qr_solve.cpp 38.5 KB
Newer Older
MagoKimbra's avatar
MagoKimbra committed
1
#include "../../base.h"
MagoKimbra's avatar
MagoKimbra committed
2

3
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(AUTO_BED_LEVELING_GRID)
MagoKimbra's avatar
MagoKimbra committed
4

MagoKimbra's avatar
MagoKimbra committed
5
#include "qr_solve.h"
MagoKimbra's avatar
MagoKimbra committed
6 7 8
#include <stdlib.h>
#include <math.h>

MagoKimbra's avatar
MagoKimbra committed
9 10
//# include "r8lib.h"

MagoKimbra's avatar
MagoKimbra committed
11
int i4_min(int i1, int i2)
MagoKimbra's avatar
MagoKimbra committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

/******************************************************************************/
/*
  Purpose:

    I4_MIN returns the smaller of two I4's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    29 August 2006

  Author:

    John Burkardt

  Parameters:

    Input, int I1, I2, two integers to be compared.

    Output, int I4_MIN, the smaller of I1 and I2.
*/
{
MagoKimbra's avatar
MagoKimbra committed
38
  return (i1 < i2) ? i1 : i2;
MagoKimbra's avatar
MagoKimbra committed
39 40
}

MagoKimbra's avatar
MagoKimbra committed
41
double r8_epsilon(void)
MagoKimbra's avatar
MagoKimbra committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/******************************************************************************/
/*
  Purpose:

    R8_EPSILON returns the R8 round off unit.

  Discussion:

    R8_EPSILON is a number R which is a power of 2 with the property that,
    to the precision of the computer's arithmetic,
      1 < 1 + R
    but
      1 = ( 1 + R / 2 )

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    01 September 2012

  Author:

    John Burkardt

  Parameters:

    Output, double R8_EPSILON, the R8 round-off unit.
*/
{
  const double value = 2.220446049250313E-016;
  return value;
}

MagoKimbra's avatar
MagoKimbra committed
78
double r8_max(double x, double y)
MagoKimbra's avatar
MagoKimbra committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

/******************************************************************************/
/*
  Purpose:

    R8_MAX returns the maximum of two R8's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, Y, the quantities to compare.

    Output, double R8_MAX, the maximum of X and Y.
*/
{
MagoKimbra's avatar
MagoKimbra committed
105
  return (y < x) ? x : y;
MagoKimbra's avatar
MagoKimbra committed
106 107
}

MagoKimbra's avatar
MagoKimbra committed
108
double r8_abs(double x)
MagoKimbra's avatar
MagoKimbra committed
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

/******************************************************************************/
/*
  Purpose:

    R8_ABS returns the absolute value of an R8.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, the quantity whose absolute value is desired.

    Output, double R8_ABS, the absolute value of X.
*/
{
MagoKimbra's avatar
MagoKimbra committed
135
  return (x < 0.0) ? -x : x;
MagoKimbra's avatar
MagoKimbra committed
136 137
}

MagoKimbra's avatar
MagoKimbra committed
138
double r8_sign(double x)
MagoKimbra's avatar
MagoKimbra committed
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

/******************************************************************************/
/*
  Purpose:

    R8_SIGN returns the sign of an R8.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    08 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, the number whose sign is desired.

    Output, double R8_SIGN, the sign of X.
*/
{
MagoKimbra's avatar
MagoKimbra committed
165
  return (x < 0.0) ? -1.0 : 1.0;
MagoKimbra's avatar
MagoKimbra committed
166 167
}

MagoKimbra's avatar
MagoKimbra committed
168
double r8mat_amax(int m, int n, double a[])
MagoKimbra's avatar
MagoKimbra committed
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

/******************************************************************************/
/*
  Purpose:

    R8MAT_AMAX returns the maximum absolute value entry of an R8MAT.

  Discussion:

    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
    in column-major order.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 September 2012

  Author:

    John Burkardt

  Parameters:

    Input, int M, the number of rows in A.

    Input, int N, the number of columns in A.

    Input, double A[M*N], the M by N matrix.

    Output, double R8MAT_AMAX, the maximum absolute value entry of A.
*/
{
MagoKimbra's avatar
MagoKimbra committed
204 205 206 207 208
  double value = r8_abs(a[0 + 0 * m]);
  for (int j = 0; j < n; j++) {
    for (int i = 0; i < m; i++) {
      if (value < r8_abs(a[i + j * m]))
        value = r8_abs(a[i + j * m]);
MagoKimbra's avatar
MagoKimbra committed
209 210 211 212 213
    }
  }
  return value;
}

MagoKimbra's avatar
MagoKimbra committed
214
void r8mat_copy(double a2[], int m, int n, double a1[])
MagoKimbra's avatar
MagoKimbra committed
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

/******************************************************************************/
/*
  Purpose:

    R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT.

  Discussion:

    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
    in column-major order.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    26 July 2008

  Author:

    John Burkardt

  Parameters:

    Input, int M, N, the number of rows and columns.

    Input, double A1[M*N], the matrix to be copied.

    Output, double R8MAT_COPY_NEW[M*N], the copy of A1.
*/
{
MagoKimbra's avatar
MagoKimbra committed
248 249 250
  for (int j = 0; j < n; j++) {
    for (int i = 0; i < m; i++)
      a2[i + j * m] = a1[i + j * m];
MagoKimbra's avatar
MagoKimbra committed
251 252 253 254 255
  }
}

/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
256
void daxpy(int n, double da, double dx[], int incx, double dy[], int incy)
MagoKimbra's avatar
MagoKimbra committed
257 258 259 260 261 262 263 264 265 266 267 268 269

/******************************************************************************/
/*
  Purpose:

    DAXPY computes constant times a vector plus a vector.

  Discussion:

    This routine uses unrolled loops for increments equal to one.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
270
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
MagoKimbra's avatar
MagoKimbra committed
288 289
    Algorithm 539,
    ACM Transactions on Mathematical Software,
MagoKimbra's avatar
MagoKimbra committed
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of elements in DX and DY.

    Input, double DA, the multiplier of DX.

    Input, double DX[*], the first vector.

    Input, int INCX, the increment between successive entries of DX.

    Input/output, double DY[*], the second vector.
    On output, DY[*] has been replaced by DY[*] + DA * DX[*].

    Input, int INCY, the increment between successive entries of DY.
*/
{
MagoKimbra's avatar
MagoKimbra committed
308 309 310 311 312 313 314 315 316
  if (n <= 0 || da == 0.0) return;

  int i, ix, iy, m;
  /*
    Code for unequal increments or equal increments
    not equal to 1.
  */
  if (incx != 1 || incy != 1) {
    if (0 <= incx)
MagoKimbra's avatar
MagoKimbra committed
317 318
      ix = 0;
    else
MagoKimbra's avatar
MagoKimbra committed
319 320
      ix = (- n + 1) * incx;
    if (0 <= incy)
MagoKimbra's avatar
MagoKimbra committed
321 322
      iy = 0;
    else
MagoKimbra's avatar
MagoKimbra committed
323 324
      iy = (- n + 1) * incy;
    for (i = 0; i < n; i++) {
MagoKimbra's avatar
MagoKimbra committed
325 326 327 328 329
      dy[iy] = dy[iy] + da * dx[ix];
      ix = ix + incx;
      iy = iy + incy;
    }
  }
MagoKimbra's avatar
MagoKimbra committed
330 331 332 333
  /*
    Code for both increments equal to 1.
  */
  else {
MagoKimbra's avatar
MagoKimbra committed
334
    m = n % 4;
MagoKimbra's avatar
MagoKimbra committed
335
    for (i = 0; i < m; i++)
MagoKimbra's avatar
MagoKimbra committed
336
      dy[i] = dy[i] + da * dx[i];
MagoKimbra's avatar
MagoKimbra committed
337
    for (i = m; i < n; i = i + 4) {
MagoKimbra's avatar
MagoKimbra committed
338
      dy[i  ] = dy[i  ] + da * dx[i  ];
MagoKimbra's avatar
MagoKimbra committed
339 340 341
      dy[i + 1] = dy[i + 1] + da * dx[i + 1];
      dy[i + 2] = dy[i + 2] + da * dx[i + 2];
      dy[i + 3] = dy[i + 3] + da * dx[i + 3];
MagoKimbra's avatar
MagoKimbra committed
342 343 344 345 346
    }
  }
}
/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
347
double ddot(int n, double dx[], int incx, double dy[], int incy)
MagoKimbra's avatar
MagoKimbra committed
348 349 350 351 352 353 354 355 356 357 358 359 360

/******************************************************************************/
/*
  Purpose:

    DDOT forms the dot product of two vectors.

  Discussion:

    This routine uses unrolled loops for increments equal to one.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
361
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
MagoKimbra's avatar
MagoKimbra committed
379 380
    Algorithm 539,
    ACM Transactions on Mathematical Software,
MagoKimbra's avatar
MagoKimbra committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vectors.

    Input, double DX[*], the first vector.

    Input, int INCX, the increment between successive entries in DX.

    Input, double DY[*], the second vector.

    Input, int INCY, the increment between successive entries in DY.

    Output, double DDOT, the sum of the product of the corresponding
    entries of DX and DY.
*/
{

MagoKimbra's avatar
MagoKimbra committed
400
  if (n <= 0) return 0.0;
MagoKimbra's avatar
MagoKimbra committed
401

MagoKimbra's avatar
MagoKimbra committed
402 403
  int i, m;
  double dtemp = 0.0;
MagoKimbra's avatar
MagoKimbra committed
404

MagoKimbra's avatar
MagoKimbra committed
405 406 407 408 409 410 411 412 413
  /*
    Code for unequal increments or equal increments
    not equal to 1.
  */
  if (incx != 1 || incy != 1) {
    int ix = (incx >= 0) ? 0 : (-n + 1) * incx,
        iy = (incy >= 0) ? 0 : (-n + 1) * incy;
    for (i = 0; i < n; i++) {
      dtemp += dx[ix] * dy[iy];
MagoKimbra's avatar
MagoKimbra committed
414 415 416 417
      ix = ix + incx;
      iy = iy + incy;
    }
  }
MagoKimbra's avatar
MagoKimbra committed
418 419 420 421
  /*
    Code for both increments equal to 1.
  */
  else {
MagoKimbra's avatar
MagoKimbra committed
422
    m = n % 5;
MagoKimbra's avatar
MagoKimbra committed
423 424 425 426 427 428 429 430
    for (i = 0; i < m; i++)
      dtemp += dx[i] * dy[i];
    for (i = m; i < n; i = i + 5) {
      dtemp += dx[i] * dy[i]
              + dx[i + 1] * dy[i + 1]
              + dx[i + 2] * dy[i + 2]
              + dx[i + 3] * dy[i + 3]
              + dx[i + 4] * dy[i + 4];
MagoKimbra's avatar
MagoKimbra committed
431 432 433 434 435 436
    }
  }
  return dtemp;
}
/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
437
double dnrm2(int n, double x[], int incx)
MagoKimbra's avatar
MagoKimbra committed
438 439 440 441 442 443 444 445 446 447 448 449 450

/******************************************************************************/
/*
  Purpose:

    DNRM2 returns the euclidean norm of a vector.

  Discussion:

     DNRM2 ( X ) = sqrt ( X' * X )

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
451
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vector.

    Input, double X[*], the vector whose norm is to be computed.

    Input, int INCX, the increment between successive entries of X.

    Output, double DNRM2, the Euclidean norm of X.
*/
{
  double norm;
MagoKimbra's avatar
MagoKimbra committed
485
  if (n < 1 || incx < 1)
MagoKimbra's avatar
MagoKimbra committed
486
    norm = 0.0;
MagoKimbra's avatar
MagoKimbra committed
487 488 489 490 491 492 493 494 495 496
  else if (n == 1)
    norm = r8_abs(x[0]);
  else {
    double scale = 0.0, ssq = 1.0;
    int ix = 0;
    for (int i = 0; i < n; i++) {
      if (x[ix] != 0.0) {
        double absxi = r8_abs(x[ix]);
        if (scale < absxi) {
          ssq = 1.0 + ssq * (scale / absxi) * (scale / absxi);
MagoKimbra's avatar
MagoKimbra committed
497 498 499
          scale = absxi;
        }
        else
MagoKimbra's avatar
MagoKimbra committed
500
          ssq = ssq + (absxi / scale) * (absxi / scale);
MagoKimbra's avatar
MagoKimbra committed
501
      }
MagoKimbra's avatar
MagoKimbra committed
502
      ix += incx;
MagoKimbra's avatar
MagoKimbra committed
503
    }
MagoKimbra's avatar
MagoKimbra committed
504
    norm = scale * sqrt(ssq);
MagoKimbra's avatar
MagoKimbra committed
505 506 507 508 509
  }
  return norm;
}
/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
510 511
void dqrank(double a[], int lda, int m, int n, double tol, int* kr,
            int jpvt[], double qraux[])
MagoKimbra's avatar
MagoKimbra committed
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

/******************************************************************************/
/*
  Purpose:

    DQRANK computes the QR factorization of a rectangular matrix.

  Discussion:

    This routine is used in conjunction with DQRLSS to solve
    overdetermined, underdetermined and singular linear systems
    in a least squares sense.

    DQRANK uses the LINPACK subroutine DQRDC to compute the QR
    factorization, with column pivoting, of an M by N matrix A.
    The numerical rank is determined using the tolerance TOL.

    Note that on output, ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
    of the condition number of the matrix of independent columns,
    and of R.  This estimate will be <= 1/TOL.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
535
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

  Modified:

    21 April 2012

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979,
    ISBN13: 978-0-898711-72-1,
    LC: QA214.L56.

  Parameters:

    Input/output, double A[LDA*N].  On input, the matrix whose
    decomposition is to be computed.  On output, the information from DQRDC.
    The triangular matrix R of the QR factorization is contained in the
    upper triangle and information needed to recover the orthogonal
    matrix Q is stored below the diagonal in A and in the vector QRAUX.

    Input, int LDA, the leading dimension of A, which must
    be at least M.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double TOL, a relative tolerance used to determine the
    numerical rank.  The problem should be scaled so that all the elements
    of A have roughly the same absolute accuracy, EPS.  Then a reasonable
    value for TOL is roughly EPS divided by the magnitude of the largest
    element.

    Output, int *KR, the numerical rank.

    Output, int JPVT[N], the pivot information from DQRDC.
    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.

    Output, double QRAUX[N], will contain extra information defining
    the QR factorization.
*/
{
MagoKimbra's avatar
MagoKimbra committed
585
  double work[n];
MagoKimbra's avatar
MagoKimbra committed
586

MagoKimbra's avatar
MagoKimbra committed
587
  for (int i = 0; i < n; i++)
MagoKimbra's avatar
MagoKimbra committed
588 589
    jpvt[i] = 0;

MagoKimbra's avatar
MagoKimbra committed
590
  int job = 1;
MagoKimbra's avatar
MagoKimbra committed
591

MagoKimbra's avatar
MagoKimbra committed
592
  dqrdc(a, lda, m, n, qraux, jpvt, work, job);
MagoKimbra's avatar
MagoKimbra committed
593 594

  *kr = 0;
MagoKimbra's avatar
MagoKimbra committed
595 596 597
  int k = i4_min(m, n);
  for (int j = 0; j < k; j++) {
    if (r8_abs(a[j + j * lda]) <= tol * r8_abs(a[0 + 0 * lda]))
MagoKimbra's avatar
MagoKimbra committed
598 599 600 601 602 603
      return;
    *kr = j + 1;
  }
}
/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
604 605
void dqrdc(double a[], int lda, int n, int p, double qraux[], int jpvt[],
           double work[], int job)
MagoKimbra's avatar
MagoKimbra committed
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

/******************************************************************************/
/*
  Purpose:

    DQRDC computes the QR factorization of a real rectangular matrix.

  Discussion:

    DQRDC uses Householder transformations.

    Column pivoting based on the 2-norms of the reduced columns may be
    performed at the user's option.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
622
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

  Modified:

    07 June 2005

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    LINPACK User's Guide,
    SIAM, (Society for Industrial and Applied Mathematics),
    3600 University City Science Center,
    Philadelphia, PA, 19104-2688.
    ISBN 0-89871-172-X

  Parameters:

    Input/output, double A(LDA,P).  On input, the N by P matrix
    whose decomposition is to be computed.  On output, A contains in
    its upper triangle the upper triangular matrix R of the QR
    factorization.  Below its diagonal A contains information from
    which the orthogonal part of the decomposition can be recovered.
    Note that if pivoting has been requested, the decomposition is not that
    of the original matrix A but that of A with its columns permuted
    as described by JPVT.

    Input, int LDA, the leading dimension of the array A.  LDA must
    be at least N.

    Input, int N, the number of rows of the matrix A.

    Input, int P, the number of columns of the matrix A.

    Output, double QRAUX[P], contains further information required
    to recover the orthogonal part of the decomposition.

    Input/output, integer JPVT[P].  On input, JPVT contains integers that
    control the selection of the pivot columns.  The K-th column A(*,K) of A
    is placed in one of three classes according to the value of JPVT(K).
      > 0, then A(K) is an initial column.
      = 0, then A(K) is a free column.
      < 0, then A(K) is a final column.
    Before the decomposition is computed, initial columns are moved to
    the beginning of the array A and final columns to the end.  Both
    initial and final columns are frozen in place during the computation
    and only free columns are moved.  At the K-th stage of the
    reduction, if A(*,K) is occupied by a free column it is interchanged
    with the free column of largest reduced norm.  JPVT is not referenced
    if JOB == 0.  On output, JPVT(K) contains the index of the column of the
    original matrix that has been interchanged into the K-th column, if
    pivoting was requested.

    Workspace, double WORK[P].  WORK is not referenced if JOB == 0.

    Input, int JOB, initiates column pivoting.
    0, no pivoting is done.
    nonzero, pivoting is done.
*/
{
  int jp;
MagoKimbra's avatar
MagoKimbra committed
686
  int j;
MagoKimbra's avatar
MagoKimbra committed
687 688
  int lup;
  int maxj;
MagoKimbra's avatar
MagoKimbra committed
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
  double maxnrm, nrmxl, t, tt;

  int pl = 1, pu = 0;
  /*
    If pivoting is requested, rearrange the columns.
  */
  if (job != 0) {
    for (j = 1; j <= p; j++) {
      int swapj = (0 < jpvt[j - 1]);
      jpvt[j - 1] = (jpvt[j - 1] < 0) ? -j : j;
      if (swapj) {
        if (j != pl)
          dswap(n, a + 0 + (pl - 1)*lda, 1, a + 0 + (j - 1), 1);
        jpvt[j - 1] = jpvt[pl - 1];
        jpvt[pl - 1] = j;
        pl++;
MagoKimbra's avatar
MagoKimbra committed
705 706 707
      }
    }
    pu = p;
MagoKimbra's avatar
MagoKimbra committed
708 709 710 711 712 713 714 715
    for (j = p; 1 <= j; j--) {
      if (jpvt[j - 1] < 0) {
        jpvt[j - 1] = -jpvt[j - 1];
        if (j != pu) {
          dswap(n, a + 0 + (pu - 1)*lda, 1, a + 0 + (j - 1)*lda, 1);
          jp = jpvt[pu - 1];
          jpvt[pu - 1] = jpvt[j - 1];
          jpvt[j - 1] = jp;
MagoKimbra's avatar
MagoKimbra committed
716 717 718 719 720
        }
        pu = pu - 1;
      }
    }
  }
MagoKimbra's avatar
MagoKimbra committed
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  /*
    Compute the norms of the free columns.
  */
  for (j = pl; j <= pu; j++)
    qraux[j - 1] = dnrm2(n, a + 0 + (j - 1) * lda, 1);
  for (j = pl; j <= pu; j++)
    work[j - 1] = qraux[j - 1];
  /*
    Perform the Householder reduction of A.
  */
  lup = i4_min(n, p);
  for (int l = 1; l <= lup; l++) {
    /*
      Bring the column of largest norm into the pivot position.
    */
    if (pl <= l && l < pu) {
MagoKimbra's avatar
MagoKimbra committed
737 738
      maxnrm = 0.0;
      maxj = l;
MagoKimbra's avatar
MagoKimbra committed
739 740 741
      for (j = l; j <= pu; j++) {
        if (maxnrm < qraux[j - 1]) {
          maxnrm = qraux[j - 1];
MagoKimbra's avatar
MagoKimbra committed
742 743 744
          maxj = j;
        }
      }
MagoKimbra's avatar
MagoKimbra committed
745 746 747 748 749 750 751
      if (maxj != l) {
        dswap(n, a + 0 + (l - 1)*lda, 1, a + 0 + (maxj - 1)*lda, 1);
        qraux[maxj - 1] = qraux[l - 1];
        work[maxj - 1] = work[l - 1];
        jp = jpvt[maxj - 1];
        jpvt[maxj - 1] = jpvt[l - 1];
        jpvt[l - 1] = jp;
MagoKimbra's avatar
MagoKimbra committed
752 753
      }
    }
MagoKimbra's avatar
MagoKimbra committed
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    /*
      Compute the Householder transformation for column L.
    */
    qraux[l - 1] = 0.0;
    if (l != n) {
      nrmxl = dnrm2(n - l + 1, a + l - 1 + (l - 1) * lda, 1);
      if (nrmxl != 0.0) {
        if (a[l - 1 + (l - 1)*lda] != 0.0)
          nrmxl = nrmxl * r8_sign(a[l - 1 + (l - 1) * lda]);
        dscal(n - l + 1, 1.0 / nrmxl, a + l - 1 + (l - 1)*lda, 1);
        a[l - 1 + (l - 1)*lda] = 1.0 + a[l - 1 + (l - 1) * lda];
        /*
          Apply the transformation to the remaining columns, updating the norms.
        */
        for (j = l + 1; j <= p; j++) {
          t = -ddot(n - l + 1, a + l - 1 + (l - 1) * lda, 1, a + l - 1 + (j - 1) * lda, 1)
              / a[l - 1 + (l - 1) * lda];
          daxpy(n - l + 1, t, a + l - 1 + (l - 1)*lda, 1, a + l - 1 + (j - 1)*lda, 1);
          if (pl <= j && j <= pu) {
            if (qraux[j - 1] != 0.0) {
              tt = 1.0 - pow(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
              tt = r8_max(tt, 0.0);
MagoKimbra's avatar
MagoKimbra committed
776
              t = tt;
MagoKimbra's avatar
MagoKimbra committed
777 778 779 780 781 782
              tt = 1.0 + 0.05 * tt * pow(qraux[j - 1] / work[j - 1], 2);
              if (tt != 1.0)
                qraux[j - 1] = qraux[j - 1] * sqrt(t);
              else {
                qraux[j - 1] = dnrm2(n - l, a + l + (j - 1) * lda, 1);
                work[j - 1] = qraux[j - 1];
MagoKimbra's avatar
MagoKimbra committed
783 784 785 786
              }
            }
          }
        }
MagoKimbra's avatar
MagoKimbra committed
787 788 789 790 791
        /*
          Save the transformation.
        */
        qraux[l - 1] = a[l - 1 + (l - 1) * lda];
        a[l - 1 + (l - 1)*lda] = -nrmxl;
MagoKimbra's avatar
MagoKimbra committed
792 793 794 795 796 797
      }
    }
  }
}
/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
798 799
int dqrls(double a[], int lda, int m, int n, double tol, int* kr, double b[],
          double x[], double rsd[], int jpvt[], double qraux[], int itask)
MagoKimbra's avatar
MagoKimbra committed
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

/******************************************************************************/
/*
  Purpose:

    DQRLS factors and solves a linear system in the least squares sense.

  Discussion:

    The linear system may be overdetermined, underdetermined or singular.
    The solution is obtained using a QR factorization of the
    coefficient matrix.

    DQRLS can be efficiently used to solve several least squares
    problems with the same matrix A.  The first system is solved
    with ITASK = 1.  The subsequent systems are solved with
    ITASK = 2, to avoid the recomputation of the matrix factors.
    The parameters KR, JPVT, and QRAUX must not be modified
    between calls to DQRLS.

    DQRLS is used to solve in a least squares sense
    overdetermined, underdetermined and singular linear systems.
    The system is A*X approximates B where A is M by N.
    B is a given M-vector, and X is the N-vector to be computed.
    A solution X is found which minimimzes the sum of squares (2-norm)
    of the residual,  A*X - B.

    The numerical rank of A is determined using the tolerance TOL.

    DQRLS uses the LINPACK subroutine DQRDC to compute the QR
    factorization, with column pivoting, of an M by N matrix A.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
834
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

  Modified:

    10 September 2012

  Author:

    C version by John Burkardt.

  Reference:

    David Kahaner, Cleve Moler, Steven Nash,
    Numerical Methods and Software,
    Prentice Hall, 1989,
    ISBN: 0-13-627258-4,
    LC: TA345.K34.

  Parameters:

    Input/output, double A[LDA*N], an M by N matrix.
    On input, the matrix whose decomposition is to be computed.
    In a least squares data fitting problem, A(I,J) is the
    value of the J-th basis (model) function at the I-th data point.
    On output, A contains the output from DQRDC.  The triangular matrix R
    of the QR factorization is contained in the upper triangle and
    information needed to recover the orthogonal matrix Q is stored
    below the diagonal in A and in the vector QRAUX.

    Input, int LDA, the leading dimension of A.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double TOL, a relative tolerance used to determine the
    numerical rank.  The problem should be scaled so that all the elements
    of A have roughly the same absolute accuracy EPS.  Then a reasonable
    value for TOL is roughly EPS divided by the magnitude of the largest
    element.

    Output, int *KR, the numerical rank.

    Input, double B[M], the right hand side of the linear system.

    Output, double X[N], a least squares solution to the linear
    system.

    Output, double RSD[M], the residual, B - A*X.  RSD may
    overwrite B.

    Workspace, int JPVT[N], required if ITASK = 1.
    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.  ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
    of the condition number of the matrix of independent columns,
    and of R.  This estimate will be <= 1/TOL.

    Workspace, double QRAUX[N], required if ITASK = 1.

    Input, int ITASK.
    1, DQRLS factors the matrix A and solves the least squares problem.
    2, DQRLS assumes that the matrix A was factored with an earlier
       call to DQRLS, and only solves the least squares problem.

    Output, int DQRLS, error code.
    0:  no error
    -1: LDA < M   (fatal error)
    -2: N < 1     (fatal error)
    -3: ITASK < 1 (fatal error)
*/
{
  int ind;
MagoKimbra's avatar
MagoKimbra committed
907
  if (lda < m) {
MagoKimbra's avatar
MagoKimbra committed
908 909 910 911 912 913 914
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  LDA < M.\n" );*/
    ind = -1;
    return ind;
  }

MagoKimbra's avatar
MagoKimbra committed
915
  if (n <= 0) {
MagoKimbra's avatar
MagoKimbra committed
916 917 918 919 920 921 922
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  N <= 0.\n" );*/
    ind = -2;
    return ind;
  }

MagoKimbra's avatar
MagoKimbra committed
923
  if (itask < 1) {
MagoKimbra's avatar
MagoKimbra committed
924 925 926 927 928 929 930 931
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  ITASK < 1.\n" );*/
    ind = -3;
    return ind;
  }

  ind = 0;
MagoKimbra's avatar
MagoKimbra committed
932 933 934 935 936 937 938 939 940
  /*
    Factor the matrix.
  */
  if (itask == 1)
    dqrank(a, lda, m, n, tol, kr, jpvt, qraux);
  /*
    Solve the least-squares problem.
  */
  dqrlss(a, lda, m, n, *kr, b, x, rsd, jpvt, qraux);
MagoKimbra's avatar
MagoKimbra committed
941 942 943 944
  return ind;
}
/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
945 946
void dqrlss(double a[], int lda, int m, int n, int kr, double b[], double x[],
            double rsd[], int jpvt[], double qraux[])
MagoKimbra's avatar
MagoKimbra committed
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

/******************************************************************************/
/*
  Purpose:

    DQRLSS solves a linear system in a least squares sense.

  Discussion:

    DQRLSS must be preceded by a call to DQRANK.

    The system is to be solved is
      A * X = B
    where
      A is an M by N matrix with rank KR, as determined by DQRANK,
      B is a given M-vector,
      X is the N-vector to be computed.

    A solution X, with at most KR nonzero components, is found which
    minimizes the 2-norm of the residual (A*X-B).

    Once the matrix A has been formed, DQRANK should be
    called once to decompose it.  Then, for each right hand
    side B, DQRLSS should be called once to obtain the
    solution and residual.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
975
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

  Modified:

    10 September 2012

  Author:

    C version by John Burkardt

  Parameters:

    Input, double A[LDA*N], the QR factorization information
    from DQRANK.  The triangular matrix R of the QR factorization is
    contained in the upper triangle and information needed to recover
    the orthogonal matrix Q is stored below the diagonal in A and in
    the vector QRAUX.

    Input, int LDA, the leading dimension of A, which must
    be at least M.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, int KR, the rank of the matrix, as estimated by DQRANK.

    Input, double B[M], the right hand side of the linear system.

    Output, double X[N], a least squares solution to the
    linear system.

    Output, double RSD[M], the residual, B - A*X.  RSD may
    overwrite B.

    Input, int JPVT[N], the pivot information from DQRANK.
    Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.

    Input, double QRAUX[N], auxiliary information from DQRANK
    defining the QR factorization.
*/
{
  int i;
  int info;
  int j;
  int job;
  int k;
  double t;

MagoKimbra's avatar
MagoKimbra committed
1026
  if (kr != 0) {
MagoKimbra's avatar
MagoKimbra committed
1027
    job = 110;
MagoKimbra's avatar
MagoKimbra committed
1028 1029
    info = dqrsl(a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job);
    UNUSED(info);
MagoKimbra's avatar
MagoKimbra committed
1030 1031
  }

MagoKimbra's avatar
MagoKimbra committed
1032
  for (i = 0; i < n; i++)
MagoKimbra's avatar
MagoKimbra committed
1033 1034
    jpvt[i] = - jpvt[i];

MagoKimbra's avatar
MagoKimbra committed
1035
  for (i = kr; i < n; i++)
MagoKimbra's avatar
MagoKimbra committed
1036 1037
    x[i] = 0.0;

MagoKimbra's avatar
MagoKimbra committed
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
  for (j = 1; j <= n; j++) {
    if (jpvt[j - 1] <= 0) {
      k = - jpvt[j - 1];
      jpvt[j - 1] = k;

      while (k != j) {
        t = x[j - 1];
        x[j - 1] = x[k - 1];
        x[k - 1] = t;
        jpvt[k - 1] = -jpvt[k - 1];
        k = jpvt[k - 1];
MagoKimbra's avatar
MagoKimbra committed
1049 1050 1051 1052 1053 1054
      }
    }
  }
}
/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
1055 1056
int dqrsl(double a[], int lda, int n, int k, double qraux[], double y[],
          double qy[], double qty[], double b[], double rsd[], double ab[], int job)
MagoKimbra's avatar
MagoKimbra committed
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

/******************************************************************************/
/*
  Purpose:

    DQRSL computes transformations, projections, and least squares solutions.

  Discussion:

    DQRSL requires the output of DQRDC.

    For K <= min(N,P), let AK be the matrix

      AK = ( A(JPVT[0]), A(JPVT(2)), ..., A(JPVT(K)) )

    formed from columns JPVT[0], ..., JPVT(K) of the original
    N by P matrix A that was input to DQRDC.  If no pivoting was
    done, AK consists of the first K columns of A in their
    original order.  DQRDC produces a factored orthogonal matrix Q
    and an upper triangular matrix R such that

      AK = Q * (R)
               (0)

    This information is contained in coded form in the arrays
    A and QRAUX.

    The parameters QY, QTY, B, RSD, and AB are not referenced
    if their computation is not requested and in this case
    can be replaced by dummy variables in the calling program.
    To save storage, the user may in some cases use the same
    array for different parameters in the calling sequence.  A
    frequently occurring example is when one wishes to compute
    any of B, RSD, or AB and does not need Y or QTY.  In this
    case one may identify Y, QTY, and one of B, RSD, or AB, while
    providing separate arrays for anything else that is to be
    computed.

    Thus the calling sequence

      dqrsl ( a, lda, n, k, qraux, y, dum, y, b, y, dum, 110, info )

    will result in the computation of B and RSD, with RSD
    overwriting Y.  More generally, each item in the following
    list contains groups of permissible identifications for
    a single calling sequence.

      1. (Y,QTY,B) (RSD) (AB) (QY)

      2. (Y,QTY,RSD) (B) (AB) (QY)

      3. (Y,QTY,AB) (B) (RSD) (QY)

      4. (Y,QY) (QTY,B) (RSD) (AB)

      5. (Y,QY) (QTY,RSD) (B) (AB)

      6. (Y,QY) (QTY,AB) (B) (RSD)

    In any group the value returned in the array allocated to
    the group corresponds to the last member of the group.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
1121
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

  Modified:

    07 June 2005

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    LINPACK User's Guide,
    SIAM, (Society for Industrial and Applied Mathematics),
    3600 University City Science Center,
    Philadelphia, PA, 19104-2688.
    ISBN 0-89871-172-X

  Parameters:

    Input, double A[LDA*P], contains the output of DQRDC.

    Input, int LDA, the leading dimension of the array A.

    Input, int N, the number of rows of the matrix AK.  It must
    have the same value as N in DQRDC.

    Input, int K, the number of columns of the matrix AK.  K
    must not be greater than min(N,P), where P is the same as in the
    calling sequence to DQRDC.

    Input, double QRAUX[P], the auxiliary output from DQRDC.

    Input, double Y[N], a vector to be manipulated by DQRSL.

    Output, double QY[N], contains Q * Y, if requested.

    Output, double QTY[N], contains Q' * Y, if requested.

    Output, double B[K], the solution of the least squares problem
      minimize norm2 ( Y - AK * B),
    if its computation has been requested.  Note that if pivoting was
    requested in DQRDC, the J-th component of B will be associated with
    column JPVT(J) of the original matrix A that was input into DQRDC.

    Output, double RSD[N], the least squares residual Y - AK * B,
    if its computation has been requested.  RSD is also the orthogonal
    projection of Y onto the orthogonal complement of the column space
    of AK.

    Output, double AB[N], the least squares approximation Ak * B,
    if its computation has been requested.  AB is also the orthogonal
    projection of Y onto the column space of A.

    Input, integer JOB, specifies what is to be computed.  JOB has
    the decimal expansion ABCDE, with the following meaning:

      if A != 0, compute QY.
      if B != 0, compute QTY.
      if C != 0, compute QTY and B.
      if D != 0, compute QTY and RSD.
      if E != 0, compute QTY and AB.

    Note that a request to compute B, RSD, or AB automatically triggers
    the computation of QTY, for which an array must be provided in the
    calling sequence.

    Output, int DQRSL, is zero unless the computation of B has
    been requested and R is exactly singular.  In this case, INFO is the
    index of the first zero diagonal element of R, and B is left unaltered.
*/
{
  int cab;
  int cb;
  int cqty;
  int cqy;
  int cr;
  int i;
  int info;
  int j;
  int jj;
  int ju;
  double t;
  double temp;
MagoKimbra's avatar
MagoKimbra committed
1206 1207 1208
  /*
    Set INFO flag.
  */
MagoKimbra's avatar
MagoKimbra committed
1209 1210
  info = 0;

MagoKimbra's avatar
MagoKimbra committed
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
  /*
    Determine what is to be computed.
  */
  cqy  = ( job / 10000        != 0);
  cqty = ((job % 10000)       != 0);
  cb   = ((job %  1000) / 100 != 0);
  cr   = ((job %   100) /  10 != 0);
  cab  = ((job %    10)       != 0);
  ju = i4_min(k, n - 1);

  /*
    Special action when N = 1.
  */
  if (ju == 0) {
    if (cqy)
MagoKimbra's avatar
MagoKimbra committed
1226
      qy[0] = y[0];
MagoKimbra's avatar
MagoKimbra committed
1227
    if (cqty)
MagoKimbra's avatar
MagoKimbra committed
1228
      qty[0] = y[0];
MagoKimbra's avatar
MagoKimbra committed
1229
    if (cab)
MagoKimbra's avatar
MagoKimbra committed
1230
      ab[0] = y[0];
MagoKimbra's avatar
MagoKimbra committed
1231 1232
    if (cb) {
      if (a[0 + 0 * lda] == 0.0)
MagoKimbra's avatar
MagoKimbra committed
1233 1234
        info = 1;
      else
MagoKimbra's avatar
MagoKimbra committed
1235
        b[0] = y[0] / a[0 + 0 * lda];
MagoKimbra's avatar
MagoKimbra committed
1236
    }
MagoKimbra's avatar
MagoKimbra committed
1237
    if (cr)
MagoKimbra's avatar
MagoKimbra committed
1238 1239 1240
      rsd[0] = 0.0;
    return info;
  }
MagoKimbra's avatar
MagoKimbra committed
1241 1242 1243 1244 1245 1246
  /*
    Set up to compute QY or QTY.
  */
  if (cqy) {
    for (i = 1; i <= n; i++)
      qy[i - 1] = y[i - 1];
MagoKimbra's avatar
MagoKimbra committed
1247
  }
MagoKimbra's avatar
MagoKimbra committed
1248 1249 1250
  if (cqty) {
    for (i = 1; i <= n; i++)
      qty[i - 1] = y[i - 1];
MagoKimbra's avatar
MagoKimbra committed
1251
  }
MagoKimbra's avatar
MagoKimbra committed
1252 1253 1254 1255 1256
  /*
    Compute QY.
  */
  if (cqy) {
    for (jj = 1; jj <= ju; jj++) {
MagoKimbra's avatar
MagoKimbra committed
1257
      j = ju - jj + 1;
MagoKimbra's avatar
MagoKimbra committed
1258 1259 1260 1261 1262 1263
      if (qraux[j - 1] != 0.0) {
        temp = a[j - 1 + (j - 1) * lda];
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
        t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, qy + j - 1, 1) / a[j - 1 + (j - 1) * lda];
        daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, qy + j - 1, 1);
        a[j - 1 + (j - 1)*lda] = temp;
MagoKimbra's avatar
MagoKimbra committed
1264 1265 1266
      }
    }
  }
MagoKimbra's avatar
MagoKimbra committed
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
  /*
    Compute Q'*Y.
  */
  if (cqty) {
    for (j = 1; j <= ju; j++) {
      if (qraux[j - 1] != 0.0) {
        temp = a[j - 1 + (j - 1) * lda];
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
        t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, qty + j - 1, 1) / a[j - 1 + (j - 1) * lda];
        daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, qty + j - 1, 1);
        a[j - 1 + (j - 1)*lda] = temp;
MagoKimbra's avatar
MagoKimbra committed
1278 1279 1280
      }
    }
  }
MagoKimbra's avatar
MagoKimbra committed
1281 1282 1283 1284 1285 1286
  /*
    Set up to compute B, RSD, or AB.
  */
  if (cb) {
    for (i = 1; i <= k; i++)
      b[i - 1] = qty[i - 1];
MagoKimbra's avatar
MagoKimbra committed
1287
  }
MagoKimbra's avatar
MagoKimbra committed
1288 1289 1290
  if (cab) {
    for (i = 1; i <= k; i++)
      ab[i - 1] = qty[i - 1];
MagoKimbra's avatar
MagoKimbra committed
1291
  }
MagoKimbra's avatar
MagoKimbra committed
1292 1293 1294
  if (cr && k < n) {
    for (i = k + 1; i <= n; i++)
      rsd[i - 1] = qty[i - 1];
MagoKimbra's avatar
MagoKimbra committed
1295
  }
MagoKimbra's avatar
MagoKimbra committed
1296 1297 1298
  if (cab && k + 1 <= n) {
    for (i = k + 1; i <= n; i++)
      ab[i - 1] = 0.0;
MagoKimbra's avatar
MagoKimbra committed
1299
  }
MagoKimbra's avatar
MagoKimbra committed
1300 1301 1302
  if (cr) {
    for (i = 1; i <= k; i++)
      rsd[i - 1] = 0.0;
MagoKimbra's avatar
MagoKimbra committed
1303
  }
MagoKimbra's avatar
MagoKimbra committed
1304 1305 1306 1307 1308
  /*
    Compute B.
  */
  if (cb) {
    for (jj = 1; jj <= k; jj++) {
MagoKimbra's avatar
MagoKimbra committed
1309
      j = k - jj + 1;
MagoKimbra's avatar
MagoKimbra committed
1310
      if (a[j - 1 + (j - 1)*lda] == 0.0) {
MagoKimbra's avatar
MagoKimbra committed
1311 1312 1313
        info = j;
        break;
      }
MagoKimbra's avatar
MagoKimbra committed
1314 1315 1316 1317
      b[j - 1] = b[j - 1] / a[j - 1 + (j - 1) * lda];
      if (j != 1) {
        t = -b[j - 1];
        daxpy(j - 1, t, a + 0 + (j - 1)*lda, 1, b, 1);
MagoKimbra's avatar
MagoKimbra committed
1318 1319 1320
      }
    }
  }
MagoKimbra's avatar
MagoKimbra committed
1321 1322 1323 1324 1325
  /*
    Compute RSD or AB as required.
  */
  if (cr || cab) {
    for (jj = 1; jj <= ju; jj++) {
MagoKimbra's avatar
MagoKimbra committed
1326
      j = ju - jj + 1;
MagoKimbra's avatar
MagoKimbra committed
1327 1328 1329 1330 1331 1332 1333
      if (qraux[j - 1] != 0.0) {
        temp = a[j - 1 + (j - 1) * lda];
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
        if (cr) {
          t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, rsd + j - 1, 1)
              / a[j - 1 + (j - 1) * lda];
          daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, rsd + j - 1, 1);
MagoKimbra's avatar
MagoKimbra committed
1334
        }
MagoKimbra's avatar
MagoKimbra committed
1335 1336 1337 1338
        if (cab) {
          t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, ab + j - 1, 1)
              / a[j - 1 + (j - 1) * lda];
          daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, ab + j - 1, 1);
MagoKimbra's avatar
MagoKimbra committed
1339
        }
MagoKimbra's avatar
MagoKimbra committed
1340
        a[j - 1 + (j - 1)*lda] = temp;
MagoKimbra's avatar
MagoKimbra committed
1341 1342 1343 1344 1345 1346 1347 1348 1349
      }
    }
  }
  return info;
}
/******************************************************************************/

/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
1350
void dscal(int n, double sa, double x[], int incx)
MagoKimbra's avatar
MagoKimbra committed
1351 1352 1353 1354 1355 1356 1357 1358 1359

/******************************************************************************/
/*
  Purpose:

    DSCAL scales a vector by a constant.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
1360
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vector.

    Input, double SA, the multiplier.

    Input/output, double X[*], the vector to be scaled.

    Input, int INCX, the increment between successive entries of X.
*/
{
  int i;
  int ix;
  int m;

MagoKimbra's avatar
MagoKimbra committed
1397
  if (n <= 0) return;
MagoKimbra's avatar
MagoKimbra committed
1398

MagoKimbra's avatar
MagoKimbra committed
1399 1400 1401
  if (incx == 1) {
    m = n % 5;
    for (i = 0; i < m; i++)
MagoKimbra's avatar
MagoKimbra committed
1402
      x[i] = sa * x[i];
MagoKimbra's avatar
MagoKimbra committed
1403
    for (i = m; i < n; i = i + 5) {
MagoKimbra's avatar
MagoKimbra committed
1404
      x[i]   = sa * x[i];
MagoKimbra's avatar
MagoKimbra committed
1405 1406 1407 1408
      x[i + 1] = sa * x[i + 1];
      x[i + 2] = sa * x[i + 2];
      x[i + 3] = sa * x[i + 3];
      x[i + 4] = sa * x[i + 4];
MagoKimbra's avatar
MagoKimbra committed
1409 1410
    }
  }
MagoKimbra's avatar
MagoKimbra committed
1411 1412
  else {
    if (0 <= incx)
MagoKimbra's avatar
MagoKimbra committed
1413 1414
      ix = 0;
    else
MagoKimbra's avatar
MagoKimbra committed
1415 1416
      ix = (- n + 1) * incx;
    for (i = 0; i < n; i++) {
MagoKimbra's avatar
MagoKimbra committed
1417 1418 1419 1420 1421 1422 1423 1424
      x[ix] = sa * x[ix];
      ix = ix + incx;
    }
  }
}
/******************************************************************************/


MagoKimbra's avatar
MagoKimbra committed
1425
void dswap(int n, double x[], int incx, double y[], int incy)
MagoKimbra's avatar
MagoKimbra committed
1426 1427 1428 1429 1430 1431 1432 1433 1434

/******************************************************************************/
/*
  Purpose:

    DSWAP interchanges two vectors.

  Licensing:

MagoKimbra's avatar
MagoKimbra committed
1435
    This code is distributed under the GNU LGPL license.
MagoKimbra's avatar
MagoKimbra committed
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
MagoKimbra's avatar
MagoKimbra committed
1453 1454
    Algorithm 539,
    ACM Transactions on Mathematical Software,
MagoKimbra's avatar
MagoKimbra committed
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vectors.

    Input/output, double X[*], one of the vectors to swap.

    Input, int INCX, the increment between successive entries of X.

    Input/output, double Y[*], one of the vectors to swap.

    Input, int INCY, the increment between successive elements of Y.
*/
{
MagoKimbra's avatar
MagoKimbra committed
1470 1471 1472
  if (n <= 0) return;

  int i, ix, iy, m;
MagoKimbra's avatar
MagoKimbra committed
1473 1474
  double temp;

MagoKimbra's avatar
MagoKimbra committed
1475
  if (incx == 1 && incy == 1) {
MagoKimbra's avatar
MagoKimbra committed
1476
    m = n % 3;
MagoKimbra's avatar
MagoKimbra committed
1477
    for (i = 0; i < m; i++) {
MagoKimbra's avatar
MagoKimbra committed
1478 1479 1480 1481
      temp = x[i];
      x[i] = y[i];
      y[i] = temp;
    }
MagoKimbra's avatar
MagoKimbra committed
1482
    for (i = m; i < n; i = i + 3) {
MagoKimbra's avatar
MagoKimbra committed
1483 1484 1485
      temp = x[i];
      x[i] = y[i];
      y[i] = temp;
MagoKimbra's avatar
MagoKimbra committed
1486 1487 1488 1489 1490 1491
      temp = x[i + 1];
      x[i + 1] = y[i + 1];
      y[i + 1] = temp;
      temp = x[i + 2];
      x[i + 2] = y[i + 2];
      y[i + 2] = temp;
MagoKimbra's avatar
MagoKimbra committed
1492 1493
    }
  }
MagoKimbra's avatar
MagoKimbra committed
1494 1495 1496 1497
  else {
    ix = (incx >= 0) ? 0 : (-n + 1) * incx;
    iy = (incy >= 0) ? 0 : (-n + 1) * incy;
    for (i = 0; i < n; i++) {
MagoKimbra's avatar
MagoKimbra committed
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
      temp = x[ix];
      x[ix] = y[iy];
      y[iy] = temp;
      ix = ix + incx;
      iy = iy + incy;
    }
  }
}
/******************************************************************************/

/******************************************************************************/

MagoKimbra's avatar
MagoKimbra committed
1510
void qr_solve(double x[], int m, int n, double a[], double b[])
MagoKimbra's avatar
MagoKimbra committed
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

/******************************************************************************/
/*
  Purpose:

    QR_SOLVE solves a linear system in the least squares sense.

  Discussion:

    If the matrix A has full column rank, then the solution X should be the
    unique vector that minimizes the Euclidean norm of the residual.

    If the matrix A does not have full column rank, then the solution is
    not unique; the vector X will minimize the residual norm, but so will
    various other vectors.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    11 September 2012

  Author:

    John Burkardt

  Reference:

    David Kahaner, Cleve Moler, Steven Nash,
    Numerical Methods and Software,
    Prentice Hall, 1989,
    ISBN: 0-13-627258-4,
    LC: TA345.K34.

  Parameters:

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double A[M*N], the matrix.

    Input, double B[M], the right hand side.

    Output, double QR_SOLVE[N], the least squares solution.
*/
{
MagoKimbra's avatar
MagoKimbra committed
1560 1561 1562 1563
  double a_qr[n * m], qraux[n], r[m], tol;
  int ind, itask, jpvt[n], kr, lda;

  r8mat_copy(a_qr, m, n, a);
MagoKimbra's avatar
MagoKimbra committed
1564
  lda = m;
MagoKimbra's avatar
MagoKimbra committed
1565
  tol = r8_epsilon() / r8mat_amax(m, n, a_qr);
MagoKimbra's avatar
MagoKimbra committed
1566 1567
  itask = 1;

MagoKimbra's avatar
MagoKimbra committed
1568
  ind = dqrls ( a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask ); UNUSED(ind);
MagoKimbra's avatar
MagoKimbra committed
1569 1570 1571 1572
}
/******************************************************************************/

#endif