Add proper bootloader code

parent 53d0dd55
menu "Bootloader config"
choice LOG_BOOTLOADER_LEVEL
bool "Bootloader log verbosity"
default LOG_BOOTLOADER_LEVEL_INFO
help
Specify how much output to see in bootloader logs.
config LOG_BOOTLOADER_LEVEL_NONE
bool "No output"
config LOG_BOOTLOADER_LEVEL_ERROR
bool "Error"
config LOG_BOOTLOADER_LEVEL_WARN
bool "Warning"
config LOG_BOOTLOADER_LEVEL_INFO
bool "Info"
config LOG_BOOTLOADER_LEVEL_DEBUG
bool "Debug"
config LOG_BOOTLOADER_LEVEL_VERBOSE
bool "Verbose"
endchoice
config LOG_BOOTLOADER_LEVEL
int
default 0 if LOG_BOOTLOADER_LEVEL_NONE
default 1 if LOG_BOOTLOADER_LEVEL_ERROR
default 2 if LOG_BOOTLOADER_LEVEL_WARN
default 3 if LOG_BOOTLOADER_LEVEL_INFO
default 4 if LOG_BOOTLOADER_LEVEL_DEBUG
default 5 if LOG_BOOTLOADER_LEVEL_VERBOSE
config BOOTLOADER_SPI_WP_PIN
int "SPI Flash WP Pin when customising pins via efuse (read help)"
range 0 33
default 7
depends on FLASHMODE_QIO || FLASHMODE_QOUT
help
This value is ignored unless flash mode is set to QIO or QOUT *and* the SPI flash pins have been
overriden by setting the efuses SPI_PAD_CONFIG_xxx.
When this is the case, the Efuse config only defines 3 of the 4 Quad I/O data pins. The WP pin (aka ESP32
pin "SD_DATA_3" or SPI flash pin "IO2") is not specified in Efuse. That pin number is compiled into the bootloader
instead.
The default value (GPIO 7) is correct for WP pin on ESP32-D2WD integrated flash.
choice BOOTLOADER_VDDSDIO_BOOST
bool "VDDSDIO LDO voltage"
default BOOTLOADER_VDDSDIO_BOOST_1_9V
help
If this option is enabled, and VDDSDIO LDO is set to 1.8V (using EFUSE
or MTDI bootstrapping pin), bootloader will change LDO settings to
output 1.9V instead. This helps prevent flash chip from browning out
during flash programming operations.
This option has no effect if VDDSDIO is set to 3.3V, or if the internal
VDDSDIO regulator is disabled via efuse.
config BOOTLOADER_VDDSDIO_BOOST_1_8V
bool "1.8V"
depends on !ESPTOOLPY_FLASHFREQ_80M
config BOOTLOADER_VDDSDIO_BOOST_1_9V
bool "1.9V"
endchoice
endmenu # Bootloader
menu "Security features"
config SECURE_BOOT_ENABLED
bool "Enable secure boot in bootloader (READ DOCS FIRST)"
default N
help
Build a bootloader which enables secure boot on first boot.
Once enabled, secure boot will not boot a modified bootloader. The bootloader will only load a partition table or boot an app if the data has a verified digital signature. There are implications for reflashing updated apps once secure boot is enabled.
When enabling secure boot, JTAG and ROM BASIC Interpreter are permanently disabled by default.
Refer to https://esp-idf.readthedocs.io/en/latest/security/secure-boot.html before enabling.
choice SECURE_BOOTLOADER_MODE
bool "Secure bootloader mode"
depends on SECURE_BOOT_ENABLED
default SECURE_BOOTLOADER_ONE_TIME_FLASH
config SECURE_BOOTLOADER_ONE_TIME_FLASH
bool "One-time flash"
help
On first boot, the bootloader will generate a key which is not readable externally or by software. A digest is generated from the bootloader image itself. This digest will be verified on each subsequent boot.
Enabling this option means that the bootloader cannot be changed after the first time it is booted.
config SECURE_BOOTLOADER_REFLASHABLE
bool "Reflashable"
help
Generate a reusable secure bootloader key, derived (via SHA-256) from the secure boot signing key.
This allows the secure bootloader to be re-flashed by anyone with access to the secure boot signing key.
This option is less secure than one-time flash, because a leak of the digest key from one device allows reflashing of any device that uses it.
endchoice
config SECURE_BOOT_BUILD_SIGNED_BINARIES
bool "Sign binaries during build"
depends on SECURE_BOOT_ENABLED
default y
help
Once secure boot is enabled, bootloader will only boot if partition table and app image are signed.
If enabled, these binary files are signed as part of the build process. The file named in "Secure boot private signing key" will be used to sign the image.
If disabled, unsigned app/partition data will be built. They must be signed manually using espsecure.py (for example, on a remote signing server.)
config SECURE_BOOT_SIGNING_KEY
string "Secure boot private signing key"
depends on SECURE_BOOT_BUILD_SIGNED_BINARIES
default secure_boot_signing_key.pem
help
Path to the key file used to sign partition tables and app images for secure boot. Once secure boot is enabled, bootloader will only boot if partition table and app image are signed.
Key file is an ECDSA private key (NIST256p curve) in PEM format.
Path is evaluated relative to the project directory.
You can generate a new signing key by running the following command:
espsecure.py generate_signing_key secure_boot_signing_key.pem
See docs/security/secure-boot.rst for details.
config SECURE_BOOT_VERIFICATION_KEY
string "Secure boot public signature verification key"
depends on SECURE_BOOT_ENABLED && !SECURE_BOOT_BUILD_SIGNED_BINARIES
default signature_verification_key.bin
help
Path to a public key file used to verify signed images. This key is compiled into the bootloader,
and may also be used to verify signatures on OTA images after download.
Key file is in raw binary format, and can be extracted from a
PEM formatted private key using the espsecure.py
extract_public_key command.
Refer to https://esp-idf.readthedocs.io/en/latest/security/secure-boot.html before enabling.
config SECURE_BOOT_INSECURE
bool "Allow potentially insecure options"
depends on SECURE_BOOT_ENABLED
default N
help
You can disable some of the default protections offered by secure boot, in order to enable testing or a custom combination of security features.
Only enable these options if you are very sure.
Refer to https://esp-idf.readthedocs.io/en/latest/security/secure-boot.html before enabling.
config FLASH_ENCRYPTION_ENABLED
bool "Enable flash encryption on boot (READ DOCS FIRST)"
default N
help
If this option is set, flash contents will be encrypted by the bootloader on first boot.
Note: After first boot, the system will be permanently encrypted. Re-flashing an encrypted
system is complicated and not always possible.
Read https://esp-idf.readthedocs.io/en/latest/security/flash-encryption.html before enabling.
config FLASH_ENCRYPTION_INSECURE
bool "Allow potentially insecure options"
depends on FLASH_ENCRYPTION_ENABLED
default N
help
You can disable some of the default protections offered by flash encryption, in order to enable testing or a custom combination of security features.
Only enable these options if you are very sure.
Refer to docs/security/secure-boot.rst and docs/security/flash-encryption.rst for details.
menu "Potentially insecure options"
visible if FLASH_ENCRYPTION_INSECURE || SECURE_BOOT_INSECURE
# NOTE: Options in this menu NEED to have SECURE_BOOT_INSECURE
# and/or FLASH_ENCRYPTION_INSECURE in "depends on", as the menu
# itself doesn't enable/disable its children (if it's not set,
# it's possible for the insecure menu to be disabled but the insecure option
# to remain on which is very bad.)
config SECURE_BOOT_ALLOW_ROM_BASIC
bool "Leave ROM BASIC Interpreter available on reset"
depends on SECURE_BOOT_INSECURE || FLASH_ENCRYPTION_INSECURE
default N
help
By default, the BASIC ROM Console starts on reset if no valid bootloader is
read from the flash.
When either flash encryption or secure boot are enabled, the default is to
disable this BASIC fallback mode permanently via efuse.
If this option is set, this efuse is not burned and the BASIC ROM Console may
remain accessible. Only set this option in testing environments.
config SECURE_BOOT_ALLOW_JTAG
bool "Allow JTAG Debugging"
depends on SECURE_BOOT_INSECURE || FLASH_ENCRYPTION_INSECURE
default N
help
If not set (default), the bootloader will permanently disable JTAG (across entire chip) on first boot when either secure boot or flash encryption is enabled.
Setting this option leaves JTAG on for debugging, which negates all protections of flash encryption and some of the protections of secure boot.
Only set this option in testing environments.
config FLASH_ENCRYPTION_UART_BOOTLOADER_ALLOW_ENCRYPT
bool "Leave UART bootloader encryption enabled"
depends on FLASH_ENCRYPTION_INSECURE
default N
help
If not set (default), the bootloader will permanently disable UART bootloader encryption access on first boot. If set, the UART bootloader will still be able to access hardware encryption.
It is recommended to only set this option in testing environments.
config FLASH_ENCRYPTION_UART_BOOTLOADER_ALLOW_DECRYPT
bool "Leave UART bootloader decryption enabled"
depends on FLASH_ENCRYPTION_INSECURE
default N
help
If not set (default), the bootloader will permanently disable UART bootloader decryption access on first boot. If set, the UART bootloader will still be able to access hardware decryption.
Only set this option in testing environments. Setting this option allows complete bypass of flash encryption.
config FLASH_ENCRYPTION_UART_BOOTLOADER_ALLOW_CACHE
bool "Leave UART bootloader flash cache enabled"
depends on FLASH_ENCRYPTION_INSECURE
default N
help
If not set (default), the bootloader will permanently disable UART bootloader flash cache access on first boot. If set, the UART bootloader will still be able to access the flash cache.
Only set this option in testing environments.
config SECURE_BOOT_TEST_MODE
bool "Secure boot test mode: don't permanently set any efuses"
depends on SECURE_BOOT_INSECURE
default N
help
If this option is set, all permanent secure boot changes (via Efuse) are disabled.
Log output will state changes which would be applied, but they will not be.
This option is for testing purposes only - it completely disables secure boot protection.
endmenu # Potentially Insecure
endmenu # Security features
# Bootloader component (top-level project parts)
#
# The bootloader is not a real component that gets linked into the project.
# Instead it is an entire standalone project (in subproject/) that gets
# built in the upper project's build directory. This Makefile.projbuild provides
# the glue to build the bootloader project from the original project. It
# basically runs Make in the subproject/ directory but it needs to
# zero some variables the ESP-IDF project.mk makefile exports first, to not
# let them interfere.
#
BOOTLOADER_COMPONENT_PATH := $(COMPONENT_PATH)
BOOTLOADER_BUILD_DIR=$(abspath $(BUILD_DIR_BASE)/bootloader)
BOOTLOADER_BIN=$(BOOTLOADER_BUILD_DIR)/bootloader.bin
# signing key path is resolved relative to the project directory
CONFIG_SECURE_BOOT_SIGNING_KEY ?=
SECURE_BOOT_SIGNING_KEY=$(abspath $(call dequote,$(CONFIG_SECURE_BOOT_SIGNING_KEY)))
export SECURE_BOOT_SIGNING_KEY # used by bootloader_support component
# Has a matching value in bootloader_support esp_flash_partitions.h
BOOTLOADER_OFFSET := 0x1000
# Custom recursive make for bootloader sub-project
#
# NB: Some variables are cleared in the environment, not
# overriden, because they need to be re-defined in the child
# project.
BOOTLOADER_MAKE= +\
PROJECT_PATH= \
COMPONENT_DIRS= \
$(MAKE) -C $(BOOTLOADER_COMPONENT_PATH)/subproject \
V=$(V) \
BUILD_DIR_BASE=$(BOOTLOADER_BUILD_DIR) \
TEST_COMPONENTS= \
TESTS_ALL=
.PHONY: bootloader-clean bootloader-flash bootloader-list-components bootloader $(BOOTLOADER_BIN)
$(BOOTLOADER_BIN): $(SDKCONFIG_MAKEFILE)
$(BOOTLOADER_MAKE) $@
clean: bootloader-clean
bootloader-list-components:
$(BOOTLOADER_MAKE) list-components
ifndef CONFIG_SECURE_BOOT_ENABLED
# If secure boot disabled, bootloader flashing is integrated
# with 'make flash' and no warnings are printed.
bootloader: $(BOOTLOADER_BIN)
@echo $(SEPARATOR)
@echo "Bootloader built. Default flash command is:"
@echo "$(ESPTOOLPY_WRITE_FLASH) $(BOOTLOADER_OFFSET) $^"
ESPTOOL_ALL_FLASH_ARGS += $(BOOTLOADER_OFFSET) $(BOOTLOADER_BIN)
bootloader-flash: $(BOOTLOADER_BIN) $(call prereq_if_explicit,erase_flash)
$(ESPTOOLPY_WRITE_FLASH) 0x1000 $^
else ifdef CONFIG_SECURE_BOOTLOADER_ONE_TIME_FLASH
# One time flashing requires user to run esptool.py command themselves,
# and warning is printed about inability to reflash.
#
# The flashing command is deliberately printed without an auto-reset
# step, so the device doesn't immediately reset to flash itself.
bootloader: $(BOOTLOADER_BIN)
@echo $(SEPARATOR)
@echo "Bootloader built. One-time flash command is:"
@echo "$(subst hard_reset,no_reset,$(ESPTOOLPY_WRITE_FLASH)) $(BOOTLOADER_OFFSET) $(BOOTLOADER_BIN)"
@echo $(SEPARATOR)
@echo "* IMPORTANT: After first boot, BOOTLOADER CANNOT BE RE-FLASHED on same device"
else ifdef CONFIG_SECURE_BOOTLOADER_REFLASHABLE
# Reflashable secure bootloader
# generates a digest binary (bootloader + digest)
BOOTLOADER_DIGEST_BIN := $(BOOTLOADER_BUILD_DIR)/bootloader-reflash-digest.bin
SECURE_BOOTLOADER_KEY := $(BOOTLOADER_BUILD_DIR)/secure-bootloader-key.bin
ifdef CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES
$(SECURE_BOOTLOADER_KEY): $(SECURE_BOOT_SIGNING_KEY)
$(ESPSECUREPY) digest_private_key -k $< $@
else
$(SECURE_BOOTLOADER_KEY):
@echo "No pre-generated key for a reflashable secure bootloader is available, due to signing configuration."
@echo "To generate one, you can use this command:"
@echo "espsecure.py generate_flash_encryption_key $@"
@echo "then re-run make."
exit 1
endif
bootloader: $(BOOTLOADER_DIGEST_BIN)
@echo $(SEPARATOR)
@echo "Bootloader built and secure digest generated. First time flash command is:"
@echo "$(ESPEFUSEPY) burn_key secure_boot $(SECURE_BOOTLOADER_KEY)"
@echo "$(ESPTOOLPY_WRITE_FLASH) $(BOOTLOADER_OFFSET) $(BOOTLOADER_BIN)"
@echo $(SEPARATOR)
@echo "To reflash the bootloader after initial flash:"
@echo "$(ESPTOOLPY_WRITE_FLASH) 0x0 $(BOOTLOADER_DIGEST_BIN)"
@echo $(SEPARATOR)
@echo "* After first boot, only re-flashes of this kind (with same key) will be accepted."
@echo "* Not recommended to re-use the same secure boot keyfile on multiple production devices."
$(BOOTLOADER_DIGEST_BIN): $(BOOTLOADER_BIN) $(SECURE_BOOTLOADER_KEY)
@echo "DIGEST $(notdir $@)"
$(Q) $(ESPSECUREPY) digest_secure_bootloader -k $(SECURE_BOOTLOADER_KEY) -o $@ $<
else # CONFIG_SECURE_BOOT_ENABLED && !CONFIG_SECURE_BOOTLOADER_REFLASHABLE && !CONFIG_SECURE_BOOTLOADER_ONE_TIME_FLASH
bootloader:
@echo "Invalid bootloader target: bad sdkconfig?"
@exit 1
endif
ifndef CONFIG_SECURE_BOOT_ENABLED
# don't build bootloader by default is secure boot is enabled
all_binaries: $(BOOTLOADER_BIN)
endif
bootloader-clean: $(SDKCONFIG_MAKEFILE)
$(BOOTLOADER_MAKE) app-clean
ifdef CONFIG_SECURE_BOOTLOADER_REFLASHABLE
rm -f $(SECURE_BOOTLOADER_KEY) $(BOOTLOADER_DIGEST_BIN)
endif
# bootloader component is special, as bootloader is also a project.
#
# This top-level component is only configuration files for the IDF project.
#
# See Makefile.projbuild for the targets which actually build the bootloader.
COMPONENT_CONFIG_ONLY := 1
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
ifeq ("$(MAKELEVEL)","0")
$(error Bootloader makefile expects to be run as part of 'make bootloader' from a top-level project.)
endif
PROJECT_NAME := bootloader
COMPONENTS := esptool_py bootloader_support log spi_flash micro-ecc soc main
# Clear C and CXX from top level project
CFLAGS =
CXXFLAGS =
#We cannot include the esp32 component directly but we need its includes.
CFLAGS += -I $(IDF_PATH)/components/esp32/include
# The bootloader pseudo-component is also included in this build, for its Kconfig.projbuild to be included.
#
# IS_BOOTLOADER_BUILD tells the component Makefile.projbuild to be a no-op
IS_BOOTLOADER_BUILD := 1
export IS_BOOTLOADER_BUILD
# BOOTLOADER_BUILD macro is the same, for source file changes
CFLAGS += -D BOOTLOADER_BUILD=1
# include the top-level "project" include directory, for sdkconfig.h
CFLAGS += -I$(BUILD_DIR_BASE)/../include
include $(IDF_PATH)/make/project.mk
# Submodules normally added in component.mk, but fully qualified
# paths can be added at this level (we need binary librtc to be
# available to link bootloader).
COMPONENT_SUBMODULES += $(IDF_PATH)/components/esp32/lib
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include "esp_log.h"
#include "rom/gpio.h"
#include "bootloader_config.h"
#include "bootloader_init.h"
#include "bootloader_utility.h"
#include "bootloader_common.h"
#include "sdkconfig.h"
#include "esp_image_format.h"
static const char* TAG = "boot";
static esp_err_t select_image (esp_image_metadata_t *image_data);
static int selected_boot_partition(const bootloader_state_t *bs);
/*
* We arrive here after the ROM bootloader finished loading this second stage bootloader from flash.
* The hardware is mostly uninitialized, flash cache is down and the app CPU is in reset.
* We do have a stack, so we can do the initialization in C.
*/
void call_start_cpu0()
{
// 1. Hardware initialization
if(bootloader_init() != ESP_OK){
return;
}
// 2. Select image to boot
esp_image_metadata_t image_data;
if(select_image(&image_data) != ESP_OK){
return;
}
// 3. Loading the selected image
bootloader_utility_load_image(&image_data);
}
// Selects image to boot
static esp_err_t select_image (esp_image_metadata_t *image_data)
{
// 1. Load partition table
bootloader_state_t bs = { 0 };
if (!bootloader_utility_load_partition_table(&bs)) {
ESP_LOGE(TAG, "load partition table error!");
return ESP_FAIL;
}
// 2. Select boot partition
int boot_index = selected_boot_partition(&bs);
if(boot_index == INVALID_INDEX) {
return ESP_FAIL; // Unrecoverable failure (not due to corrupt ota data or bad partition contents)
}
// 3. Load the app image for booting
if (!bootloader_utility_load_boot_image(&bs, boot_index, image_data)) {
return ESP_FAIL;
}
return ESP_OK;
}
/*
* Selects a boot partition.
* The conditions for switching to another firmware are checked.
*/
static int selected_boot_partition(const bootloader_state_t *bs)
{
int boot_index = bootloader_utility_get_selected_boot_partition(bs);
if (boot_index == INVALID_INDEX) {
return boot_index; // Unrecoverable failure (not due to corrupt ota data or bad partition contents)
} else {
// Check for reset to the factory firmware or for launch OTA[x] firmware.
// Customer implementation.
// if (gpio_pin_1 == true && ...){
// boot_index = required_boot_partition;
// } ...
}
return boot_index;
}
#
# Main bootloader Makefile.
#
# This is basically the same as a component makefile, but in the case of the bootloader
# we pull in bootloader-specific linker arguments.
#
LINKER_SCRIPTS := \
esp32.bootloader.ld \
$(IDF_PATH)/components/esp32/ld/esp32.rom.ld \
$(IDF_PATH)/components/esp32/ld/esp32.rom.spiram_incompatible_fns.ld \
$(IDF_PATH)/components/esp32/ld/esp32.peripherals.ld \
esp32.bootloader.rom.ld
ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
LINKER_SCRIPTS += $(IDF_PATH)/components/esp32/ld/esp32.rom.spiflash.ld
endif
COMPONENT_ADD_LDFLAGS += -L $(COMPONENT_PATH) $(addprefix -T ,$(LINKER_SCRIPTS))
COMPONENT_ADD_LINKER_DEPS := $(LINKER_SCRIPTS)
/*
Linker file used to link the bootloader.
*/
/* Simplified memory map for the bootloader
The main purpose is to make sure the bootloader can load into main memory
without overwriting itself.
*/
MEMORY
{
/* I/O */
dport0_seg (RW) : org = 0x3FF00000, len = 0x10
/* IRAM POOL1, used for APP CPU cache. We can abuse it in bootloader because APP CPU is still held in reset, the main app enables APP CPU cache */
iram_seg (RWX) : org = 0x40078000, len = 0x8000
/* 64k at the end of DRAM, after ROM bootloader stack */
dram_seg (RW) : org = 0x3FFF0000, len = 0x10000
}
/* Default entry point: */
ENTRY(call_start_cpu0);
SECTIONS
{
.iram1.text :
{
. = ALIGN (16);
*(.entry.text)
*(.init.literal)
*(.init)
} > iram_seg
/* Shared RAM */
.dram0.bss (NOLOAD) :
{
. = ALIGN (8);
_bss_start = ABSOLUTE(.);
*(.dynsbss)
*(.sbss)
*(.sbss.*)
*(.gnu.linkonce.sb.*)
*(.scommon)
*(.sbss2)
*(.sbss2.*)
*(.gnu.linkonce.sb2.*)
*(.dynbss)
*(.bss)
*(.bss.*)
*(.gnu.linkonce.b.*)
*(COMMON)
. = ALIGN (8);
_bss_end = ABSOLUTE(.);
} >dram_seg
.dram0.data :
{
_data_start = ABSOLUTE(.);
*(.data)
*(.data.*)
*(.gnu.linkonce.d.*)
*(.data1)
*(.sdata)
*(.sdata.*)
*(.gnu.linkonce.s.*)
*(.sdata2)
*(.sdata2.*)
*(.gnu.linkonce.s2.*)
*(.jcr)
_data_end = ABSOLUTE(.);
} >dram_seg
.dram0.rodata :
{
_rodata_start = ABSOLUTE(.);
*(.rodata)
*(.rodata.*)
*(.gnu.linkonce.r.*)
*(.rodata1)
__XT_EXCEPTION_TABLE_ = ABSOLUTE(.);
*(.xt_except_table)
*(.gcc_except_table)
*(.gnu.linkonce.e.*)
*(.gnu.version_r)
*(.eh_frame)
. = (. + 3) & ~ 3;
/* C++ constructor and destructor tables, properly ordered: */
__init_array_start = ABSOLUTE(.);
KEEP (*crtbegin.o(.ctors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*(.ctors))
__init_array_end = ABSOLUTE(.);
KEEP (*crtbegin.o(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
/* C++ exception handlers table: */
__XT_EXCEPTION_DESCS_ = ABSOLUTE(.);
*(.xt_except_desc)
*(.gnu.linkonce.h.*)
__XT_EXCEPTION_DESCS_END__ = ABSOLUTE(.);
*(.xt_except_desc_end)
*(.dynamic)
*(.gnu.version_d)
_rodata_end = ABSOLUTE(.);
/* Literals are also RO data. */
_lit4_start = ABSOLUTE(.);
*(*.lit4)
*(.lit4.*)
*(.gnu.linkonce.lit4.*)
_lit4_end = ABSOLUTE(.);
. = ALIGN(4);
_heap_start = ABSOLUTE(.);
} >dram_seg
.iram.text :
{
_stext = .;
_text_start = ABSOLUTE(.);
*(.literal .text .literal.* .text.* .stub .gnu.warning .gnu.linkonce.literal.* .gnu.linkonce.t.*.literal .gnu.linkonce.t.*)
*(.iram1 .iram1.*) /* catch stray IRAM_ATTR */
*(.fini.literal)
*(.fini)
*(.gnu.version)
_text_end = ABSOLUTE(.);
_etext = .;
} > iram_seg
}
PROVIDE ( ets_update_cpu_frequency = 0x40008550 ); /* Updates g_ticks_per_us on the current CPU only; not on the other core */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment