1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "flashSync.hpp"
#include "common/thread.hpp"
#include "gpu/2dBuffer.hpp"
#include "gpu/allocator.hpp"
#include "gpu/buffer.hpp"
#include "gpu/hostBuffer.hpp"
#include "gpu/memcpy.hpp"
#include "gpu/stream.hpp"
#include "gpu/surface.hpp"
#include "gpu/image/downsampler.hpp"
#include "image/histogram.hpp"
#include "image/unpack.hpp"
#include "util/registeredAlgo.hpp"
#include "libvideostitch/allocator.hpp"
#include "libvideostitch/input.hpp"
#include "libvideostitch/inputDef.hpp"
#include "libvideostitch/inputFactory.hpp"
#include <memory>
#include <sstream>
namespace VideoStitch {
namespace Synchro {
namespace {
Util::RegisteredAlgo<FlashSyncAlgorithm> registered("flash_synchronization");
}
FlashSyncAlgorithm::FlashSyncAlgorithm(const Ptv::Value* config) : firstFrame(0), lastFrame(1000) {
if (config != NULL) {
const Ptv::Value* value = config->has("first_frame");
if (value && value->getType() == Ptv::Value::INT) {
firstFrame = (int)value->asInt();
}
value = config->has("last_frame");
if (value && value->getType() == Ptv::Value::INT) {
lastFrame = (int)value->asInt();
}
value = config->has("devices");
if (value && value->getType() == Ptv::Value::LIST) {
const std::vector<Ptv::Value*>& devIds = value->asList();
for (std::vector<Ptv::Value*>::const_iterator d = devIds.begin(); d != devIds.end(); ++d) {
value = (*d)->has("id");
if (value && value->getType() == Ptv::Value::INT) {
devices.push_back((int)value->asInt());
}
}
}
if (devices.size() == 0) devices.push_back(0);
}
}
FlashSyncAlgorithm::~FlashSyncAlgorithm() {}
Potential<Ptv::Value> FlashSyncAlgorithm::apply(Core::PanoDefinition* pano, ProgressReporter* progress,
Util::OpaquePtr**) const {
std::vector<int> offsetsFrames;
FAIL_RETURN(doAlign(devices, *pano, offsetsFrames, progress));
for (readerid_t i = 0; i < (readerid_t)offsetsFrames.size(); ++i) {
pano->getInput(i).setFrameOffset(offsetsFrames[i]);
}
return Potential<Ptv::Value>(Status::OK());
}
const char* FlashSyncAlgorithm::docString =
"An algorithm that computes frame offsets using the luma histograms to synchronize the inputs.\n"
"Can be applied pre-calibration.\n"
"The result is a { \"frames\": list of integer offsets (all >=0, in frames), \"seconds\": list of double offsets "
"(all >=0.0, in seconds) }\n"
"which can be used directly as a 'frame_offset' parameter for the 'inputs'.\n";
namespace {
class LumaHistogramTask : public ThreadPool::Task {
public:
static Potential<LumaHistogramTask> create(int deviceId, readerid_t inputId, Input::VideoReader* reader,
int64_t width, int64_t height, frameid_t firstFrame, frameid_t lastFrame,
frameid_t& flashFrame, std::vector<Status>& errors,
Util::Algorithm::ProgressReporter* progress) {
return Potential<LumaHistogramTask>(new LumaHistogramTask(deviceId, inputId, reader, width, height, firstFrame,
lastFrame, flashFrame, errors, progress));
}
~LumaHistogramTask() { delete reader; }
private:
LumaHistogramTask(int deviceId, readerid_t inputId, Input::VideoReader* reader, int64_t width, int64_t height,
frameid_t firstFrame, frameid_t lastFrame, frameid_t& flashFrame, std::vector<Status>& errors,
Util::Algorithm::ProgressReporter* progress)
: deviceId(deviceId),
inputId(inputId),
reader(reader),
width(width),
height(height),
firstFrame(firstFrame),
lastFrame(lastFrame),
flashFrame(flashFrame),
errors(errors),
progress(progress) {}
virtual void run() {
// cudaSetDevice(deviceId);
Input::VideoReader::Spec spec = reader->getSpec();
auto pHostHistograms =
GPU::HostBuffer<uint32_t>::allocate((lastFrame - firstFrame) * 256, "Luma histograms: host histograms");
auto pDevHistograms =
GPU::Buffer<uint32_t>::allocate((lastFrame - firstFrame) * 256, "Luma histograms: device histograms");
auto pHostBuffer =
GPU::HostBuffer<unsigned char>::allocate(width * height * sizeof(uint32_t), "Luma histograms: host frame");
auto pDevBuffer =
GPU::Buffer<unsigned char>::allocate(width * height * sizeof(uint32_t), "Luma histograms: device frame");
auto pSurf = Core::OffscreenAllocator::createSourceSurface(width, height, "Luma histograms: device frame");
auto pGray = GPU::Buffer2D::allocate(width, height, "Luma histograms: grayscale image");
auto pGrayDown = GPU::Buffer2D::allocate(width / 4, height / 4, "Luma histograms: downscaled grayscale image");
auto pStream = GPU::Stream::create();
if (!pHostHistograms.ok()) {
errors.push_back({Origin::Unspecified, ErrType::OutOfResources, "Couldn't allocate host memory"});
return;
}
if (!pDevHistograms.ok() || !pSurf.ok() || !pStream.ok() || !pGray.ok() || !pGrayDown.ok()) {
errors.push_back({Origin::GPU, ErrType::OutOfResources, "Couldn't allocate GPU memory"});
return;
}
GPU::Stream stream = pStream.value();
GPU::HostBuffer<uint32_t> hostHistograms = pHostHistograms.value();
GPU::Buffer<uint32_t> devHistograms = pDevHistograms.value();
GPU::HostBuffer<unsigned char> hostBuffer = pHostBuffer.value();
GPU::Buffer<unsigned char> devBuffer = pDevBuffer.value();
Core::SourceSurface* surf = pSurf.object();
GPU::Buffer2D grayscale = pGray.value();
GPU::Buffer2D grayscaleDown = pGrayDown.value();
for (frameid_t frame = 0; frame < lastFrame - firstFrame; ++frame) {
unsigned char* origFrame = nullptr;
switch (reader->getSpec().addressSpace) {
case Device:
origFrame = devBuffer.devicePtr();
break;
case Host:
origFrame = hostBuffer.hostPtr();
break;
}
mtime_t date;
Input::ReadStatus statusRead = reader->readFrame(date, origFrame);
if (!statusRead.ok()) {
errors.push_back({Origin::Input, ErrType::RuntimeError, "Luma histograms: could not read the frame"});
return;
}
// transfer to device if needed
switch (reader->getSpec().addressSpace) {
case Host:
GPU::memcpyAsync(devBuffer, hostBuffer.as_const(), stream);
break;
case Device:
break;
}
Image::unpackCommonPixelFormat(spec.format, *surf->pimpl->surface, devBuffer.as_const(), spec.width, spec.height,
stream);
Image::unpackGrayscale(grayscale, *surf->pimpl->surface, spec.width, spec.height, stream);
Image::downsample(grayscale, grayscaleDown, stream);
Image::lumaHistogram(grayscaleDown, frame, devHistograms, stream);
if (frame % 100 == 0) {
frameid_t analyzedFirstFrame = firstFrame + frame;
frameid_t analyzedLastFrame = std::min(analyzedFirstFrame + 99, lastFrame - 1);
std::stringstream ss;
ss << "Analyzing frames " << analyzedFirstFrame << "..." << analyzedLastFrame << " of source " << inputId
<< " on GPU " << deviceId;
if (progress && progress->notify(ss.str(), (100.0 * (double)frame) / (double)(lastFrame - firstFrame))) {
errors.push_back({Origin::SynchronizationAlgorithm, ErrType::OperationAbortedByUser, "Algorithm cancelled"});
}
}
}
GPU::memcpyAsync(hostHistograms, devHistograms.as_const(), stream);
stream.synchronize();
// look for the frame with the highest 95th percentile of luma
const int64_t cutoff = (80 * width * height) / 100;
unsigned bestFrame = 0;
double bestPercentileCutoffMean = 0;
for (frameid_t frame = 0; frame < (lastFrame - firstFrame); ++frame) {
uint32_t* histogram = hostHistograms.hostPtr() + 256 * frame;
int64_t total = 0;
int64_t mean = 0;
for (int32_t luma = 255; luma >= 0; --luma) {
total += histogram[luma];
mean += histogram[luma] * luma;
if (total > cutoff) {
break;
}
}
const double fmean = (double)mean / (double)total;
if (fmean > bestPercentileCutoffMean) {
bestPercentileCutoffMean = fmean;
bestFrame = frame;
}
}
flashFrame = bestFrame + firstFrame;
return;
}
int deviceId;
readerid_t inputId;
Input::VideoReader* reader;
const int64_t width, height;
const frameid_t firstFrame, lastFrame;
frameid_t& flashFrame;
std::vector<Status>& errors;
Util::Algorithm::ProgressReporter* progress;
};
} // namespace
Status FlashSyncAlgorithm::doAlign(const std::vector<int>& devices, const Core::PanoDefinition& pano,
std::vector<int>& frames, ProgressReporter* progress) const {
if (pano.numInputs() < 2) {
return Status::OK();
}
if (pano.numVideoInputs() != pano.numInputs()) {
return {Origin::SynchronizationAlgorithm, ErrType::InvalidConfiguration, "Some enabled inputs do not have video"};
}
std::vector<int> offsetsInFrames;
offsetsInFrames.resize(pano.numInputs());
Input::DefaultReaderFactory readerFactory(firstFrame, lastFrame);
ThreadPool threadPool((int)pano.numInputs());
// luma histograms of each of the input sequences
std::vector<frameid_t> flashFrames(pano.numInputs());
std::vector<Status> errors;
for (readerid_t in = 0; in < pano.numInputs(); ++in) {
const Core::InputDefinition& im = pano.getInput(in);
if (im.getReaderConfig().getType() != Ptv::Value::STRING) {
return {Origin::SynchronizationAlgorithm, ErrType::InvalidConfiguration, "Malformed reader configuration"};
}
Potential<Input::Reader> reader = readerFactory.create(in, im);
if (!reader.ok()) {
return {Origin::SynchronizationAlgorithm, ErrType::SetupFailure, "Cannot create readers"};
}
Input::VideoReader* videoReader = reader.release()->getVideoReader();
if (videoReader) {
Potential<LumaHistogramTask> task =
LumaHistogramTask::create(devices[in % devices.size()], in, videoReader, im.getWidth(), im.getHeight(),
firstFrame, lastFrame, flashFrames[in], errors, progress);
if (!task.status().ok()) {
return task.status();
}
threadPool.tryRun(task.release());
}
}
threadPool.waitAll();
// Find the smallest offset.
// TODO make top-level error with sub errors as cause
if (!errors.empty()) {
return errors[0];
}
unsigned minOffset = UINT_MAX;
for (readerid_t in = 0; in < pano.numInputs(); ++in) {
const Core::InputDefinition& im = pano.getInput(in);
unsigned offset = flashFrames[in] + im.getFrameOffset();
if (offset < minOffset) {
minOffset = offset;
}
}
for (readerid_t in = 0; in < pano.numInputs(); ++in) {
const Core::InputDefinition& im = pano.getInput(in);
frames.push_back(flashFrames[in] + im.getFrameOffset() - minOffset);
}
return Status::OK();
}
} // namespace Synchro
} // namespace VideoStitch