qr_solve.cpp 39.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/**
 * MK & MK4due 3D Printer Firmware
 *
 * Based on Marlin, Sprinter and grbl
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 * Copyright (C) 2013 - 2016 Alberto Cotronei @MagoKimbra
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "../../base.h"

#if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(AUTO_BED_LEVELING_GRID)

#include "qr_solve.h"
#include <stdlib.h>
#include <math.h>

//# include "r8lib.h"

int i4_min(int i1, int i2)

/******************************************************************************/
/**
  Purpose:

    I4_MIN returns the smaller of two I4's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    29 August 2006

  Author:

    John Burkardt

  Parameters:

    Input, int I1, I2, two integers to be compared.

    Output, int I4_MIN, the smaller of I1 and I2.
*/
{
  return (i1 < i2) ? i1 : i2;
}

double r8_epsilon(void)

/******************************************************************************/
/**
  Purpose:

    R8_EPSILON returns the R8 round off unit.

  Discussion:

    R8_EPSILON is a number R which is a power of 2 with the property that,
    to the precision of the computer's arithmetic,
      1 < 1 + R
    but
      1 = ( 1 + R / 2 )

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    01 September 2012

  Author:

    John Burkardt

  Parameters:

    Output, double R8_EPSILON, the R8 round-off unit.
*/
{
  const double value = 2.220446049250313E-016;
  return value;
}

double r8_max(double x, double y)

/******************************************************************************/
/**
  Purpose:

    R8_MAX returns the maximum of two R8's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, Y, the quantities to compare.

    Output, double R8_MAX, the maximum of X and Y.
*/
{
  return (y < x) ? x : y;
}

double r8_abs(double x)

/******************************************************************************/
/**
  Purpose:

    R8_ABS returns the absolute value of an R8.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, the quantity whose absolute value is desired.

    Output, double R8_ABS, the absolute value of X.
*/
{
  return (x < 0.0) ? -x : x;
}

double r8_sign(double x)

/******************************************************************************/
/**
  Purpose:

    R8_SIGN returns the sign of an R8.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    08 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, the number whose sign is desired.

    Output, double R8_SIGN, the sign of X.
*/
{
  return (x < 0.0) ? -1.0 : 1.0;
}

double r8mat_amax(int m, int n, double a[])

/******************************************************************************/
/**
  Purpose:

    R8MAT_AMAX returns the maximum absolute value entry of an R8MAT.

  Discussion:

    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
    in column-major order.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 September 2012

  Author:

    John Burkardt

  Parameters:

    Input, int M, the number of rows in A.

    Input, int N, the number of columns in A.

    Input, double A[M*N], the M by N matrix.

    Output, double R8MAT_AMAX, the maximum absolute value entry of A.
*/
{
  double value = r8_abs(a[0 + 0 * m]);
  for (int j = 0; j < n; j++) {
    for (int i = 0; i < m; i++) {
      NOLESS(value, r8_abs(a[i + j * m]));
    }
  }
  return value;
}

void r8mat_copy(double a2[], int m, int n, double a1[])

/******************************************************************************/
/**
  Purpose:

    R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT.

  Discussion:

    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
    in column-major order.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    26 July 2008

  Author:

    John Burkardt

  Parameters:

    Input, int M, N, the number of rows and columns.

    Input, double A1[M*N], the matrix to be copied.

    Output, double R8MAT_COPY_NEW[M*N], the copy of A1.
*/
{
  for (int j = 0; j < n; j++) {
    for (int i = 0; i < m; i++)
      a2[i + j * m] = a1[i + j * m];
  }
}

/******************************************************************************/

void daxpy(int n, double da, double dx[], int incx, double dy[], int incy)

/******************************************************************************/
/**
  Purpose:

    DAXPY computes constant times a vector plus a vector.

  Discussion:

    This routine uses unrolled loops for increments equal to one.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of elements in DX and DY.

    Input, double DA, the multiplier of DX.

    Input, double DX[*], the first vector.

    Input, int INCX, the increment between successive entries of DX.

    Input/output, double DY[*], the second vector.
    On output, DY[*] has been replaced by DY[*] + DA * DX[*].

    Input, int INCY, the increment between successive entries of DY.
*/
{
  if (n <= 0 || da == 0.0) return;

  int i, ix, iy, m;
  /**
    Code for unequal increments or equal increments
    not equal to 1.
  */
  if (incx != 1 || incy != 1) {
    if (0 <= incx)
      ix = 0;
    else
      ix = (- n + 1) * incx;
    if (0 <= incy)
      iy = 0;
    else
      iy = (- n + 1) * incy;
    for (i = 0; i < n; i++) {
      dy[iy] = dy[iy] + da * dx[ix];
      ix = ix + incx;
      iy = iy + incy;
    }
  }
  /**
    Code for both increments equal to 1.
  */
  else {
    m = n % 4;
    for (i = 0; i < m; i++)
      dy[i] = dy[i] + da * dx[i];
    for (i = m; i < n; i = i + 4) {
      dy[i  ] = dy[i  ] + da * dx[i  ];
      dy[i + 1] = dy[i + 1] + da * dx[i + 1];
      dy[i + 2] = dy[i + 2] + da * dx[i + 2];
      dy[i + 3] = dy[i + 3] + da * dx[i + 3];
    }
  }
}
/******************************************************************************/

double ddot(int n, double dx[], int incx, double dy[], int incy)

/******************************************************************************/
/**
  Purpose:

    DDOT forms the dot product of two vectors.

  Discussion:

    This routine uses unrolled loops for increments equal to one.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vectors.

    Input, double DX[*], the first vector.

    Input, int INCX, the increment between successive entries in DX.

    Input, double DY[*], the second vector.

    Input, int INCY, the increment between successive entries in DY.

    Output, double DDOT, the sum of the product of the corresponding
    entries of DX and DY.
*/
{

  if (n <= 0) return 0.0;

  int i, m;
  double dtemp = 0.0;

  /**
    Code for unequal increments or equal increments
    not equal to 1.
  */
  if (incx != 1 || incy != 1) {
    int ix = (incx >= 0) ? 0 : (-n + 1) * incx,
        iy = (incy >= 0) ? 0 : (-n + 1) * incy;
    for (i = 0; i < n; i++) {
      dtemp += dx[ix] * dy[iy];
      ix = ix + incx;
      iy = iy + incy;
    }
  }
  /**
    Code for both increments equal to 1.
  */
  else {
    m = n % 5;
    for (i = 0; i < m; i++)
      dtemp += dx[i] * dy[i];
    for (i = m; i < n; i = i + 5) {
      dtemp += dx[i] * dy[i]
              + dx[i + 1] * dy[i + 1]
              + dx[i + 2] * dy[i + 2]
              + dx[i + 3] * dy[i + 3]
              + dx[i + 4] * dy[i + 4];
    }
  }
  return dtemp;
}
/******************************************************************************/

double dnrm2(int n, double x[], int incx)

/******************************************************************************/
/**
  Purpose:

    DNRM2 returns the euclidean norm of a vector.

  Discussion:

     DNRM2 ( X ) = sqrt ( X' * X )

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vector.

    Input, double X[*], the vector whose norm is to be computed.

    Input, int INCX, the increment between successive entries of X.

    Output, double DNRM2, the Euclidean norm of X.
*/
{
  double norm;
  if (n < 1 || incx < 1)
    norm = 0.0;
  else if (n == 1)
    norm = r8_abs(x[0]);
  else {
    double scale = 0.0, ssq = 1.0;
    int ix = 0;
    for (int i = 0; i < n; i++) {
      if (x[ix] != 0.0) {
        double absxi = r8_abs(x[ix]);
        if (scale < absxi) {
          ssq = 1.0 + ssq * (scale / absxi) * (scale / absxi);
          scale = absxi;
        }
        else
          ssq = ssq + (absxi / scale) * (absxi / scale);
      }
      ix += incx;
    }
    norm = scale * sqrt(ssq);
  }
  return norm;
}
/******************************************************************************/

void dqrank(double a[], int lda, int m, int n, double tol, int* kr,
            int jpvt[], double qraux[])

/******************************************************************************/
/**
  Purpose:

    DQRANK computes the QR factorization of a rectangular matrix.

  Discussion:

    This routine is used in conjunction with DQRLSS to solve
    overdetermined, underdetermined and singular linear systems
    in a least squares sense.

    DQRANK uses the LINPACK subroutine DQRDC to compute the QR
    factorization, with column pivoting, of an M by N matrix A.
    The numerical rank is determined using the tolerance TOL.

    Note that on output, ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
    of the condition number of the matrix of independent columns,
    and of R.  This estimate will be <= 1/TOL.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    21 April 2012

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979,
    ISBN13: 978-0-898711-72-1,
    LC: QA214.L56.

  Parameters:

    Input/output, double A[LDA*N].  On input, the matrix whose
    decomposition is to be computed.  On output, the information from DQRDC.
    The triangular matrix R of the QR factorization is contained in the
    upper triangle and information needed to recover the orthogonal
    matrix Q is stored below the diagonal in A and in the vector QRAUX.

    Input, int LDA, the leading dimension of A, which must
    be at least M.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double TOL, a relative tolerance used to determine the
    numerical rank.  The problem should be scaled so that all the elements
    of A have roughly the same absolute accuracy, EPS.  Then a reasonable
    value for TOL is roughly EPS divided by the magnitude of the largest
    element.

    Output, int *KR, the numerical rank.

    Output, int JPVT[N], the pivot information from DQRDC.
    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.

    Output, double QRAUX[N], will contain extra information defining
    the QR factorization.
*/
{
  double work[n];

  for (int i = 0; i < n; i++)
    jpvt[i] = 0;

  int job = 1;

  dqrdc(a, lda, m, n, qraux, jpvt, work, job);

  *kr = 0;
  int k = i4_min(m, n);
  for (int j = 0; j < k; j++) {
    if (r8_abs(a[j + j * lda]) <= tol * r8_abs(a[0 + 0 * lda]))
      return;
    *kr = j + 1;
  }
}
/******************************************************************************/

void dqrdc(double a[], int lda, int n, int p, double qraux[], int jpvt[],
           double work[], int job)

/******************************************************************************/
/**
  Purpose:

    DQRDC computes the QR factorization of a real rectangular matrix.

  Discussion:

    DQRDC uses Householder transformations.

    Column pivoting based on the 2-norms of the reduced columns may be
    performed at the user's option.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 June 2005

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    LINPACK User's Guide,
    SIAM, (Society for Industrial and Applied Mathematics),
    3600 University City Science Center,
    Philadelphia, PA, 19104-2688.
    ISBN 0-89871-172-X

  Parameters:

    Input/output, double A(LDA,P).  On input, the N by P matrix
    whose decomposition is to be computed.  On output, A contains in
    its upper triangle the upper triangular matrix R of the QR
    factorization.  Below its diagonal A contains information from
    which the orthogonal part of the decomposition can be recovered.
    Note that if pivoting has been requested, the decomposition is not that
    of the original matrix A but that of A with its columns permuted
    as described by JPVT.

    Input, int LDA, the leading dimension of the array A.  LDA must
    be at least N.

    Input, int N, the number of rows of the matrix A.

    Input, int P, the number of columns of the matrix A.

    Output, double QRAUX[P], contains further information required
    to recover the orthogonal part of the decomposition.

    Input/output, integer JPVT[P].  On input, JPVT contains integers that
    control the selection of the pivot columns.  The K-th column A(*,K) of A
    is placed in one of three classes according to the value of JPVT(K).
      > 0, then A(K) is an initial column.
      = 0, then A(K) is a free column.
      < 0, then A(K) is a final column.
    Before the decomposition is computed, initial columns are moved to
    the beginning of the array A and final columns to the end.  Both
    initial and final columns are frozen in place during the computation
    and only free columns are moved.  At the K-th stage of the
    reduction, if A(*,K) is occupied by a free column it is interchanged
    with the free column of largest reduced norm.  JPVT is not referenced
    if JOB == 0.  On output, JPVT(K) contains the index of the column of the
    original matrix that has been interchanged into the K-th column, if
    pivoting was requested.

    Workspace, double WORK[P].  WORK is not referenced if JOB == 0.

    Input, int JOB, initiates column pivoting.
    0, no pivoting is done.
    nonzero, pivoting is done.
*/
{
  int jp;
  int j;
  int lup;
  int maxj;
  double maxnrm, nrmxl, t, tt;

