREYX)
}
#endif
#if MECH(COREXZ) || MECH(COREZX)
// Head direction in -Z axis for CoreXZ bots.
// If DeltaX == DeltaZ, the movement is only in X axis
if
((
current_block
->
steps
[
A_AXIS
]
!=
current_block
->
steps
[
C_AXIS
])
||
(
motor_direction
(
A_AXIS
)
!=
motor_direction
(
C_AXIS
)))
{
if
(
motor_direction
(
Z_HEAD
))
#else
if
(
motor_direction
(
Z_AXIS
))
#endif
{
// z -direction
#if HAS(Z_MIN)
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT
(
Z
,
MIN
);
#if HAS_Z2_MIN
UPDATE_ENDSTOP_BIT
(
Z2
,
MIN
);
#else
COPY_BIT
(
current_endstop_bits
,
Z_MIN
,
Z2_MIN
);
#endif
test_dual_z_endstops
(
Z_MIN
,
Z2_MIN
);
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP
(
Z
,
MIN
);
#endif // !Z_DUAL_ENDSTOPS
#endif // HAS_Z_MIN
#if ENABLED(Z_PROBE_ENDSTOP)
if
(
z_probe_enabled
)
{
UPDATE_ENDSTOP
(
Z
,
PROBE
);
if
(
TEST_ENDSTOP
(
Z_PROBE
))
SBI
(
endstop_hit_bits
,
Z_PROBE
);
}
#endif
}
else
{
// z +direction
#if HAS(Z_MAX)
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT
(
Z
,
MAX
);
#if HAS_Z2_MAX
UPDATE_ENDSTOP_BIT
(
Z2
,
MAX
);
#else
COPY_BIT
(
current_endstop_bits
,
Z_MAX
,
Z2_MAX
);
#endif
test_dual_z_endstops
(
Z_MAX
,
Z2_MAX
);
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP
(
Z
,
MAX
);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN
}
#if MECH(COREXZ) || MECH(COREZX)
}
#endif
#if ENABLED(NPR2)
UPDATE_ENDSTOP
(
E
,
MIN
);
#endif
old_endstop_bits
=
current_endstop_bits
;
}
// Endstops::update()
MK/module/motion/endstops.h
0 → 100644
View file @
2ddac526
/**
* MK & MK4due 3D Printer Firmware
*
* Based on Marlin, Sprinter and grbl
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
* Copyright (C) 2013 - 2016 Alberto Cotronei @MagoKimbra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* endstops.h - manages endstops
*/
#ifndef ENDSTOPS_H
#define ENDSTOPS_H
enum
EndstopEnum
{
X_MIN
=
0
,
Y_MIN
=
1
,
Z_MIN
=
2
,
Z_PROBE
=
3
,
X_MAX
=
4
,
Y_MAX
=
5
,
Z_MAX
=
6
,
Z2_MIN
=
7
,
Z2_MAX
=
8
,
E_MIN
=
9
};
class
Endstops
{
public
:
volatile
char
endstop_hit_bits
;
// use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
#if ENABLED(Z_DUAL_ENDSTOPS)
uint16_t
current_endstop_bits
=
0
,
old_endstop_bits
=
0
;
#else
byte
current_endstop_bits
=
0
,
old_endstop_bits
=
0
;
#endif
bool
enabled
=
true
;
bool
enabled_globally
=
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
false
#else
true
#endif
;
Endstops
();
/**
* Initialize the endstop pins
*/
void
init
();
/**
* Update the endstops bits from the pins
*/
void
update
();
/**
* Print an error message reporting the position when the endstops were last hit.
*/
void
report_state
();
//call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
/**
* Report endstop positions in response to M119
*/
void
M119
();
// Enable / disable endstop checking globally
FORCE_INLINE
void
enable_globally
(
bool
onoff
=
true
)
{
enabled_globally
=
enabled
=
onoff
;
}
// Enable / disable endstop checking
FORCE_INLINE
void
enable
(
bool
onoff
=
true
)
{
enabled
=
onoff
;
}
// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
FORCE_INLINE
void
not_homing
()
{
enabled
=
enabled_globally
;
}
// Clear endstops (i.e., they were hit intentionally) to suppress the report
FORCE_INLINE
void
hit_on_purpose
()
{
endstop_hit_bits
=
0
;
}
// Enable / disable endstop z-probe checking
#if ENABLED(HAS_Z_PROBE)
volatile
bool
z_probe_enabled
=
false
;
FORCE_INLINE
void
enable_z_probe
(
bool
onoff
=
true
)
{
z_probe_enabled
=
onoff
;
}
#endif
private
:
#if ENABLED(Z_DUAL_ENDSTOPS)
void
test_dual_z_endstops
(
EndstopEnum
es1
,
EndstopEnum
es2
);
#endif
};
extern
Endstops
endstops
;
#endif // ENDSTOPS_H
MK/module/motion/planner.cpp
View file @
2ddac526
...
@@ -992,7 +992,7 @@ float junction_deviation = 0.1;
...
@@ -992,7 +992,7 @@ float junction_deviation = 0.1;
// Compute and limit the acceleration rate for the trapezoid generator.
// Compute and limit the acceleration rate for the trapezoid generator.
float
steps_per_mm
=
block
->
step_event_count
/
block
->
millimeters
;
float
steps_per_mm
=
block
->
step_event_count
/
block
->
millimeters
;
unsigned
long
bsx
=
block
->
steps
[
X_AXIS
],
bsy
=
block
->
steps
[
Y_AXIS
],
bsz
=
block
->
steps
[
Z_AXIS
],
bse
=
block
->
steps
[
E_AXIS
];
long
bsx
=
block
->
steps
[
X_AXIS
],
bsy
=
block
->
steps
[
Y_AXIS
],
bsz
=
block
->
steps
[
Z_AXIS
],
bse
=
block
->
steps
[
E_AXIS
];
if
(
bsx
==
0
&&
bsy
==
0
&&
bsz
==
0
)
{
if
(
bsx
==
0
&&
bsy
==
0
&&
bsz
==
0
)
{
block
->
acceleration_st
=
ceil
(
retract_acceleration
[
extruder
]
*
steps_per_mm
);
// convert to: acceleration steps/sec^2
block
->
acceleration_st
=
ceil
(
retract_acceleration
[
extruder
]
*
steps_per_mm
);
// convert to: acceleration steps/sec^2
}
}
...
...
MK/module/motion/stepper.cpp
View file @
2ddac526
...
@@ -68,11 +68,6 @@ block_t* current_block; // A pointer to the block currently being traced
...
@@ -68,11 +68,6 @@ block_t* current_block; // A pointer to the block currently being traced
static
unsigned
char
last_direction_bits
=
0
;
// The next stepping-bits to be output
static
unsigned
char
last_direction_bits
=
0
;
// The next stepping-bits to be output
static
unsigned
int
cleaning_buffer_counter
=
0
;
static
unsigned
int
cleaning_buffer_counter
=
0
;
//
// The direction of a single motor
//
FORCE_INLINE
bool
motor_direction
(
AxisEnum
axis
)
{
return
TEST
(
last_direction_bits
,
axis
);
}
#if ENABLED(Z_DUAL_ENDSTOPS)
#if ENABLED(Z_DUAL_ENDSTOPS)
static
bool
performing_homing
=
false
,
static
bool
performing_homing
=
false
,
locked_z_motor
=
false
,
locked_z_motor
=
false
,
...
@@ -81,7 +76,9 @@ FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bi
...
@@ -81,7 +76,9 @@ FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bi
// Counter variables for the Bresenham line tracer
// Counter variables for the Bresenham line tracer
static
long
counter_X
,
counter_Y
,
counter_Z
,
counter_E
;
static
long
counter_X
,
counter_Y
,
counter_Z
,
counter_E
;
volatile
static
unsigned
long
step_events_completed
;
// The number of step events executed in the current block
volatile
unsigned
long
step_events_completed
;
// The number of step events executed in the current block
volatile
long
endstops_trigsteps
[
3
];
volatile
long
endstops_stepsTotal
,
endstops_stepsDone
;
#if ENABLED(ADVANCE) || ENABLED(ADVANCE_LPC)
#if ENABLED(ADVANCE) || ENABLED(ADVANCE_LPC)
unsigned
char
old_OCR0A
;
unsigned
char
old_OCR0A
;
...
@@ -91,7 +88,7 @@ volatile static unsigned long step_events_completed; // The number of step event
...
@@ -91,7 +88,7 @@ volatile static unsigned long step_events_completed; // The number of step event
static
long
e_steps
[
6
];
static
long
e_steps
[
6
];
#elif ENABLED(ADVANCE_LPC)
#elif ENABLED(ADVANCE_LPC)
int
extruder_advance_k
=
ADVANCE_LPC_K
;
int
extruder_advance_k
=
ADVANCE_LPC_K
;
volatile
int
e_steps
[
EXTRUDERS
];
volatile
int
e_steps
[
EXTRUDERS
]
=
ARRAY_BY_EXTRUDERS
(
0
)
;
static
int
final_estep_rate
;
static
int
final_estep_rate
;
static
int
current_estep_rate
[
EXTRUDERS
];
// Actual extruder speed [steps/s]
static
int
current_estep_rate
[
EXTRUDERS
];
// Actual extruder speed [steps/s]
static
int
current_adv_steps
[
EXTRUDERS
];
static
int
current_adv_steps
[
EXTRUDERS
];
...
@@ -105,25 +102,6 @@ static uint8_t step_loops;
...
@@ -105,25 +102,6 @@ static uint8_t step_loops;
static
uint8_t
step_loops_nominal
;
static
uint8_t
step_loops_nominal
;
static
unsigned
short
OCR1A_nominal
;
static
unsigned
short
OCR1A_nominal
;
volatile
long
endstops_trigsteps
[
3
]
=
{
0
};
volatile
long
endstops_stepsTotal
,
endstops_stepsDone
;
static
volatile
char
endstop_hit_bits
=
0
;
// use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
#if ENABLED(Z_DUAL_ENDSTOPS) || ENABLED(NPR2)
static
uint16_t
#else
static
byte
#endif
old_endstop_bits
=
0
;
// use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX, E_MIN
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
#if ENABLED(ABORT_ON_ENDSTOP_HIT_INIT)
bool
abort_on_endstop_hit
=
ABORT_ON_ENDSTOP_HIT_INIT
;
#else
bool
abort_on_endstop_hit
=
false
;
#endif
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
int
motor_current_setting
[
3
]
=
DEFAULT_PWM_MOTOR_CURRENT
;
int
motor_current_setting
[
3
]
=
DEFAULT_PWM_MOTOR_CURRENT
;
#endif
#endif
...
@@ -290,273 +268,23 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
...
@@ -290,273 +268,23 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
void
endstops_hit_on_purpose
()
{
/**
endstop_hit_bits
=
0
;
* __________________________
}
* /| |\ _________________ ^
* / | | \ /| |\ |
void
checkHitEndstops
()
{
* / | | \ / | | \ s
if
(
endstop_hit_bits
)
{
* / | | | | | \ p
* / | | | | | \ e
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* +-----+------------------------+---+--+---------------+----+ e
if
(
abort_on_endstop_hit
)
* | BLOCK 1 | BLOCK 2 | d
ECHO_SM
(
ER
,
SERIAL_ENDSTOPS_HIT
);
*
else
* time ----->
ECHO_SM
(
DB
,
SERIAL_ENDSTOPS_HIT
);
*
#else
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
ECHO_SM
(
DB
,
SERIAL_ENDSTOPS_HIT
);
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
#endif
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
if
(
TEST
(
endstop_hit_bits
,
X_MIN
))
{
*/
ECHO_MV
(
SERIAL_ENDSTOP_X
,
(
float
)
endstops_trigsteps
[
X_AXIS
]
/
axis_steps_per_unit
[
X_AXIS
]);
LCD_MESSAGEPGM
(
MSG_ENDSTOPS_HIT
MSG_ENDSTOP_XS
);
}
if
(
TEST
(
endstop_hit_bits
,
Y_MIN
))
{
ECHO_MV
(
SERIAL_ENDSTOP_Y
,
(
float
)
endstops_trigsteps
[
Y_AXIS
]
/
axis_steps_per_unit
[
Y_AXIS
]);
LCD_MESSAGEPGM
(
MSG_ENDSTOPS_HIT
MSG_ENDSTOP_YS
);
}
if
(
TEST
(
endstop_hit_bits
,
Z_MIN
))
{
ECHO_MV
(
SERIAL_ENDSTOP_Z
,
(
float
)
endstops_trigsteps
[
Z_AXIS
]
/
axis_steps_per_unit
[
Z_AXIS
]);
LCD_MESSAGEPGM
(
MSG_ENDSTOPS_HIT
MSG_ENDSTOP_ZS
);
}
#if ENABLED(Z_PROBE_ENDSTOP)
if
(
TEST
(
endstop_hit_bits
,
Z_PROBE
))
{
ECHO_MV
(
SERIAL_ENDSTOP_PROBE
,
(
float
)
endstops_trigsteps
[
Z_AXIS
]
/
axis_steps_per_unit
[
Z_AXIS
]);
LCD_MESSAGEPGM
(
MSG_ENDSTOPS_HIT
MSG_ENDSTOP_ZPS
);
}
#endif
#if ENABLED(NPR2)
if
(
TEST
(
endstop_hit_bits
,
E_MIN
))
{
ECHO_MV
(
SERIAL_ENDSTOP_E
,
(
float
)
endstops_trigsteps
[
E_AXIS
]
/
axis_steps_per_unit
[
E_AXIS
]);
LCD_MESSAGEPGM
(
MSG_ENDSTOPS_HIT
MSG_ENDSTOP_ES
);
}
#endif
ECHO_E
;
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
if
(
abort_on_endstop_hit
&&
!
(
endstop_hit_bits
&
_BV
(
Z_PROBE
))
&&
!
(
endstop_hit_bits
&
_BV
(
E_MIN
)))
{
#if ENABLED(SDSUPPORT)
card
.
sdprinting
=
false
;
card
.
closeFile
();
#endif
for
(
int
i
=
0
;
i
<
3
;
i
++
)
axis_known_position
[
i
]
=
true
;
// not homed anymore
quickStop
();
// kill the planner buffer
Stop
();
// restart by M999
}
#endif
endstops_hit_on_purpose
();
}
}
#if MECH(COREXY) || MECH(COREYX)
#define CORE_AXIS_2 B_AXIS
#elif MECH(COREXZ) || MECH(COREZX)
#define CORE_AXIS_2 C_AXIS
#endif
void
enable_endstops
(
bool
check
)
{
check_endstops
=
check
;
}
// Check endstops - Called from ISR!
inline
void
update_endstops
()
{
#if ENABLED(Z_DUAL_ENDSTOPS) || ENABLED(NPR2)
uint16_t
#else
byte
#endif
current_endstop_bits
=
0
;
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _AXIS(AXIS) AXIS ##_AXIS
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
// TEST_ENDSTOP: test the old and the current status of an endstop
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
#if MECH(COREXY) || MECH(COREYX)|| MECH(COREXZ) || MECH(COREZX)
#define _SET_TRIGSTEPS(AXIS) do { \
float axis_pos = count_position[_AXIS(AXIS)]; \
if (_AXIS(AXIS) == A_AXIS) \
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
else if (_AXIS(AXIS) == CORE_AXIS_2) \
axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
} while(0)
#else
#define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
#endif // COREXY || COREYX || COREXZ || COREZX
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
SET_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
_SET_TRIGSTEPS(AXIS); \
_ENDSTOP_HIT(AXIS); \
step_events_completed = current_block->step_event_count; \
} \
} while(0)
#if MECH(COREXY) || MECH(COREYX)|| MECH(COREXZ) || MECH(COREZX)
// Head direction in -X axis for CoreXY and CoreXZ bots.
// If Delta1 == -Delta2, the movement is only in Y or Z axis
if
((
current_block
->
steps
[
A_AXIS
]
!=
current_block
->
steps
[
CORE_AXIS_2
])
||
motor_direction
(
A_AXIS
)
==
motor_direction
(
CORE_AXIS_2
))
{
if
(
motor_direction
(
X_HEAD
))
#else
if
(
motor_direction
(
X_AXIS
))
// stepping along -X axis (regular Cartesian bot)
#endif
{
// -direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if
((
current_block
->
active_extruder
==
0
&&
X_HOME_DIR
==
-
1
)
||
(
current_block
->
active_extruder
!=
0
&&
X2_HOME_DIR
==
-
1
))
#endif
{
#if HAS(X_MIN)
UPDATE_ENDSTOP
(
X
,
MIN
);
#endif
}
}
else
{
// +direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if
((
current_block
->
active_extruder
==
0
&&
X_HOME_DIR
==
1
)
||
(
current_block
->
active_extruder
!=
0
&&
X2_HOME_DIR
==
1
))
#endif
{
#if HAS(X_MAX)
UPDATE_ENDSTOP
(
X
,
MAX
);
#endif
}
}
#if MECH(COREXY) || MECH(COREYX)|| MECH(COREXZ) || MECH(COREZX)
}
#endif
#if MECH(COREXY) || MECH(COREYX)
// Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis
if
((
current_block
->
steps
[
A_AXIS
]
!=
current_block
->
steps
[
B_AXIS
])
||
motor_direction
(
A_AXIS
)
!=
motor_direction
(
B_AXIS
))
{
if
(
motor_direction
(
Y_HEAD
))
#else
if
(
motor_direction
(
Y_AXIS
))
// -direction
#endif
{
// -direction
#if HAS(Y_MIN)
UPDATE_ENDSTOP
(
Y
,
MIN
);
#endif
}
else
{
// +direction
#if HAS(Y_MAX)
UPDATE_ENDSTOP
(
Y
,
MAX
);
#endif
}
#if MECH(COREXY) || MECH(COREYX)
}
#endif
#if MECH(COREXZ) || MECH(COREZX)
// Head direction in -Z axis for CoreXZ bots.
// If DeltaX == DeltaZ, the movement is only in X axis
if
((
current_block
->
steps
[
A_AXIS
]
!=
current_block
->
steps
[
C_AXIS
])
||
motor_direction
(
A_AXIS
)
!=
motor_direction
(
C_AXIS
))
{
if
(
motor_direction
(
Z_HEAD
))
#else
if
(
motor_direction
(
Z_AXIS
))
#endif
{
// z -direction
#if HAS(Z_MIN)
#if ENABLED(Z_DUAL_ENDSTOPS)
SET_ENDSTOP_BIT
(
Z
,
MIN
);
#if HAS(Z2_MIN)
SET_ENDSTOP_BIT
(
Z2
,
MIN
);
#else
COPY_BIT
(
current_endstop_bits
,
Z_MIN
,
Z2_MIN
);
#endif
byte
z_test
=
TEST_ENDSTOP
(
Z_MIN
)
|
(
TEST_ENDSTOP
(
Z2_MIN
)
<<
1
);
// bit 0 for Z, bit 1 for Z2
if
(
z_test
&&
current_block
->
steps
[
Z_AXIS
]
>
0
)
{
// z_test = Z_MIN || Z2_MIN
endstops_trigsteps
[
Z_AXIS
]
=
count_position
[
Z_AXIS
];
SBI
(
endstop_hit_bits
,
Z_MIN
);
if
(
!
performing_homing
||
(
z_test
==
0x3
))
//if not performing home or if both endstops were trigged during homing...
step_events_completed
=
current_block
->
step_event_count
;
}
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP
(
Z
,
MIN
);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MIN_PIN
#if ENABLED(Z_PROBE_ENDSTOP)
UPDATE_ENDSTOP
(
Z
,
PROBE
);
if
(
TEST_ENDSTOP
(
Z_PROBE
))
{
endstops_trigsteps
[
Z_AXIS
]
=
count_position
[
Z_AXIS
];
SBI
(
endstop_hit_bits
,
Z_PROBE
);
}
#endif
}
else
{
// z +direction
#if HAS(Z_MAX)
#if ENABLED(Z_DUAL_ENDSTOPS)
SET_ENDSTOP_BIT
(
Z
,
MAX
);
#if HAS(Z2_MAX)
SET_ENDSTOP_BIT
(
Z2
,
MAX
);
#else
COPY_BIT
(
current_endstop_bits
,
Z_MAX
,
Z2_MAX
);
#endif
byte
z_test
=
TEST_ENDSTOP
(
Z_MAX
)
|
(
TEST_ENDSTOP
(
Z2_MAX
)
<<
1
);
// bit 0 for Z, bit 1 for Z2
if
(
z_test
&&
current_block
->
steps
[
Z_AXIS
]
>
0
)
{
// t_test = Z_MAX || Z2_MAX
endstops_trigsteps
[
Z_AXIS
]
=
count_position
[
Z_AXIS
];
SBI
(
endstop_hit_bits
,
Z_MIN
);
if
(
!
performing_homing
||
(
z_test
==
0x3
))
//if not performing home or if both endstops were trigged during homing...
step_events_completed
=
current_block
->
step_event_count
;
}
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP
(
Z
,
MAX
);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN
}
#if MECH(COREXZ) || MECH(COREZX)
}
#endif
#if ENABLED(NPR2)
UPDATE_ENDSTOP
(
E
,
MIN
);
#endif
old_endstop_bits
=
current_endstop_bits
;
}
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
void
st_wake_up
()
{
void
st_wake_up
()
{
// TCNT1 = 0;
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT
();
ENABLE_STEPPER_DRIVER_INTERRUPT
();
...
@@ -728,7 +456,11 @@ ISR(TIMER1_COMPA_vect) {
...
@@ -728,7 +456,11 @@ ISR(TIMER1_COMPA_vect) {
if
(
current_block
!=
NULL
)
{
if
(
current_block
!=
NULL
)
{
// Update endstops state, if enabled
// Update endstops state, if enabled
if
(
check_endstops
)
update_endstops
();
#if ENABLED(Z_PROBE_ENDSTOP)
if
(
endstops
.
enabled
||
endstops
.
z_probe_enabled
)
endstops
.
update
();
#else
if
(
endstops
.
enabled
)
endstops
.
update
();
#endif
// Take multiple steps per interrupt (For high speed moves)
// Take multiple steps per interrupt (For high speed moves)
for
(
uint8_t
i
=
0
;
i
<
step_loops
;
i
++
)
{
for
(
uint8_t
i
=
0
;
i
<
step_loops
;
i
++
)
{
...
@@ -1100,77 +832,10 @@ void st_init() {
...
@@ -1100,77 +832,10 @@ void st_init() {
OUT_WRITE_RELE
(
E1E3_CHOICE_PIN
,
LOW
);
OUT_WRITE_RELE
(
E1E3_CHOICE_PIN
,
LOW
);
#endif
#endif
//endstops and pullups
//
// Init endstops and pullups here
#if HAS(X_MIN)
//
SET_INPUT
(
X_MIN_PIN
);
endstops
.
init
();
#if ENABLED(ENDSTOPPULLUP_XMIN)
PULLUP
(
X_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(Y_MIN)
SET_INPUT
(
Y_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_YMIN)
PULLUP
(
Y_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z_MIN)
SET_INPUT
(
Z_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_ZMIN)
PULLUP
(
Z_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z2_MIN)
SET_INPUT
(
Z2_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_Z2MIN)
PULLUP
(
Z2_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(E_MIN)
SET_INPUT
(
E_MIN_PIN
);
#if ENABLED(ENDSTOPPULLUP_EMIN)
PULLUP
(
E_MIN_PIN
,
HIGH
);
#endif
#endif
#if HAS(X_MAX)
SET_INPUT
(
X_MAX_PIN
);
#if ENABLED(ENDSTOPPULLUP_XMAX)
PULLUP
(
X_MAX_PIN
,
HIGH
);
#endif
#endif
#if HAS(Y_MAX)
SET_INPUT
(
Y_MAX_PIN
);
#if ENABLED(ENDSTOPPULLUP_YMAX)
PULLUP
(
Y_MAX_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z_MAX)
SET_INPUT
(
Z_MAX_PIN
);
#if ENABLED(ENDSTOPPULLUP_ZMAX)
PULLUP
(
Z_MAX_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z2_MAX)
SET_INPUT
(
Z2_MAX_PIN
);
#if ENABLED(ENDSTOPPULLUP_Z2MAX)
PULLUP
(
Z2_MAX_PIN
,
HIGH
);
#endif
#endif
#if HAS(Z_PROBE) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
SET_INPUT
(
Z_PROBE_PIN
);
#if ENABLED(ENDSTOPPULLUP_ZPROBE)
PULLUP
(
Z_PROBE_PIN
,
HIGH
);
#endif
#endif
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
...
@@ -1261,7 +926,7 @@ void st_init() {
...
@@ -1261,7 +926,7 @@ void st_init() {
#endif // ADVANCE or ADVANCE_LPC
#endif // ADVANCE or ADVANCE_LPC
en
able_endstops
(
true
);
// Start with endstops active. After homing they can be disabled
en
dstops
.
enable
(
true
);
// Start with endstops active. After homing they can be disabled
sei
();
sei
();
set_stepper_direction
();
// Init directions to last_direction_bits = 0
set_stepper_direction
();
// Init directions to last_direction_bits = 0
...
@@ -1383,6 +1048,26 @@ void quickStop() {
...
@@ -1383,6 +1048,26 @@ void quickStop() {
ENABLE_STEPPER_DRIVER_INTERRUPT
();
ENABLE_STEPPER_DRIVER_INTERRUPT
();
}
}
void
endstop_triggered
(
AxisEnum
axis
)
{
#if MECH(COREXY) || MECH(COREYX) || MECH(COREXZ) || MECH(COREZX)
float
axis_pos
=
count_position
[
axis
];
if
(
axis
==
A_AXIS
)
axis_pos
=
(
axis_pos
+
count_position
[
CORE_AXIS_2
])
/
2
;
else
if
(
axis
==
CORE_AXIS_2
)
axis_pos
=
(
count_position
[
A_AXIS
]
-
axis_pos
)
/
2
;
endstops_trigsteps
[
axis
]
=
axis_pos
;
#else // ! COREXY || COREYX || COREXZ || COREZX
endstops_trigsteps
[
axis
]
=
count_position
[
axis
];
#endif // ! COREXY || COREYX || COREXZ || COREZX
kill_current_block
();
}
void
report_positions
()
{
void
report_positions
()
{
CRITICAL_SECTION_START
;
CRITICAL_SECTION_START
;
long
xpos
=
count_position
[
X_AXIS
],
long
xpos
=
count_position
[
X_AXIS
],
...
@@ -1420,6 +1105,16 @@ void report_positions() {
...
@@ -1420,6 +1105,16 @@ void report_positions() {
ECHO_E
;
ECHO_E
;
}
}
void
kill_current_block
()
{
step_events_completed
=
current_block
->
step_event_count
;
}
float
triggered_position_mm
(
AxisEnum
axis
)
{
return
endstops_trigsteps
[
axis
]
/
axis_steps_per_unit
[
axis
];
}
bool
motor_direction
(
AxisEnum
axis
)
{
return
TEST
(
last_direction_bits
,
axis
);
}
#if ENABLED(NPR2)
#if ENABLED(NPR2)
void
colorstep
(
long
csteps
,
const
bool
direction
)
{
void
colorstep
(
long
csteps
,
const
bool
direction
)
{
enable_e1
();
enable_e1
();
...
...
MK/module/motion/stepper.h
View file @
2ddac526
...
@@ -34,11 +34,14 @@
...
@@ -34,11 +34,14 @@
* A_AXIS and C_AXIS are used by COREXZ or COREZX printers
* A_AXIS and C_AXIS are used by COREXZ or COREZX printers
* X_HEAD and Y_HEAD and Z_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
* X_HEAD and Y_HEAD and Z_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
*/
*/
enum
AxisEnum
{
X_AXIS
=
0
,
A_AXIS
=
0
,
Y_AXIS
=
1
,
B_AXIS
=
1
,
Z_AXIS
=
2
,
C_AXIS
=
2
,
E_AXIS
=
3
,
X_HEAD
=
4
,
Y_HEAD
=
5
,
Z_HEAD
=
5
};
enum
AxisEnum
{
X_AXIS
=
0
,
A_AXIS
=
0
,
Y_AXIS
=
1
,
B_AXIS
=
1
,
Z_AXIS
=
2
,
C_AXIS
=
2
,
E_AXIS
=
3
,
X_HEAD
=
4
,
Y_HEAD
=
5
,
Z_HEAD
=
5
};
enum
EndstopEnum
{
X_MIN
=
0
,
Y_MIN
=
1
,
Z_MIN
=
2
,
Z_PROBE
=
3
,
X_MAX
=
4
,
Y_MAX
=
5
,
Z_MAX
=
6
,
Z2_MIN
=
7
,
Z2_MAX
=
8
,
E_MIN
=
9
};
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
extern
bool
abort_on_endstop_hit
;
#if ENABLED(ABORT_ON_ENDSTOP_HIT_INIT)
bool
abort_on_endstop_hit
=
ABORT_ON_ENDSTOP_HIT_INIT
;
#else
bool
abort_on_endstop_hit
=
false
;
#endif
#endif
#endif
// Initialize and start the stepper motor subsystem
// Initialize and start the stepper motor subsystem
...
@@ -69,10 +72,20 @@
...
@@ -69,10 +72,20 @@
//
//
void
report_positions
();
void
report_positions
();
void
checkHitEndstops
();
//call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
//
void
endstops_hit_on_purpose
();
//avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
// Handle a triggered endstop
//
void
endstop_triggered
(
AxisEnum
axis
);
//
// Triggered position of an axis in mm (not core-savvy)
//
float
triggered_position_mm
(
AxisEnum
axis
);
void
enable_endstops
(
bool
check
);
// Enable/disable endstop checking
//
// The direction of a single motor
//
bool
motor_direction
(
AxisEnum
axis
);
void
checkStepperErrors
();
//Print errors detected by the stepper
void
checkStepperErrors
();
//Print errors detected by the stepper
...
@@ -91,6 +104,7 @@
...
@@ -91,6 +104,7 @@
void
digipot_current
(
uint8_t
driver
,
int
current
);
void
digipot_current
(
uint8_t
driver
,
int
current
);
void
microstep_init
();
void
microstep_init
();
void
microstep_readings
();
void
microstep_readings
();
void
kill_current_block
();
#if ENABLED(Z_DUAL_ENDSTOPS)
#if ENABLED(Z_DUAL_ENDSTOPS)
void
In_Homing_Process
(
bool
state
);
void
In_Homing_Process
(
bool
state
);
...
...
MK/module/stopwatch/stopwatch.cpp
View file @
2ddac526
...
@@ -29,29 +29,29 @@ Stopwatch::Stopwatch() {
...
@@ -29,29 +29,29 @@ Stopwatch::Stopwatch() {
void
Stopwatch
::
stop
()
{
void
Stopwatch
::
stop
()
{
#if ENABLED(DEBUG_STOPWATCH)
#if ENABLED(DEBUG_STOPWATCH)
debug
(
PSTR
(
"stop"
));
Stopwatch
::
debug
(
PSTR
(
"stop"
));
#endif
#endif
if
(
!
this
->
isRunning
())
return
;
if
(
!
this
->
isRunning
())
return
;
this
->
stat
us
=
STPWTCH_STOPPED
;
this
->
stat
e
=
STPWTCH_STOPPED
;
this
->
stopTimestamp
=
millis
();
this
->
stopTimestamp
=
millis
();
}
}
void
Stopwatch
::
pause
()
{
void
Stopwatch
::
pause
()
{
#if ENABLED(DEBUG_STOPWATCH)
#if ENABLED(DEBUG_STOPWATCH)
debug
(
PSTR
(
"pause"
));
Stopwatch
::
debug
(
PSTR
(
"pause"
));
#endif
#endif
if
(
!
this
->
isRunning
())
return
;
if
(
!
this
->
isRunning
())
return
;
this
->
stat
us
=
STPWTCH_PAUSED
;
this
->
stat
e
=
STPWTCH_PAUSED
;
this
->
stopTimestamp
=
millis
();
this
->
stopTimestamp
=
millis
();
}
}
void
Stopwatch
::
start
()
{
void
Stopwatch
::
start
()
{
#if ENABLED(DEBUG_STOPWATCH)
#if ENABLED(DEBUG_STOPWATCH)
debug
(
PSTR
(
"start"
));
Stopwatch
::
debug
(
PSTR
(
"start"
));
#endif
#endif
if
(
this
->
isRunning
())
return
;
if
(
this
->
isRunning
())
return
;
...
@@ -59,27 +59,27 @@ void Stopwatch::start() {
...
@@ -59,27 +59,27 @@ void Stopwatch::start() {
if
(
this
->
isPaused
())
this
->
accumulator
=
this
->
duration
();
if
(
this
->
isPaused
())
this
->
accumulator
=
this
->
duration
();
else
this
->
reset
();
else
this
->
reset
();
this
->
stat
us
=
STPWTCH_RUNNING
;
this
->
stat
e
=
STPWTCH_RUNNING
;
this
->
startTimestamp
=
millis
();
this
->
startTimestamp
=
millis
();
}
}
void
Stopwatch
::
reset
()
{
void
Stopwatch
::
reset
()
{
#if ENABLED(DEBUG_STOPWATCH)
#if ENABLED(DEBUG_STOPWATCH)
debug
(
PSTR
(
"reset"
));
Stopwatch
::
debug
(
PSTR
(
"reset"
));
#endif
#endif
this
->
stat
us
=
STPWTCH_STOPPED
;
this
->
stat
e
=
STPWTCH_STOPPED
;
this
->
startTimestamp
=
0
;
this
->
startTimestamp
=
0
;
this
->
stopTimestamp
=
0
;
this
->
stopTimestamp
=
0
;
this
->
accumulator
=
0
;
this
->
accumulator
=
0
;
}
}
bool
Stopwatch
::
isRunning
()
{
bool
Stopwatch
::
isRunning
()
{
return
(
this
->
stat
us
==
STPWTCH_RUNNING
)
?
true
:
false
;
return
(
this
->
stat
e
==
STPWTCH_RUNNING
)
?
true
:
false
;
}
}
bool
Stopwatch
::
isPaused
()
{
bool
Stopwatch
::
isPaused
()
{
return
(
this
->
stat
us
==
STPWTCH_PAUSED
)
?
true
:
false
;
return
(
this
->
stat
e
==
STPWTCH_PAUSED
)
?
true
:
false
;
}
}
uint16_t
Stopwatch
::
duration
()
{
uint16_t
Stopwatch
::
duration
()
{
...
...
MK/module/stopwatch/stopwatch.h
View file @
2ddac526
...
@@ -26,7 +26,7 @@
...
@@ -26,7 +26,7 @@
// Print debug messages with M111 S2 (Uses 156 bytes of PROGMEM)
// Print debug messages with M111 S2 (Uses 156 bytes of PROGMEM)
//#define DEBUG_STOPWATCH
//#define DEBUG_STOPWATCH
enum
StopwatchStat
us
{
enum
StopwatchStat
e
{
STPWTCH_STOPPED
,
STPWTCH_STOPPED
,
STPWTCH_RUNNING
,
STPWTCH_RUNNING
,
STPWTCH_PAUSED
STPWTCH_PAUSED
...
@@ -39,7 +39,7 @@
...
@@ -39,7 +39,7 @@
*/
*/
class
Stopwatch
{
class
Stopwatch
{
private
:
private
:
StopwatchStat
us
status
;
StopwatchStat
e
state
;
uint16_t
accumulator
;
uint16_t
accumulator
;
uint32_t
startTimestamp
;
uint32_t
startTimestamp
;
uint32_t
stopTimestamp
;
uint32_t
stopTimestamp
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment