common.c 23.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

#include "stlink.h"
#include "usb.h"

#ifndef _WIN32
#define O_BINARY 0  //! @todo get rid of this OH MY (@xor-gate)
#endif

/* todo: stm32l15xxx flash memory, pm0062 manual */

/* stm32f FPEC flash controller interface, pm0063 manual */
// TODO - all of this needs to be abstracted out....
// STM32F05x is identical, based on RM0091 (DM00031936, Doc ID 018940 Rev 2,
// August 2012)
#define FLASH_REGS_ADDR 0x40022000
#define FLASH_REGS_SIZE 0x28

#define FLASH_ACR (FLASH_REGS_ADDR + 0x00)
#define FLASH_KEYR (FLASH_REGS_ADDR + 0x04)
#define FLASH_SR (FLASH_REGS_ADDR + 0x0c)
#define FLASH_CR (FLASH_REGS_ADDR + 0x10)
#define FLASH_AR (FLASH_REGS_ADDR + 0x14)
#define FLASH_OBR (FLASH_REGS_ADDR + 0x1c)
#define FLASH_WRPR (FLASH_REGS_ADDR + 0x20)

// For STM32F05x, the RDPTR_KEY may be wrong, but as it is not used anywhere...
#define FLASH_RDPTR_KEY 0x00a5
#define FLASH_KEY1 0x45670123
#define FLASH_KEY2 0xcdef89ab

#define FLASH_SR_BSY 0
#define FLASH_SR_EOP 5

#define FLASH_CR_PG 0
#define FLASH_CR_PER 1
#define FLASH_CR_MER 2
#define FLASH_CR_STRT 6
#define FLASH_CR_LOCK 7

// 32L = 32F1 same CoreID as 32F4!
#define STM32L_FLASH_REGS_ADDR ((uint32_t) 0x40023c00)
#define STM32L_FLASH_ACR (STM32L_FLASH_REGS_ADDR + 0x00)
#define STM32L_FLASH_PECR (STM32L_FLASH_REGS_ADDR + 0x04)
#define STM32L_FLASH_PDKEYR (STM32L_FLASH_REGS_ADDR + 0x08)
#define STM32L_FLASH_PEKEYR (STM32L_FLASH_REGS_ADDR + 0x0c)
#define STM32L_FLASH_PRGKEYR (STM32L_FLASH_REGS_ADDR + 0x10)
#define STM32L_FLASH_OPTKEYR (STM32L_FLASH_REGS_ADDR + 0x14)
#define STM32L_FLASH_SR (STM32L_FLASH_REGS_ADDR + 0x18)
#define STM32L_FLASH_OBR (STM32L_FLASH_REGS_ADDR + 0x1c)
#define STM32L_FLASH_WRPR (STM32L_FLASH_REGS_ADDR + 0x20)
#define FLASH_L1_FPRG 10
#define FLASH_L1_PROG 3

// 32L4 register base is at FLASH_REGS_ADDR (0x40022000)
#define STM32L4_FLASH_KEYR (FLASH_REGS_ADDR + 0x08)
#define STM32L4_FLASH_SR (FLASH_REGS_ADDR + 0x10)
#define STM32L4_FLASH_CR (FLASH_REGS_ADDR + 0x14)
#define STM32L4_FLASH_OPTR (FLASH_REGS_ADDR + 0x20)

#define STM32L4_FLASH_SR_BSY 16
#define STM32L4_FLASH_SR_ERRMASK 0x3f8 /* SR [9:3] */

#define STM32L4_FLASH_CR_LOCK 31 /* Lock control register */
#define STM32L4_FLASH_CR_PG 0    /* Program */
#define STM32L4_FLASH_CR_PER 1   /* Page erase */
#define STM32L4_FLASH_CR_MER1 2  /* Bank 1 erase */
#define STM32L4_FLASH_CR_MER2 15 /* Bank 2 erase */
#define STM32L4_FLASH_CR_STRT 16 /* Start command */
#define STM32L4_FLASH_CR_BKER 11 /* Bank select for page erase */
#define STM32L4_FLASH_CR_PNB 3   /* Page number (8 bits) */
// Bits requesting flash operations (useful when we want to clear them)
#define STM32L4_FLASH_CR_OPBITS                                   \
  ((1lu << STM32L4_FLASH_CR_PG) | (1lu << STM32L4_FLASH_CR_PER) | \
   (1lu << STM32L4_FLASH_CR_MER1) | (1lu << STM32L4_FLASH_CR_MER1))
// Page is fully specified by BKER and PNB
#define STM32L4_FLASH_CR_PAGEMASK (0x1fflu << STM32L4_FLASH_CR_PNB)

#define STM32L4_FLASH_OPTR_DUALBANK 21

// STM32L0x flash register base and offsets
// same as 32L1 above
// RM0090 - DM00031020.pdf
#define STM32L0_FLASH_REGS_ADDR ((uint32_t) 0x40022000)
#define FLASH_ACR_OFF ((uint32_t) 0x00)
#define FLASH_PECR_OFF ((uint32_t) 0x04)
#define FLASH_PDKEYR_OFF ((uint32_t) 0x08)
#define FLASH_PEKEYR_OFF ((uint32_t) 0x0c)
#define FLASH_PRGKEYR_OFF ((uint32_t) 0x10)
#define FLASH_OPTKEYR_OFF ((uint32_t) 0x14)
#define FLASH_SR_OFF ((uint32_t) 0x18)
#define FLASH_OBR_OFF ((uint32_t) 0x1c)
#define FLASH_WRPR_OFF ((uint32_t) 0x20)

// STM32F4
#define FLASH_F4_REGS_ADDR ((uint32_t) 0x40023c00)
#define FLASH_F4_KEYR (FLASH_F4_REGS_ADDR + 0x04)
#define FLASH_F4_OPT_KEYR (FLASH_F4_REGS_ADDR + 0x08)
#define FLASH_F4_SR (FLASH_F4_REGS_ADDR + 0x0c)
#define FLASH_F4_CR (FLASH_F4_REGS_ADDR + 0x10)
#define FLASH_F4_OPT_CR (FLASH_F4_REGS_ADDR + 0x14)
#define FLASH_F4_CR_STRT 16
#define FLASH_F4_CR_LOCK 31
#define FLASH_F4_CR_SER 1
#define FLASH_F4_CR_SNB 3
#define FLASH_F4_CR_SNB_MASK 0xf8
#define FLASH_F4_SR_BSY 16

#define L1_WRITE_BLOCK_SIZE 0x80
#define L0_WRITE_BLOCK_SIZE 0x40

#define STLINK_REG_CM3_CPUID 0xE000ED00
#define STLINK_REG_CM3_FP_CTRL 0xE0002000
#define STLINK_REG_CM3_FP_COMP0 0xE0002008

/* Cortex™-M3 Technical Reference Manual */
/* Debug Halting Control and Status Register */
#define STLINK_REG_DHCSR 0xe000edf0
#define STLINK_REG_DHCSR_DBGKEY 0xa05f0000
#define STLINK_REG_DCRSR 0xe000edf4
#define STLINK_REG_DCRDR 0xe000edf8

struct stlink_chipid_params {
  uint32_t chip_id;
  char *description;
  uint32_t flash_size_reg;
  uint32_t flash_pagesize;
  uint32_t sram_size;
  uint32_t bootrom_base;
  uint32_t bootrom_size;
};

void write_uint32(unsigned char *buf, uint32_t ui) {
  if (!is_bigendian()) {  // le -> le (don't swap)
    buf[0] = ((unsigned char *) &ui)[0];
    buf[1] = ((unsigned char *) &ui)[1];
    buf[2] = ((unsigned char *) &ui)[2];
    buf[3] = ((unsigned char *) &ui)[3];
  } else {
    buf[0] = ((unsigned char *) &ui)[3];
    buf[1] = ((unsigned char *) &ui)[2];
    buf[2] = ((unsigned char *) &ui)[1];
    buf[3] = ((unsigned char *) &ui)[0];
  }
}

void write_uint16(unsigned char *buf, uint16_t ui) {
  if (!is_bigendian()) {  // le -> le (don't swap)
    buf[0] = ((unsigned char *) &ui)[0];
    buf[1] = ((unsigned char *) &ui)[1];
  } else {
    buf[0] = ((unsigned char *) &ui)[1];
    buf[1] = ((unsigned char *) &ui)[0];
  }
}

uint32_t read_uint32(const unsigned char *c, const int pt) {
  uint32_t ui;
  char *p = (char *) &ui;

  if (!is_bigendian()) {  // le -> le (don't swap)
    p[0] = c[pt + 0];
    p[1] = c[pt + 1];
    p[2] = c[pt + 2];
    p[3] = c[pt + 3];
  } else {
    p[0] = c[pt + 3];
    p[1] = c[pt + 2];
    p[2] = c[pt + 1];
    p[3] = c[pt + 0];
  }
  return ui;
}

static uint32_t __attribute__((unused)) read_flash_rdp(stlink_t *sl) {
  uint32_t rdp;
  stlink_read_debug32(sl, FLASH_WRPR, &rdp);
  return rdp & 0xff;
}

static inline uint32_t read_flash_cr(stlink_t *sl) {
  uint32_t res;
  stlink_read_debug32(sl, FLASH_F4_CR, &res);
  return res;
}

static inline unsigned int is_flash_locked(stlink_t *sl) {
  /* return non zero for true */
  uint32_t cr_lock_shift = FLASH_F4_CR_LOCK, cr = read_flash_cr(sl);
  return cr & (1 << cr_lock_shift);
}

static void unlock_flash(stlink_t *sl) {
  uint32_t key_reg = FLASH_F4_KEYR;
  stlink_write_debug32(sl, key_reg, FLASH_KEY1);
  stlink_write_debug32(sl, key_reg, FLASH_KEY2);
}

static int unlock_flash_if(stlink_t *sl) {
  /* unlock flash if already locked */

  if (is_flash_locked(sl)) {
    unlock_flash(sl);
    if (is_flash_locked(sl)) {
      printf("Failed to unlock flash!\n");
      return -1;
    }
  }
  return 0;
}

static void lock_flash(stlink_t *sl) {
  uint32_t n;
  uint32_t cr_reg = FLASH_F4_CR;
  uint32_t cr_lock_shift = FLASH_F4_CR_LOCK;

  n = read_flash_cr(sl) | (1 << cr_lock_shift);
  stlink_write_debug32(sl, cr_reg, n);
}

static void set_flash_cr_pg(stlink_t *sl) {
  uint32_t cr_reg, x;

  x = read_flash_cr(sl);

  cr_reg = FLASH_F4_CR;
  x |= 1 << FLASH_CR_PG;

  stlink_write_debug32(sl, cr_reg, x);
}

static void __attribute__((unused)) clear_flash_cr_pg(stlink_t *sl) {
  uint32_t cr_reg, n;

  cr_reg = FLASH_F4_CR;

  n = read_flash_cr(sl) & ~(1 << FLASH_CR_PG);
  stlink_write_debug32(sl, cr_reg, n);
}

static void set_flash_cr_per(stlink_t *sl) {
  const uint32_t n = 1 << FLASH_CR_PER;
  stlink_write_debug32(sl, FLASH_CR, n);
}

static void __attribute__((unused)) clear_flash_cr_per(stlink_t *sl) {
  const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_PER);
  stlink_write_debug32(sl, FLASH_CR, n);
}

static void set_flash_cr_mer(stlink_t *sl, bool v) {
  uint32_t val, cr_reg, cr_mer, cr_pg;

  cr_reg = FLASH_F4_CR;
  cr_mer = 1 << FLASH_CR_MER;
  cr_pg = 1 << FLASH_CR_PG;

  stlink_read_debug32(sl, cr_reg, &val);
  if (val & cr_pg) {
    /* STM32F030 will drop MER bit if PG was set */
    val &= ~cr_pg;
    stlink_write_debug32(sl, cr_reg, val);
  }

  if (v)
    val |= cr_mer;
  else
    val &= ~cr_mer;
  stlink_write_debug32(sl, cr_reg, val);
}

static void __attribute__((unused)) clear_flash_cr_mer(stlink_t *sl) {
  uint32_t val, cr_reg, cr_mer;

  cr_reg = FLASH_F4_CR;
  cr_mer = 1 << FLASH_CR_MER;

  stlink_read_debug32(sl, cr_reg, &val);
  val &= ~cr_mer;
  stlink_write_debug32(sl, cr_reg, val);
}

static void set_flash_cr_strt(stlink_t *sl) {
  uint32_t val, cr_reg, cr_strt;

  cr_reg = FLASH_F4_CR;
  cr_strt = 1 << FLASH_F4_CR_STRT;

  stlink_read_debug32(sl, cr_reg, &val);
  val |= cr_strt;
  stlink_write_debug32(sl, cr_reg, val);
}

static inline uint32_t read_flash_sr(stlink_t *sl) {
  uint32_t res, sr_reg;
  sr_reg = FLASH_F4_SR;
  stlink_read_debug32(sl, sr_reg, &res);
  return res;
}

static inline unsigned int is_flash_busy(stlink_t *sl) {
  uint32_t sr_busy_shift;
  sr_busy_shift = FLASH_F4_SR_BSY;
  return read_flash_sr(sl) & (1 << sr_busy_shift);
}

static void wait_flash_busy(stlink_t *sl) {
  /* todo: add some delays here */
  while (is_flash_busy(sl))
    ;
}

static void wait_flash_busy_progress(stlink_t *sl) {
  while (is_flash_busy(sl)) {
    usleep(10000);
  }
}

static inline unsigned int is_flash_eop(stlink_t *sl) {
  return read_flash_sr(sl) & (1 << FLASH_SR_EOP);
}

static void __attribute__((unused)) clear_flash_sr_eop(stlink_t *sl) {
  const uint32_t n = read_flash_sr(sl) & ~(1 << FLASH_SR_EOP);
  stlink_write_debug32(sl, FLASH_SR, n);
}

static void __attribute__((unused)) wait_flash_eop(stlink_t *sl) {
  /* todo: add some delays here */
  while (is_flash_eop(sl) == 0)
    ;
}

static inline void write_flash_ar(stlink_t *sl, uint32_t n) {
  stlink_write_debug32(sl, FLASH_AR, n);
}

static inline void write_flash_cr_psiz(stlink_t *sl, uint32_t n) {
  uint32_t x = read_flash_cr(sl);
  x &= ~(0x03 << 8);
  x |= (n << 8);
  stlink_write_debug32(sl, FLASH_F4_CR, x);
}

static inline void write_flash_cr_snb(stlink_t *sl, uint32_t n) {
  uint32_t x = read_flash_cr(sl);
  x &= ~FLASH_F4_CR_SNB_MASK;
  x |= (n << FLASH_F4_CR_SNB);
  x |= (1 << FLASH_F4_CR_SER);
  stlink_write_debug32(sl, FLASH_F4_CR, x);
}

static inline void write_flash_cr_bker_pnb(stlink_t *sl, uint32_t n) {
  stlink_write_debug32(sl, STM32L4_FLASH_SR,
                       0xFFFFFFFF & ~(1 << STM32L4_FLASH_SR_BSY));
  uint32_t x = read_flash_cr(sl);
  x &= ~STM32L4_FLASH_CR_OPBITS;
  x &= ~STM32L4_FLASH_CR_PAGEMASK;
  x &= ~(1 << STM32L4_FLASH_CR_MER1);
  x &= ~(1 << STM32L4_FLASH_CR_MER2);
  x |= (n << STM32L4_FLASH_CR_PNB);
  x |= (1lu << STM32L4_FLASH_CR_PER);
  stlink_write_debug32(sl, STM32L4_FLASH_CR, x);
}

void stlink_close(stlink_t *sl) {
  if (!sl) return;
  _stlink_usb_close(sl);
  free(sl);
}

int stlink_exit_debug_mode(stlink_t *sl) {
  int ret;

  ret = stlink_write_debug32(sl, STLINK_REG_DHCSR, STLINK_REG_DHCSR_DBGKEY);
  if (ret == -1) return ret;

  return _stlink_usb_exit_debug_mode(sl);
}

int stlink_enter_swd_mode(stlink_t *sl) {
  return _stlink_usb_enter_swd_mode(sl);
}

// Force the core into the debug mode -> halted state.
int stlink_force_debug(stlink_t *sl) {
  return _stlink_usb_force_debug(sl);
}

int stlink_exit_dfu_mode(stlink_t *sl) {
  return _stlink_usb_exit_dfu_mode(sl);
}

int stlink_core_id(stlink_t *sl) {
  int ret;

  ret = _stlink_usb_core_id(sl);
  if (ret == -1) {
    printf("Failed to read core_id\n");
    return ret;
  }
  return ret;
}

int stlink_chip_id(stlink_t *sl, uint32_t *chip_id) {
  int ret;

  ret = stlink_read_debug32(sl, 0xE0042000, chip_id);
  if (ret == -1) return ret;

  if (*chip_id == 0)
    ret = stlink_read_debug32(
        sl, 0x40015800,
        chip_id);  // Try Corex M0 DBGMCU_IDCODE register address

  return ret;
}

/**
 * reads and decodes the flash parameters, as dynamically as possible
 * @param sl
 * @return 0 for success, or -1 for unsupported core type.
 */
static const struct stlink_chipid_params F7_params = {
    // RM0385 and DS10916 document was used to find these paramaters
    .chip_id = STLINK_CHIPID_STM32_F7,
    .description = "F7 device",
    .flash_size_reg = 0x1ff0f442,  // section 41.2
    .flash_pagesize = 0x800,       // No flash pages
    .sram_size = 0x50000,          // "SRAM" byte size in hex from DS Fig 18
    .bootrom_base =
        0x00100000,         // "System memory" starting address from DS Fig 18
    .bootrom_size = 0xEDC0  // "System memory" byte size in hex from DS Fig 18
};

int stlink_load_device_params(stlink_t *sl) {
  const struct stlink_chipid_params *params = &F7_params;
  stlink_core_id(sl);
  uint32_t chip_id;
  uint32_t flash_size;

  stlink_chip_id(sl, &chip_id);
  sl->chip_id = chip_id & 0xfff;
  /* Fix chip_id for F4 rev A errata , Read CPU ID, as CoreID is the same for
   * F2/F4*/
  if (sl->chip_id == 0x411) {
    uint32_t cpuid;
    stlink_read_debug32(sl, 0xE000ED00, &cpuid);
    if ((cpuid & 0xfff0) == 0xc240) sl->chip_id = 0x413;
  }

  if (sl->chip_id != STLINK_CHIPID_STM32_F7) {
    printf("unsupported chip id! %d\n", chip_id);
    return -1;
  }

  // These are fixed...
  sl->flash_base = STM32_FLASH_BASE;
  sl->sram_base = STM32_SRAM_BASE;
  stlink_read_debug32(sl, (params->flash_size_reg) & ~3, &flash_size);
  if (params->flash_size_reg & 2) flash_size = flash_size >> 16;
  flash_size = flash_size & 0xffff;

  sl->flash_size = flash_size * 1024;
  sl->flash_pgsz = params->flash_pagesize;
  sl->sram_size = params->sram_size;
  sl->sys_base = params->bootrom_base;
  sl->sys_size = params->bootrom_size;

  return 0;
}

int stlink_reset(stlink_t *sl) {
  return _stlink_usb_reset(sl);
}

int stlink_jtag_reset(stlink_t *sl, int value) {
  return _stlink_usb_jtag_reset(sl, value);
}

int stlink_run(stlink_t *sl) {
  return _stlink_usb_run(sl);
}

int stlink_set_swdclk(stlink_t *sl, uint16_t divisor) {
  return _stlink_usb_set_swdclk(sl, divisor);
}

int stlink_status(stlink_t *sl) {
  int ret;

  ret = _stlink_usb_status(sl);
  stlink_core_stat(sl);

  return ret;
}

int stlink_target_voltage(stlink_t *sl) {
  return _stlink_usb_target_voltage(sl);
}

int stlink_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data) {
  return _stlink_usb_read_debug32(sl, addr, data);
}

int stlink_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data) {
  return _stlink_usb_write_debug32(sl, addr, data);
}

int stlink_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
  if (len % 4 != 0) {
    fprintf(stderr,
            "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n",
            len % 4);
    abort();
  }
  return _stlink_usb_write_mem32(sl, addr, len);
}

int stlink_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
  if (len % 4 != 0) {  // !!! never ever: fw gives just wrong values
    fprintf(stderr,
            "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n",
            len % 4);
    abort();
  }
  return _stlink_usb_read_mem32(sl, addr, len);
}

int stlink_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
  if (len > 0x40) {  // !!! never ever: Writing more then 0x40 bytes gives
                     // unexpected behaviour
    fprintf(stderr, "Error: Data length > 64: +%d byte.\n", len);
    abort();
  }
  return _stlink_usb_write_mem8(sl, addr, len);
}

int stlink_write_reg(stlink_t *sl, uint32_t reg, int idx) {
  return _stlink_usb_write_reg(sl, reg, idx);
}

int stlink_read_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp) {
  if (r_idx > 20 || r_idx < 0) {
    fprintf(stderr, "Error: register index must be in [0..20]\n");
    return -1;
  }

  return _stlink_usb_read_reg(sl, r_idx, regp);
}

bool stlink_is_core_halted(stlink_t *sl) {
  bool ret = false;

  stlink_status(sl);
  if (sl->q_buf[0] == STLINK_CORE_HALTED) ret = true;

  return ret;
}

int stlink_step(stlink_t *sl) {
  return _stlink_usb_step(sl);
}

int stlink_current_mode(stlink_t *sl) {
  return _stlink_usb_current_mode(sl);
}

// End of delegates....  Common code below here...

// Endianness
// http://www.ibm.com/developerworks/aix/library/au-endianc/index.html
// const int i = 1;
// #define is_bigendian() ( (*(char*)&i) == 0 )

unsigned int is_bigendian(void) {
  static volatile const unsigned int i = 1;
  return *(volatile const char *) &i == 0;
}

uint16_t read_uint16(const unsigned char *c, const int pt) {
  uint32_t ui;
  char *p = (char *) &ui;

  if (!is_bigendian()) {  // le -> le (don't swap)
    p[0] = c[pt + 0];
    p[1] = c[pt + 1];
  } else {
    p[0] = c[pt + 1];
    p[1] = c[pt + 0];
  }
  return ui;
}

// same as above with entrypoint.

void stlink_run_at(stlink_t *sl, stm32_addr_t addr) {
  stlink_write_reg(sl, addr, 15); /* pc register */

  stlink_run(sl);

  while (stlink_is_core_halted(sl)) usleep(3000000);
}

void stlink_core_stat(stlink_t *sl) {
  if (sl->q_len <= 0) return;

  switch (sl->q_buf[0]) {
    case STLINK_CORE_RUNNING:
      sl->core_stat = STLINK_CORE_RUNNING;
      return;
    case STLINK_CORE_HALTED:
      sl->core_stat = STLINK_CORE_HALTED;
      return;
    default:
      sl->core_stat = STLINK_CORE_STAT_UNKNOWN;
      fprintf(stderr, "  core status: unknown\n");
  }
}

void stlink_fwrite_finalize(stlink_t *sl, stm32_addr_t addr) {
  unsigned int val;
  /* set stack*/
  stlink_read_debug32(sl, addr, &val);
  stlink_write_reg(sl, val, 13);
  /* Set PC to the reset routine*/
  stlink_read_debug32(sl, addr + 4, &val);
  stlink_write_reg(sl, val, 15);
  stlink_run(sl);
}

typedef bool (*save_block_fn)(void *arg, uint8_t *block, ssize_t len);

static int stlink_read(stlink_t *sl, stm32_addr_t addr, size_t size,
                       save_block_fn fn, void *fn_arg) {
  int error = -1;

  if (size < 1) size = sl->flash_size;

  if (size > sl->flash_size) size = sl->flash_size;

  size_t cmp_size = (sl->flash_pgsz > 0x1800) ? 0x1800 : sl->flash_pgsz;
  for (size_t off = 0; off < size; off += cmp_size) {
    size_t aligned_size;

    /* adjust last page size */
    if ((off + cmp_size) > size) cmp_size = size - off;

    aligned_size = cmp_size;
    if (aligned_size & (4 - 1)) aligned_size = (cmp_size + 4) & ~(4 - 1);

    stlink_read_mem32(sl, addr + (uint32_t) off, aligned_size);

    if (!fn(fn_arg, sl->q_buf, aligned_size)) {
      goto on_error;
    }
  }

  /* success */
  error = 0;

on_error:
  return error;
}

int write_buffer_to_sram(stlink_t *sl, flash_loader_t *fl, const uint8_t *buf,
                         size_t size) {
  /* write the buffer right after the loader */
  size_t chunk = size & ~0x3;
  size_t rem = size & 0x3;
  if (chunk) {
    memcpy(sl->q_buf, buf, chunk);
    stlink_write_mem32(sl, fl->buf_addr, chunk);
  }
  if (rem) {
    memcpy(sl->q_buf, buf + chunk, rem);
    stlink_write_mem8(sl, (fl->buf_addr) + (uint32_t) chunk, rem);
  }
  return 0;
}

uint32_t calculate_F7_sectornum(uint32_t flashaddr) {
  flashaddr &= ~STM32_FLASH_BASE;  // Page now holding the actual flash address
  if (flashaddr < 0x20000)
    return (flashaddr / 0x8000);
  else if (flashaddr < 0x40000)
    return (4);
  else
    return (flashaddr / 0x40000) + 4;
}

uint32_t stlink_calculate_pagesize(stlink_t *sl, uint32_t flashaddr) {
  if (sl->chip_id == STLINK_CHIPID_STM32_F7) {
    uint32_t sector = calculate_F7_sectornum(flashaddr);
    if (sector < 4)
      sl->flash_pgsz = 0x8000;
    else if (sector < 5)
      sl->flash_pgsz = 0x20000;
    else
      sl->flash_pgsz = 0x40000;
  }
  return (uint32_t) sl->flash_pgsz;
}

/**
 * Erase a page of flash, assumes sl is fully populated with things like
 * chip/core ids
 * @param sl stlink context
 * @param flashaddr an address in the flash page to erase
 * @return 0 on success -ve on failure
 */
int stlink_erase_flash_page(stlink_t *sl, stm32_addr_t flashaddr) {
  /* wait for ongoing op to finish */
  wait_flash_busy(sl);

  /* unlock if locked */
  unlock_flash_if(sl);

  /* select the page to erase */
  // calculate the actual page from the address
  uint32_t sector = calculate_F7_sectornum(flashaddr);

  write_flash_cr_snb(sl, sector);

  /* start erase operation */
  set_flash_cr_strt(sl);

  /* wait for completion */
  wait_flash_busy(sl);

  /* relock the flash */
  // todo: fails to program if this is in
  lock_flash(sl);

  return 0;
}

/**
 * Verify addr..addr+len is binary identical to base...base+len
 * @param sl stlink context
 * @param address stm device address
 * @param data host side buffer to check against
 * @param length how much
 * @return 0 for success, -ve for failure
 */
int stlink_verify_write_flash(stlink_t *sl, stm32_addr_t address, uint8_t *data,
                              unsigned length) {
  size_t off;
  size_t cmp_size = (sl->flash_pgsz > 0x1800) ? 0x1800 : sl->flash_pgsz;
  printf("Verifying flash...\n");
  for (off = 0; off < length; off += cmp_size) {
    size_t aligned_size;

    /* adjust last page size */
    if ((off + cmp_size) > length) cmp_size = length - off;

    aligned_size = cmp_size;
    if (aligned_size & (4 - 1)) aligned_size = (cmp_size + 4) & ~(4 - 1);

    stlink_read_mem32(sl, address + (uint32_t) off, aligned_size);

    if (memcmp(sl->q_buf, data + off, cmp_size)) {
      printf("Verification of flash failed at offset: %u\n",
             (unsigned int) off);
      return -1;
    }
  }
  return 0;
}

int stlink_write_flash(stlink_t *sl, stm32_addr_t addr, uint8_t *base,
                       uint32_t len, uint8_t eraseonly) {
  size_t off;
  flash_loader_t fl;
  printf("Writing %d (%#x) bytes to stm32 address: %u (%#x)\n", len, len, addr,
         addr);
  /* check addr range is inside the flash */
  stlink_calculate_pagesize(sl, addr);
  if (addr < sl->flash_base) {
    printf("addr too low %#x < %#x\n", addr, sl->flash_base);
    return -1;
  } else if ((addr + len) < addr) {
    printf("addr overruns\n");
    return -1;
  } else if ((addr + len) > (sl->flash_base + sl->flash_size)) {
    printf("addr too high\n");
    return -1;
  } else if (addr & 1) {
    printf("unaligned addr 0x%x\n", addr);
    return -1;
  } else if (len & 1) {
    printf("unaligned len 0x%x -- padding with zero\n", len);
    len += 1;
  } else if (addr & (sl->flash_pgsz - 1)) {
    printf("addr not a multiple of pagesize, not supported\n");
    return -1;
  }

  // Make sure we've loaded the context with the chip details
  stlink_core_id(sl);
  /* erase each page */
  int page_count = 0;
  for (off = 0; off < len;
       off += stlink_calculate_pagesize(sl, addr + (uint32_t) off)) {
    fprintf(stdout, "Erasing flash page at addr 0x%08X\n", (int) (addr + off));
    /* addr must be an addr inside the page */
    if (stlink_erase_flash_page(sl, addr + (uint32_t) off) == -1) {
      printf("Failed to erase_flash_page(%#zx) == -1\n", addr + off);
      return -1;
    }
    page_count++;
  }

  if (eraseonly) return 0;

  /* flash loader initialization */
  if (stlink_flash_loader_init(sl, &fl) == -1) {
    printf("stlink_flash_loader_init() == -1\n");
    return -1;
  }

  /* First unlock the cr */
  unlock_flash_if(sl);

  /* TODO: Check that Voltage range is 2.7 - 3.6 V */
  /* set parallelisim to 32 bit*/
  int voltage = stlink_target_voltage(sl);
  if (voltage == -1) {
    printf("Failed to read Target voltage\n");
    return voltage;
  } else if (voltage > 2700) {
    write_flash_cr_psiz(sl, 2);
  } else {
    printf(
        "Target voltage (%d mV) too low for 32-bit flash, using 8-bit "
        "flash writes\n",
        voltage);
    write_flash_cr_psiz(sl, 0);
  }

  /* set programming mode */
  set_flash_cr_pg(sl);

  for (off = 0; off < len;) {
    size_t size = len - off > 0x8000 ? 0x8000 : len - off;
    printf("Writing %d bytes at 0x%08X\n", (int) size,
           (int) (addr + (uint32_t) off));
    if (stlink_flash_loader_run(sl, &fl, addr + (uint32_t) off, base + off,
                                size) == -1) {
      printf("stlink_flash_loader_run(%#zx) failed! == -1\n", addr + off);
      return -1;
    }
    off += size;
  }

  /* Relock flash */
  lock_flash(sl);

  return stlink_verify_write_flash(sl, addr, base, len);
}