  int pl = 1, pu = 0;
  /**
    If pivoting is requested, rearrange the columns.
  */
  if (job != 0) {
    for (j = 1; j <= p; j++) {
      int swapj = (0 < jpvt[j - 1]);
      jpvt[j - 1] = (jpvt[j - 1] < 0) ? -j : j;
      if (swapj) {
        if (j != pl)
          dswap(n, a + 0 + (pl - 1)*lda, 1, a + 0 + (j - 1), 1);
        jpvt[j - 1] = jpvt[pl - 1];
        jpvt[pl - 1] = j;
        pl++;
      }
    }
    pu = p;
    for (j = p; 1 <= j; j--) {
      if (jpvt[j - 1] < 0) {
        jpvt[j - 1] = -jpvt[j - 1];
        if (j != pu) {
          dswap(n, a + 0 + (pu - 1)*lda, 1, a + 0 + (j - 1)*lda, 1);
          jp = jpvt[pu - 1];
          jpvt[pu - 1] = jpvt[j - 1];
          jpvt[j - 1] = jp;
        }
        pu = pu - 1;
      }
    }
  }
  /**
    Compute the norms of the free columns.
  */
  for (j = pl; j <= pu; j++)
    qraux[j - 1] = dnrm2(n, a + 0 + (j - 1) * lda, 1);
  for (j = pl; j <= pu; j++)
    work[j - 1] = qraux[j - 1];
  /**
    Perform the Householder reduction of A.
  */
  lup = i4_min(n, p);
  for (int l = 1; l <= lup; l++) {
    /**
      Bring the column of largest norm into the pivot position.
    */
    if (pl <= l && l < pu) {
      maxnrm = 0.0;
      maxj = l;
      for (j = l; j <= pu; j++) {
        if (maxnrm < qraux[j - 1]) {
          maxnrm = qraux[j - 1];
          maxj = j;
        }
      }
      if (maxj != l) {
        dswap(n, a + 0 + (l - 1)*lda, 1, a + 0 + (maxj - 1)*lda, 1);
        qraux[maxj - 1] = qraux[l - 1];
        work[maxj - 1] = work[l - 1];
        jp = jpvt[maxj - 1];
        jpvt[maxj - 1] = jpvt[l - 1];
        jpvt[l - 1] = jp;
      }
    }
    /**
      Compute the Householder transformation for column L.
    */
    qraux[l - 1] = 0.0;
    if (l != n) {
      nrmxl = dnrm2(n - l + 1, a + l - 1 + (l - 1) * lda, 1);
      if (nrmxl != 0.0) {
        if (a[l - 1 + (l - 1)*lda] != 0.0)
          nrmxl = nrmxl * r8_sign(a[l - 1 + (l - 1) * lda]);
        dscal(n - l + 1, 1.0 / nrmxl, a + l - 1 + (l - 1)*lda, 1);
        a[l - 1 + (l - 1)*lda] = 1.0 + a[l - 1 + (l - 1) * lda];
        /**
          Apply the transformation to the remaining columns, updating the norms.
        */
        for (j = l + 1; j <= p; j++) {
          t = -ddot(n - l + 1, a + l - 1 + (l - 1) * lda, 1, a + l - 1 + (j - 1) * lda, 1)
              / a[l - 1 + (l - 1) * lda];
          daxpy(n - l + 1, t, a + l - 1 + (l - 1)*lda, 1, a + l - 1 + (j - 1)*lda, 1);
          if (pl <= j && j <= pu) {
            if (qraux[j - 1] != 0.0) {
              tt = 1.0 - pow(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
              tt = r8_max(tt, 0.0);
              t = tt;
              tt = 1.0 + 0.05 * tt * pow(qraux[j - 1] / work[j - 1], 2);
              if (tt != 1.0)
                qraux[j - 1] = qraux[j - 1] * sqrt(t);
              else {
                qraux[j - 1] = dnrm2(n - l, a + l + (j - 1) * lda, 1);
                work[j - 1] = qraux[j - 1];
              }
            }
          }
        }
        /**
          Save the transformation.
        */
        qraux[l - 1] = a[l - 1 + (l - 1) * lda];
        a[l - 1 + (l - 1)*lda] = -nrmxl;
      }
    }
  }
}
/******************************************************************************/

int dqrls(double a[], int lda, int m, int n, double tol, int* kr, double b[],
          double x[], double rsd[], int jpvt[], double qraux[], int itask)

/******************************************************************************/
/**
  Purpose:

    DQRLS factors and solves a linear system in the least squares sense.

  Discussion:

    The linear system may be overdetermined, underdetermined or singular.
    The solution is obtained using a QR factorization of the
    coefficient matrix.

    DQRLS can be efficiently used to solve several least squares
    problems with the same matrix A.  The first system is solved
    with ITASK = 1.  The subsequent systems are solved with
    ITASK = 2, to avoid the recomputation of the matrix factors.
    The parameters KR, JPVT, and QRAUX must not be modified
    between calls to DQRLS.

    DQRLS is used to solve in a least squares sense
    overdetermined, underdetermined and singular linear systems.
    The system is A*X approximates B where A is M by N.
    B is a given M-vector, and X is the N-vector to be computed.
    A solution X is found which minimimzes the sum of squares (2-norm)
    of the residual,  A*X - B.

    The numerical rank of A is determined using the tolerance TOL.

    DQRLS uses the LINPACK subroutine DQRDC to compute the QR
    factorization, with column pivoting, of an M by N matrix A.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    10 September 2012

  Author:

    C version by John Burkardt.

  Reference:

    David Kahaner, Cleve Moler, Steven Nash,
    Numerical Methods and Software,
    Prentice Hall, 1989,
    ISBN: 0-13-627258-4,
    LC: TA345.K34.

  Parameters:

    Input/output, double A[LDA*N], an M by N matrix.
    On input, the matrix whose decomposition is to be computed.
    In a least squares data fitting problem, A(I,J) is the
    value of the J-th basis (model) function at the I-th data point.
    On output, A contains the output from DQRDC.  The triangular matrix R
    of the QR factorization is contained in the upper triangle and
    information needed to recover the orthogonal matrix Q is stored
    below the diagonal in A and in the vector QRAUX.

    Input, int LDA, the leading dimension of A.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double TOL, a relative tolerance used to determine the
    numerical rank.  The problem should be scaled so that all the elements
    of A have roughly the same absolute accuracy EPS.  Then a reasonable
    value for TOL is roughly EPS divided by the magnitude of the largest
    element.

    Output, int *KR, the numerical rank.

    Input, double B[M], the right hand side of the linear system.

    Output, double X[N], a least squares solution to the linear
    system.

    Output, double RSD[M], the residual, B - A*X.  RSD may
    overwrite B.

    Workspace, int JPVT[N], required if ITASK = 1.
    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.  ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
    of the condition number of the matrix of independent columns,
    and of R.  This estimate will be <= 1/TOL.

    Workspace, double QRAUX[N], required if ITASK = 1.

    Input, int ITASK.
    1, DQRLS factors the matrix A and solves the least squares problem.
    2, DQRLS assumes that the matrix A was factored with an earlier
       call to DQRLS, and only solves the least squares problem.

    Output, int DQRLS, error code.
    0:  no error
    -1: LDA < M   (fatal error)
    -2: N < 1     (fatal error)
    -3: ITASK < 1 (fatal error)
*/
{
  int ind;
  if (lda < m) {
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  LDA < M.\n" );*/
    ind = -1;
    return ind;
  }

  if (n <= 0) {
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  N <= 0.\n" );*/
    ind = -2;
    return ind;
  }

  if (itask < 1) {
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  ITASK < 1.\n" );*/
    ind = -3;
    return ind;
  }

  ind = 0;
  /**
    Factor the matrix.
  */
  if (itask == 1)
    dqrank(a, lda, m, n, tol, kr, jpvt, qraux);
  /**
    Solve the least-squares problem.
  */
  dqrlss(a, lda, m, n, *kr, b, x, rsd, jpvt, qraux);
  return ind;
}
/******************************************************************************/

void dqrlss(double a[], int lda, int m, int n, int kr, double b[], double x[],
            double rsd[], int jpvt[], double qraux[])

/******************************************************************************/
/**
  Purpose:

    DQRLSS solves a linear system in a least squares sense.

  Discussion:

    DQRLSS must be preceded by a call to DQRANK.

    The system is to be solved is
      A * X = B
    where
      A is an M by N matrix with rank KR, as determined by DQRANK,
      B is a given M-vector,
      X is the N-vector to be computed.

    A solution X, with at most KR nonzero components, is found which
    minimizes the 2-norm of the residual (A*X-B).

    Once the matrix A has been formed, DQRANK should be
    called once to decompose it.  Then, for each right hand
    side B, DQRLSS should be called once to obtain the
    solution and residual.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    10 September 2012

  Author:

    C version by John Burkardt

  Parameters:

    Input, double A[LDA*N], the QR factorization information
    from DQRANK.  The triangular matrix R of the QR factorization is
    contained in the upper triangle and information needed to recover
    the orthogonal matrix Q is stored below the diagonal in A and in
    the vector QRAUX.

    Input, int LDA, the leading dimension of A, which must
    be at least M.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, int KR, the rank of the matrix, as estimated by DQRANK.

    Input, double B[M], the right hand side of the linear system.

    Output, double X[N], a least squares solution to the
    linear system.

    Output, double RSD[M], the residual, B - A*X.  RSD may
    overwrite B.

    Input, int JPVT[N], the pivot information from DQRANK.
    Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.

    Input, double QRAUX[N], auxiliary information from DQRANK
    defining the QR factorization.
*/
{
  int i;
  int info;
  int j;
  int job;
  int k;
  double t;

  if (kr != 0) {
    job = 110;
    info = dqrsl(a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job); UNUSED(info);
  }

  for (i = 0; i < n; i++)
    jpvt[i] = - jpvt[i];

  for (i = kr; i < n; i++)
    x[i] = 0.0;

  for (j = 1; j <= n; j++) {
    if (jpvt[j - 1] <= 0) {
      k = - jpvt[j - 1];
      jpvt[j - 1] = k;

      while (k != j) {
        t = x[j - 1];
        x[j - 1] = x[k - 1];
        x[k - 1] = t;
        jpvt[k - 1] = -jpvt[k - 1];
        k = jpvt[k - 1];
      }
    }
  }
}
/******************************************************************************/

int dqrsl(double a[], int lda, int n, int k, double qraux[], double y[],
          double qy[], double qty[], double b[], double rsd[], double ab[], int job)

/******************************************************************************/
/**
  Purpose:

    DQRSL computes transformations, projections, and least squares solutions.

  Discussion:

    DQRSL requires the output of DQRDC.

    For K <= min(N,P), let AK be the matrix

      AK = ( A(JPVT[0]), A(JPVT(2)), ..., A(JPVT(K)) )

    formed from columns JPVT[0], ..., JPVT(K) of the original
    N by P matrix A that was input to DQRDC.  If no pivoting was
    done, AK consists of the first K columns of A in their
    original order.  DQRDC produces a factored orthogonal matrix Q
    and an upper triangular matrix R such that

      AK = Q * (R)
               (0)

    This information is contained in coded form in the arrays
    A and QRAUX.

    The parameters QY, QTY, B, RSD, and AB are not referenced
    if their computation is not requested and in this case
    can be replaced by dummy variables in the calling program.
    To save storage, the user may in some cases use the same
    array for different parameters in the calling sequence.  A
    frequently occurring example is when one wishes to compute
    any of B, RSD, or AB and does not need Y or QTY.  In this
    case one may identify Y, QTY, and one of B, RSD, or AB, while
    providing separate arrays for anything else that is to be
    computed.

    Thus the calling sequence

      dqrsl ( a, lda, n, k, qraux, y, dum, y, b, y, dum, 110, info )

    will result in the computation of B and RSD, with RSD
    overwriting Y.  More generally, each item in the following
    list contains groups of permissible identifications for
    a single calling sequence.

      1. (Y,QTY,B) (RSD) (AB) (QY)

      2. (Y,QTY,RSD) (B) (AB) (QY)

      3. (Y,QTY,AB) (B) (RSD) (QY)

      4. (Y,QY) (QTY,B) (RSD) (AB)

      5. (Y,QY) (QTY,RSD) (B) (AB)

      6. (Y,QY) (QTY,AB) (B) (RSD)

    In any group the value returned in the array allocated to
    the group corresponds to the last member of the group.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 June 2005

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    LINPACK User's Guide,
    SIAM, (Society for Industrial and Applied Mathematics),
    3600 University City Science Center,
    Philadelphia, PA, 19104-2688.
    ISBN 0-89871-172-X

  Parameters:

    Input, double A[LDA*P], contains the output of DQRDC.

    Input, int LDA, the leading dimension of the array A.

    Input, int N, the number of rows of the matrix AK.  It must
    have the same value as N in DQRDC.

    Input, int K, the number of columns of the matrix AK.  K
    must not be greater than min(N,P), where P is the same as in the
    calling sequence to DQRDC.

    Input, double QRAUX[P], the auxiliary output from DQRDC.

    Input, double Y[N], a vector to be manipulated by DQRSL.

    Output, double QY[N], contains Q * Y, if requested.

    Output, double QTY[N], contains Q' * Y, if requested.

    Output, double B[K], the solution of the least squares problem
      minimize norm2 ( Y - AK * B),
    if its computation has been requested.  Note that if pivoting was
    requested in DQRDC, the J-th component of B will be associated with
    column JPVT(J) of the original matrix A that was input into DQRDC.

    Output, double RSD[N], the least squares residual Y - AK * B,
    if its computation has been requested.  RSD is also the orthogonal
    projection of Y onto the orthogonal complement of the column space
    of AK.

    Output, double AB[N], the least squares approximation Ak * B,
    if its computation has been requested.  AB is also the orthogonal
    projection of Y onto the column space of A.

    Input, integer JOB, specifies what is to be computed.  JOB has
    the decimal expansion ABCDE, with the following meaning:

      if A != 0, compute QY.
      if B != 0, compute QTY.
      if C != 0, compute QTY and B.
      if D != 0, compute QTY and RSD.
      if E != 0, compute QTY and AB.

    Note that a request to compute B, RSD, or AB automatically triggers
    the computation of QTY, for which an array must be provided in the
    calling sequence.

    Output, int DQRSL, is zero unless the computation of B has
    been requested and R is exactly singular.  In this case, INFO is the
    index of the first zero diagonal element of R, and B is left unaltered.
*/
{
  int cab;
  int cb;
  int cqty;
  int cqy;
  int cr;
  int i;
  int info;
  int j;
  int jj;
  int ju;
  double t;
  double temp;
  /**
    Set INFO flag.
  */
  info = 0;

  /**
    Determine what is to be computed.
  */
  cqy  = ( job / 10000        != 0);
  cqty = ((job % 10000)       != 0);
  cb   = ((job %  1000) / 100 != 0);
  cr   = ((job %   100) /  10 != 0);
  cab  = ((job %    10)       != 0);
  ju = i4_min(k, n - 1);

  /**
    Special action when N = 1.
  */
  if (ju == 0) {
    if (cqy)
      qy[0] = y[0];
    if (cqty)
      qty[0] = y[0];
    if (cab)
      ab[0] = y[0];
    if (cb) {
      if (a[0 + 0 * lda] == 0.0)
        info = 1;
      else
        b[0] = y[0] / a[0 + 0 * lda];
    }
    if (cr)
      rsd[0] = 0.0;
    return info;
  }
  /**
    Set up to compute QY or QTY.
  */
  if (cqy) {
    for (i = 1; i <= n; i++)
      qy[i - 1] = y[i - 1];
  }
  if (cqty) {
    for (i = 1; i <= n; i++)
      qty[i - 1] = y[i - 1];
  }
  /**
    Compute QY.
  */
  if (cqy) {
    for (jj = 1; jj <= ju; jj++) {
      j = ju - jj + 1;
      if (qraux[j - 1] != 0.0) {
        temp = a[j - 1 + (j - 1) * lda];
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
        t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, qy + j - 1, 1) / a[j - 1 + (j - 1) * lda];
        daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, qy + j - 1, 1);
        a[j - 1 + (j - 1)*lda] = temp;
      }
    }
  }
  /**
    Compute Q'*Y.
  */
  if (cqty) {
    for (j = 1; j <= ju; j++) {
      if (qraux[j - 1] != 0.0) {
        temp = a[j - 1 + (j - 1) * lda];
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
        t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, qty + j - 1, 1) / a[j - 1 + (j - 1) * lda];
        daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, qty + j - 1, 1);
        a[j - 1 + (j - 1)*lda] = temp;
      }
    }
  }
  /**
    Set up to compute B, RSD, or AB.
  */
  if (cb) {
    for (i = 1; i <= k; i++)
      b[i - 1] = qty[i - 1];
  }
  if (cab) {
    for (i = 1; i <= k; i++)
      ab[i - 1] = qty[i - 1];
  }
  if (cr && k < n) {
    for (i = k + 1; i <= n; i++)
      rsd[i - 1] = qty[i - 1];
  }
  if (cab && k + 1 <= n) {
    for (i = k + 1; i <= n; i++)
      ab[i - 1] = 0.0;
  }
  if (cr) {
    for (i = 1; i <= k; i++)
      rsd[i - 1] = 0.0;
  }
  /**
    Compute B.
  */
  if (cb) {
    for (jj = 1; jj <= k; jj++) {
      j = k - jj + 1;
      if (a[j - 1 + (j - 1)*lda] == 0.0) {
        info = j;
        break;
      }
      b[j - 1] = b[j - 1] / a[j - 1 + (j - 1) * lda];
      if (j != 1) {
        t = -b[j - 1];
        daxpy(j - 1, t, a + 0 + (j - 1)*lda, 1, b, 1);
      }
    }
  }
  /**
    Compute RSD or AB as required.
  */
  if (cr || cab) {
    for (jj = 1; jj <= ju; jj++) {
      j = ju - jj + 1;
      if (qraux[j - 1] != 0.0) {
        temp = a[j - 1 + (j - 1) * lda];
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
        if (cr) {
          t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, rsd + j - 1, 1)
              / a[j - 1 + (j - 1) * lda];
          daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, rsd + j - 1, 1);
        }
        if (cab) {
          t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, ab + j - 1, 1)
              / a[j - 1 + (j - 1) * lda];
          daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, ab + j - 1, 1);
        }
        a[j - 1 + (j - 1)*lda] = temp;
      }
    }
  }
  return info;
}
/******************************************************************************/

/******************************************************************************/

void dscal(int n, double sa, double x[], int incx)

/******************************************************************************/
/**
  Purpose:

    DSCAL scales a vector by a constant.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vector.

    Input, double SA, the multiplier.

    Input/output, double X[*], the vector to be scaled.

    Input, int INCX, the increment between successive entries of X.
*/
{
  int i;
  int ix;
  int m;

  if (n <= 0) return;

  if (incx == 1) {
    m = n % 5;
    for (i = 0; i < m; i++)
      x[i] = sa * x[i];
    for (i = m; i < n; i = i + 5) {
      x[i]   = sa * x[i];
      x[i + 1] = sa * x[i + 1];
      x[i + 2] = sa * x[i + 2];
      x[i + 3] = sa * x[i + 3];
      x[i + 4] = sa * x[i + 4];
    }
  }
  else {
    if (0 <= incx)
      ix = 0;
    else
      ix = (- n + 1) * incx;
    for (i = 0; i < n; i++) {
      x[ix] = sa * x[ix];
      ix = ix + incx;
    }
  }
}
/******************************************************************************/


void dswap(int n, double x[], int incx, double y[], int incy)

/******************************************************************************/
/**
  Purpose:

    DSWAP interchanges two vectors.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vectors.

    Input/output, double X[*], one of the vectors to swap.

    Input, int INCX, the increment between successive entries of X.

    Input/output, double Y[*], one of the vectors to swap.

    Input, int INCY, the increment between successive elements of Y.
*/
{
  if (n <= 0) return;

  int i, ix, iy, m;
  double temp;

  if (incx == 1 && incy == 1) {
    m = n % 3;
    for (i = 0; i < m; i++) {
      temp = x[i];
      x[i] = y[i];
      y[i] = temp;
    }
    for (i = m; i < n; i = i + 3) {
      temp = x[i];
      x[i] = y[i];
      y[i] = temp;
      temp = x[i + 1];
      x[i + 1] = y[i + 1];
      y[i + 1] = temp;
      temp = x[i + 2];
      x[i + 2] = y[i + 2];
      y[i + 2] = temp;
    }
  }
  else {
    ix = (incx >= 0) ? 0 : (-n + 1) * incx;
    iy = (incy >= 0) ? 0 : (-n + 1) * incy;
    for (i = 0; i < n; i++) {
      temp = x[ix];
      x[ix] = y[iy];
      y[iy] = temp;
      ix = ix + incx;
      iy = iy + incy;
    }
  }
}
/******************************************************************************/

/******************************************************************************/

void qr_solve(double x[], int m, int n, double a[], double b[])

/******************************************************************************/
/**
  Purpose:

    QR_SOLVE solves a linear system in the least squares sense.

  Discussion:

    If the matrix A has full column rank, then the solution X should be the
    unique vector that minimizes the Euclidean norm of the residual.

    If the matrix A does not have full column rank, then the solution is
    not unique; the vector X will minimize the residual norm, but so will
    various other vectors.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    11 September 2012

  Author:

    John Burkardt

  Reference:

    David Kahaner, Cleve Moler, Steven Nash,
    Numerical Methods and Software,
    Prentice Hall, 1989,
    ISBN: 0-13-627258-4,
    LC: TA345.K34.

  Parameters:

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double A[M*N], the matrix.

    Input, double B[M], the right hand side.

    Output, double QR_SOLVE[N], the least squares solution.
*/
{
  double a_qr[n * m], qraux[n], r[m], tol;
  int ind, itask, jpvt[n], kr, lda;

  r8mat_copy(a_qr, m, n, a);
  lda = m;
  tol = r8_epsilon() / r8mat_amax(m, n, a_qr);
  itask = 1;

  ind = dqrls(a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask); UNUSED(ind);
}
/******************************************************************************/

#endif