1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#ifndef __clang_analyzer__ // VSA-7040
#include "calibration.hpp"
#include "camera_fisheye.hpp"
#include "camera_nextfisheye.hpp"
#include "camera_perspective.hpp"
#include "keypointExtractor.hpp"
#include "keypointMatcher.hpp"
#include "controlPointFilter.hpp"
#include "rigGraph.hpp"
#include "rigBuilder.hpp"
#include "calibrationRefinement.hpp"
#include "calibrationUtils.hpp"
#include "libvideostitch/rigDef.hpp"
#include "libvideostitch/rigCameraDef.hpp"
#include "libvideostitch/cameraDef.hpp"
#include "libvideostitch/logging.hpp"
#include <common/angles.hpp>
#include <common/container.hpp>
#include <algorithm>
namespace VideoStitch {
namespace Calibration {
#define CALIBRATION_RANDOM_SEED 42
#define REPORT_STATS_ON_FILTERED_POINTS 0
#define FILTERED_POINTS_WEIGHT_IN_SCORE 1000.
#define FOV_ITERATE_START 70
#define FOV_ITERATE_END 230
#define FOV_ITERATE_INC 5
Calibration::Calibration(const CalibrationConfig& config, CalibrationProgress& progress)
: calibConfig(config), progress(progress), gen(CALIBRATION_RANDOM_SEED), initialHFOV(0.0) {
/*Setup initial rig from rigdefinition*/
setupRig();
/*Get control points from config object and add them to configmatches_map map*/
for (auto& cp : config.getControlPointList()) {
configmatches_map[{cp.index0, cp.index1}].push_back(cp);
}
}
Calibration::~Calibration() {}
void Calibration::updateCalibrationConfig(const CalibrationConfig& config) {
calibConfig = config;
/*Update rig*/
setupRig();
}
Status Calibration::processGivenMatchedControlPoints(Core::PanoDefinition& pano, const bool fullOptimization) {
/*If not doing full optimization, disable progress reporting (mechanism used for the FOV iterations)*/
if (!fullOptimization) {
progress.disable();
}
pano.setHasBeenCalibrationDeshuffled(false);
if (calibConfig.isInDeshuffleMode()) {
FAIL_RETURN(deshuffleInputs(pano));
}
FAIL_RETURN(filterControlPoints(pano.getSphereScale()));
double extrinsicsCost;
FAIL_RETURN(estimateExtrinsics(extrinsicsCost));
if (fullOptimization) {
/*At this stage, save the extrinsics control points to the output pano*/
fillPanoWithControlPoints(pano);
if (!calibConfig.isInDeshuffleModeOnly()) {
FAIL_RETURN(optimize(pano));
}
Logger::get(Logger::Verbose) << "Calibration finished." << std::endl;
} else {
/*Fill in the extrinsics score*/
pano.setCalibrationCost(extrinsicsCost);
}
/*Re-enable progress reporting*/
if (!fullOptimization) {
progress.enable();
}
return Status::OK();
}
Status Calibration::process(Core::PanoDefinition& pano, const RigCvImages& rig) {
if (calibConfig.isApplyingPresetsOnly()) {
/*Just apply the presets*/
FAIL_RETURN(applyPresetsGeometry(pano));
} else {
double initialHFOV = calibConfig.getInitialHFov();
/*Perform calibration - start by getting control points*/
FAIL_RETURN(extractAndMatchControlPoints(rig));
if (!calibConfig.isFovDefined()) {
FAIL_RETURN(calculateFOV(pano));
}
if (calibConfig.isGeneratingSyntheticKeypoints()) {
FAIL_RETURN(generateSyntheticControlPoints(pano));
}
FAIL_RETURN(processGivenMatchedControlPoints(pano, true /* full optimization */));
pano.setCalibrationInitialHFOV(initialHFOV);
}
return Status::OK();
}
std::vector<double> Calibration::getFOVValues() {
std::vector<double> values;
for (int i = FOV_ITERATE_START; i <= FOV_ITERATE_END; i += FOV_ITERATE_INC) {
values.push_back(i);
}
return values;
}
void Calibration::setupRig() {
const std::shared_ptr<Core::RigDefinition> rigdefinition = calibConfig.getRigPreset();
assert(rigdefinition);
/*Clear cameras before setting up new ones*/
cameras.clear();
/*Set cameras */
size_t count = rigdefinition->getRigCameraDefinitionCount();
for (size_t idcam = 0; idcam < count; ++idcam) {
Core::RigCameraDefinition input;
rigdefinition->getRigCameraDefinition(input, idcam);
Camera* camera = nullptr;
switch (input.getCamera()->getType()) {
case Core::InputDefinition::Format::Rectilinear:
camera = new Camera_Perspective;
break;
case Core::InputDefinition::Format::CircularFisheye_Opt:
case Core::InputDefinition::Format::FullFrameFisheye_Opt:
camera = new Camera_NextFisheye;
break;
default:
camera = new Camera_Fisheye;
break;
}
camera->setFormat(input.getCamera()->getType());
std::shared_ptr<Camera> pCamera(camera);
pCamera->setupWithRigCameraDefinition(input);
cameras.push_back(pCamera);
}
}
Status Calibration::extractAndMatchControlPoints(const RigCvImages& rig) {
cv::theRNG().state = CALIBRATION_RANDOM_SEED;
const size_t numCameras = rig.size();
/*Set rig pictures*/
rigInputImages = rig;
/*Set frame numbers*/
std::vector<unsigned int> frameNumbers = calibConfig.getFrames();
/*Extraction and description of features on a list of images*/
KeypointExtractor kpExtractor(calibConfig.getOctaves(), calibConfig.getSubLevels(),
calibConfig.getDetectionThreshold());
KeypointMatcher kpMatcher(calibConfig.getNNDRRatio());
/*Loop over all frames of the set used for calibration*/
for (size_t idinput = 0; idinput < rigInputImages[0].size(); idinput++) {
std::vector<KPList> keypoints;
std::vector<DescriptorList> descriptors;
keypoints.resize(numCameras);
descriptors.resize(numCameras);
Logger::get(Logger::Verbose) << "Extracting points from rig #" << idinput << std::endl;
/*Loop over cameras*/
for (size_t idcam = 0; idcam < numCameras; ++idcam) {
cv::Mat mask;
/*Retrieve mask*/
calibConfig.getControlPointsMask(mask, idcam, idinput);
/*Do the real extraction part*/
std::shared_ptr<CvImage> img = rigInputImages[idcam][idinput];
FAIL_RETURN(kpExtractor.extract(*img.get(), keypoints[idcam], descriptors[idcam], mask));
FAIL_RETURN(progress.add(CalibrationProgress::kpDetect, "Detecting"));
Logger::get(Logger::Verbose) << "Found " << keypoints[idcam].size() << " points in camera #" << idcam
<< std::endl;
}
/*Perform matching for all pairs*/
for (videoreaderid_t idcam1 = 0; idcam1 < (videoreaderid_t)numCameras - 1; ++idcam1) {
for (videoreaderid_t idcam2 = idcam1 + 1; idcam2 < (videoreaderid_t)numCameras; ++idcam2) {
/*Raw blind matching*/
Core::ControlPointList matched;
std::pair<unsigned int, unsigned int> pair{(unsigned int)idcam1, (unsigned int)idcam2};
FAIL_RETURN(kpMatcher.match(frameNumbers[idinput], pair, keypoints[idcam1], descriptors[idcam1],
keypoints[idcam2], descriptors[idcam2], matched));
if (calibConfig.isSavingDebugSnapshots()) {
drawMatches(rigInputImages, int(idinput), idcam1, idcam2, keypoints[idcam1], keypoints[idcam2], matched,
0 /* step 0 in calibration process */, std::string("rough"));
}
FAIL_RETURN(progress.add(CalibrationProgress::kpMatch, "Matching"));
Logger::get(Logger::Verbose) << "Found " << matched.size() << " rough matched points between camera #" << idcam1
<< " and camera #" << idcam2 << std::endl;
/*Merging result*/
matchedpoints_map[pair].insert(matchedpoints_map[pair].end(), matched.begin(), matched.end());
}
}
}
return Status::OK();
}
Status Calibration::filterControlPoints(const double sphereScale, double* const cost) {
FAIL_RETURN(progress.add(CalibrationProgress::filter, "Filtering"));
/*Clear the points structures*/
globalmatches_map.clear();
double globalCost = 0.;
for (const auto& matchlist : matchedpoints_map) {
const auto pair = matchlist.first;
const videoreaderid_t idcam1 = pair.first;
const videoreaderid_t idcam2 = pair.second;
Core::ControlPointList filtered;
filterFromPresets(filtered, matchlist.second, idcam1, idcam2, sphereScale);
if (Logger::getLevel() >= Logger::Verbose || calibConfig.isSavingDebugSnapshots() || cost != nullptr) {
/*Project points from presets*/
projectFromCurrentSettings(filtered, idcam1, idcam2, sphereScale);
if (cost != nullptr) {
/*Accumulate reprojection score*/
globalCost += getMeanReprojectionDistance(filtered) - FILTERED_POINTS_WEIGHT_IN_SCORE * filtered.size();
}
}
if (calibConfig.isSavingDebugSnapshots()) {
drawMatches(rigInputImages, -1, idcam1, idcam2, KPList(), KPList(), filtered,
1 /* step 1 in calibration process */, std::string("filtered"));
drawReprojectionErrors(rigInputImages, -1, idcam1, idcam2, KPList(), KPList(), filtered,
2 /* step 2 in calibration process */, std::string("filteredreprojected"));
}
Logger::get(Logger::Verbose) << "Found " << filtered.size() << " filtered matched points between camera #" << idcam1
<< " and camera #" << idcam2 << std::endl;
/*Merging result*/
globalmatches_map[pair].insert(globalmatches_map[pair].end(), filtered.begin(), filtered.end());
}
/*Output reprojection statistics*/
if (Logger::getLevel() >= Logger::Verbose) {
for (auto& matchlist : globalmatches_map) {
reportProjectionStats(matchlist.second, matchlist.first.first, matchlist.first.second,
"Reprojection errors in pixels from presets");
}
}
/*Return global score if necessary*/
if (cost != nullptr) {
*cost = globalCost;
}
return Status::OK();
}
bool Calibration::analyzeKeypointsConnectivity(
const std::map<std::pair<videoreaderid_t, videoreaderid_t>, Core::ControlPointList>& keypoints_map,
const videoreaderid_t numCameras, std::stringstream* reportString,
std::map<videoreaderid_t, std::set<videoreaderid_t>>* connectivityPtr,
std::set<videoreaderid_t>* singleConnectedInputsPtr, std::set<videoreaderid_t>* nonConnectedInputsPtr) {
/* Analyze and log the inputs connectivity */
std::map<videoreaderid_t, std::set<videoreaderid_t>> connectivity;
std::set<videoreaderid_t> singleConnectedInputs;
std::set<videoreaderid_t> nonConnectedInputs;
for (auto& matchlist : keypoints_map) {
auto pair = matchlist.first;
// need at least 3 matched points per pair to estimate relative rotations
if (matchlist.second.size() < 3) {
continue;
}
connectivity[pair.first].insert(pair.second);
connectivity[pair.second].insert(pair.first);
}
for (videoreaderid_t camId = 0; camId < numCameras; ++camId) {
std::stringstream message;
switch (connectivity[camId].size()) {
case 0:
nonConnectedInputs.insert(camId);
message << "Camera " << camId << " is not connected to any other camera. " << std::endl;
Logger::get(Logger::Error) << message.str() << std::flush;
if (reportString) {
*reportString << message.str();
}
break;
case 1:
singleConnectedInputs.insert(camId);
message << "Camera " << camId << " is connected to a single camera " << containerToString(connectivity[camId])
<< " - calibration may not be optimal. " << std::endl;
Logger::get(Logger::Warning) << message.str() << std::flush;
if (reportString) {
*reportString << message.str();
}
break;
default:
message << "Camera " << camId << " is connected to " << connectivity[camId].size() << " cameras "
<< containerToString(connectivity[camId]) << std::endl;
Logger::get(Logger::Verbose) << message.str() << std::flush;
break;
}
}
if (!singleConnectedInputs.empty()) {
std::stringstream message;
message << "Missing camera connections that may improve the calibration: "
<< containerToString(singleConnectedInputs) << ". " << std::endl;
Logger::get(Logger::Warning) << message.str() << std::flush;
if (reportString) {
*reportString << message.str();
}
}
bool fullyConnected = nonConnectedInputs.empty();
// return found sets if necessary
containerSwapIfPtr(connectivityPtr, connectivity);
containerSwapIfPtr(singleConnectedInputsPtr, singleConnectedInputs);
containerSwapIfPtr(nonConnectedInputsPtr, nonConnectedInputs);
// return true if all inputs are connected
return fullyConnected;
}
Status Calibration::estimateExtrinsics(double& cost) {
FAIL_RETURN(progress.add(CalibrationProgress::initGeometry, "Finding geometry"));
ControlPointFilter cpfilter(calibConfig.getDecimatingGridSize(), calibConfig.getAngleThreshold(),
calibConfig.getMinRatioInliers(), calibConfig.getMinSamplesForFit(),
calibConfig.getRatioOutliers(), calibConfig.getProbaDrawOutlierFree());
RigGraph::EdgeList relativeRotations;
cost = std::numeric_limits<double>::max();
/*Clear the points structures*/
extrinsicsmatches_map.clear();
/*Filtering out outliers by rotation model fitting*/
for (auto& matchlist : globalmatches_map) {
Core::ControlPointList filteredControlPoints;
unsigned int source = matchlist.first.first;
unsigned int dest = matchlist.first.second;
const std::shared_ptr<Camera> camera1 = cameras[source];
const std::shared_ptr<Camera> camera2 = cameras[dest];
double meanReprojectionDistance = 0.;
Logger::get(Logger::Debug) << "CAM: " << source << " -> " << dest << " before filtering" << std::endl;
/*Reset the seed to have deshuffling produce steady results*/
gen.seed(CALIBRATION_RANDOM_SEED);
const bool success =
cpfilter.filterFromExtrinsics(filteredControlPoints, camera1, camera2, matchlist.second,
configmatches_map[{source, dest}], syntheticmatches_map[{source, dest}], gen);
Logger::get(Logger::Debug) << "CAM: " << source << " -> " << dest << " after filtering" << std::endl;
if (!success) {
Logger::get(Logger::Verbose) << "Could not find rotation between camera #" << source << " and camera #" << dest
<< std::endl;
continue;
}
Logger::get(Logger::Debug) << "CAM: " << source << " -> " << dest << " FILTERING OK" << std::endl;
/*Update the reprojections and get the errors*/
cpfilter.projectFromEstimatedRotation(filteredControlPoints, camera1, camera2);
meanReprojectionDistance = getMeanReprojectionDistance(filteredControlPoints);
if (Logger::getLevel() >= Logger::Verbose || calibConfig.isSavingDebugSnapshots()) {
if (calibConfig.isSavingDebugSnapshots()) {
drawMatches(rigInputImages, -1 /* all pictures */, source, dest, KPList(), KPList(), filteredControlPoints,
3 /* step 3 in calibration process */, std::string("extrinsics"));
drawReprojectionErrors(rigInputImages, -1 /* all pictures */, source, dest, KPList(), KPList(),
filteredControlPoints, 4 /* step 4 in calibration process */,
std::string("extrinsicsreprojected"));
}
}
if (Logger::getLevel() >= Logger::Verbose) {
reportProjectionStats(filteredControlPoints, source, dest,
"Reprojection errors in pixels from estimated extrinsics");
}
/*Merging result*/
extrinsicsmatches_map[matchlist.first].insert(extrinsicsmatches_map[matchlist.first].end(),
filteredControlPoints.begin(), filteredControlPoints.end());
/*Use a combination of extrinsics rotation score and number of inliers, the smaller, the better*/
double weight = meanReprojectionDistance - FILTERED_POINTS_WEIGHT_IN_SCORE * cpfilter.getConsensus();
RigGraph::WeightedEdge wedge(weight, source, dest, cpfilter.getEstimatedRotation());
relativeRotations.push_back(wedge);
Logger::get(Logger::Verbose) << "Found " << filteredControlPoints.size()
<< " statistically filtered matched points between camera #" << matchlist.first.first
<< " and camera #" << matchlist.first.second << std::endl;
}
/* Analyze connectivity, do not care about the return value */
std::stringstream report;
analyzeKeypointsConnectivity(extrinsicsmatches_map, (videoreaderid_t)cameras.size(), &report);
/* Create input graph using all control points generated so far */
RigGraph graph(cameras.size(), relativeRotations);
/* Fail if graph is not connected */
if (!graph.isConnected()) {
return {Origin::CalibrationAlgorithm, ErrType::AlgorithmFailure,
report.str() +
"Not enough control points were found, inputs are not fully connected to each other. Please, rotate "
"your rig and repeat the process."};
}
cost = RigBuilder::build(cameras, graph, 0);
return Status::OK();
}
Status Calibration::optimize(Core::PanoDefinition& pano) {
FAIL_RETURN(progress.add(CalibrationProgress::optim, "Optimizing"));
#ifndef CERESLIB_UNSUPPORTED
CalibrationRefinement refiner;
refiner.setupWithCameras(cameras);
FAIL_RETURN(refiner.process(pano, extrinsicsmatches_map, calibConfig));
#endif
if (Logger::getLevel() >= Logger::Verbose || calibConfig.isSavingDebugSnapshots()) {
/* Get some statistics after refinement */
for (auto& matchlist : extrinsicsmatches_map) {
Core::ControlPointList filteredControlPoints = matchlist.second;
unsigned int source = matchlist.first.first;
unsigned int dest = matchlist.first.second;
projectFromCurrentSettings(filteredControlPoints, source, dest, pano.getSphereScale());
if (calibConfig.isSavingDebugSnapshots()) {
drawReprojectionErrors(rigInputImages, -1 /* all pictures */, source, dest, KPList(), KPList(),
filteredControlPoints, 5 /* step 5 in calibration process */,
std::string("extrinsicsrefinedreprojected"));
}
if (Logger::getLevel() >= Logger::Verbose) {
reportProjectionStats(filteredControlPoints, source, dest,
"Reprojection errors in pixels from refined parameters, on extrinsics-filtered points");
}
}
#if REPORT_STATS_ON_FILTERED_POINTS
for (auto& matchlist : globalmatches_map) {
ControlPointList filteredControlPoints = matchlist.second;
unsigned int source = matchlist.first.first;
unsigned int dest = matchlist.first.second;
projectFromPresets(filteredControlPoints, source, dest, pano.getSphereScale());
if (calibConfig.isSavingDebugSnapshots()) {
drawReprojectionErrors(rigInputImages, -1 /* all pictures */, source, dest, KPList(), KPList(),
filteredControlPoints, 6 /* step 6 in calibration process */,
std::string("filteredrefinedreprojected"));
}
if (Logger::getLevel() >= Logger::Verbose) {
reportProjectionStats(filteredControlPoints, source, dest,
"Reprojection errors in pixels from refined parameters, on filtered points");
}
}
#endif
}
return Status::OK();
}
Status Calibration::calculateFOV(Core::PanoDefinition& pano) {
/*FOV is not defined, loop over predetermined list of values (brute force every angle between FOV_ITERATE_START and
* FOV_ITERATE_END degrees)*/
VideoStitch::Core::RigCameraDefinition cam;
calibConfig.getRigPreset()->getRigCameraDefinition(cam, 0);
const VideoStitch::Core::InputDefinition::Format lensType = cam.getCamera()->getType();
const std::vector<double> fovValues = getFOVValues();
const auto videoInputs = pano.getVideoInputs();
const VideoStitch::Core::InputDefinition& firstVideoInput = videoInputs[0];
double currentBestCalibrationCost = std::numeric_limits<double>::max();
std::size_t bestIdFov = 0;
for (std::size_t indexFov = 0; indexFov < fovValues.size(); ++indexFov) {
CalibrationConfig currentConfig(calibConfig);
/* disable saving debug snapshots while iterating on FOV values */
currentConfig.setIsSavingDebugSnapshots(false);
/* disable generating artificial keypoints */
currentConfig.setIsGeneratingSyntheticKeypoints(false);
/* check that we are not deshuffling the inputs */
if (currentConfig.isInDeshuffleMode()) {
return {Origin::CalibrationAlgorithm, ErrType::InvalidConfiguration,
"Deshuffling and automatic FOV determination are incompatible"};
}
currentConfig.setRigDefinition(
std::shared_ptr<VideoStitch::Core::RigDefinition>(VideoStitch::Core::RigDefinition::createBasicUnknownRig(
"default", lensType, pano.numVideoInputs(), firstVideoInput.getWidth(), firstVideoInput.getHeight(),
firstVideoInput.getCroppedWidth(), firstVideoInput.getCroppedHeight(), fovValues[indexFov])));
std::unique_ptr<VideoStitch::Core::PanoDefinition> currentPanoDef(pano.clone());
FAIL_RETURN(progress.add(CalibrationProgress::fovIterate / static_cast<double>(fovValues.size()),
"Optimizing the field of view (FOV)"));
updateCalibrationConfig(currentConfig);
if (!processGivenMatchedControlPoints(*currentPanoDef, false /* do not perform full optimization */).ok()) {
continue;
}
if (currentPanoDef->getCalibrationCost() <= currentBestCalibrationCost) {
currentBestCalibrationCost = currentPanoDef->getCalibrationCost();
bestIdFov = indexFov;
}
}
CalibrationConfig currentConfig(calibConfig);
Logger::get(Logger::Debug) << "Computing BEST calibration with: " << fovValues[bestIdFov] << std::endl;
currentConfig.setRigDefinition(
std::shared_ptr<VideoStitch::Core::RigDefinition>(VideoStitch::Core::RigDefinition::createBasicUnknownRig(
"default", lensType, pano.numVideoInputs(), firstVideoInput.getWidth(), firstVideoInput.getHeight(),
firstVideoInput.getCroppedWidth(), firstVideoInput.getCroppedHeight(), fovValues[bestIdFov], &pano)));
updateCalibrationConfig(currentConfig);
initialHFOV = fovValues[bestIdFov];
return Status::OK();
}
void Calibration::filterFromPresets(Core::ControlPointList& filtered, const Core::ControlPointList& input,
videoreaderid_t idcam1, videoreaderid_t idcam2, const double sphereScale) {
const std::shared_ptr<Camera> camera1 = cameras[idcam1];
const std::shared_ptr<Camera> camera2 = cameras[idcam2];
std::shared_ptr<Core::RigDefinition> rig = calibConfig.getRigPreset();
Core::RigCameraDefinition rigcamdef1, rigcamdef2;
std::shared_ptr<Core::CameraDefinition> rigcam1, rigcam2;
rig->getRigCameraDefinition(rigcamdef1, idcam1);
rig->getRigCameraDefinition(rigcamdef2, idcam2);
rigcam1 = rigcamdef1.getCamera();
rigcam2 = rigcamdef2.getCamera();
Eigen::Vector3d meanpt3d;
Eigen::Matrix3d cov3d;
Eigen::Matrix2d cov2d;
for (Core::ControlPointList::const_iterator it = input.begin(); it != input.end(); ++it) {
Eigen::Vector2d impt1, impt2_mean, impt2_real;
impt1(0) = it->x0;
impt1(1) = it->y0;
impt2_real(0) = it->x1;
impt2_real(1) = it->y1;
bool res = camera1->getLiftCovariance(
meanpt3d, cov3d, rigcam1->getFu().variance, rigcam1->getFv().variance, rigcam1->getCu().variance,
rigcam1->getCv().variance, rigcam1->getDistortionA().variance, rigcam1->getDistortionB().variance,
rigcam1->getDistortionC().variance, rigcamdef1.getTranslationX().variance,
rigcamdef1.getTranslationY().variance, rigcamdef1.getTranslationZ().variance, impt1, sphereScale);
if (!res) {
continue;
}
res = camera2->getProjectionCovariance(
impt2_mean, cov2d, rigcam2->getFu().variance, rigcam2->getFv().variance, rigcam2->getCu().variance,
rigcam2->getCv().variance, rigcam2->getDistortionA().variance, rigcam2->getDistortionB().variance,
rigcam2->getDistortionC().variance, rigcamdef2.getTranslationX().variance,
rigcamdef2.getTranslationY().variance, rigcamdef2.getTranslationZ().variance, meanpt3d, cov3d);
if (!res) {
continue;
}
/*Check Mahalanobis distance*/
Eigen::Vector2d diff = impt2_real - impt2_mean;
Eigen::Matrix2d invcov = cov2d.inverse();
// using the 3.sigmas rule for Normal distributions: the Mahalanobis distance is a squared norm, use 3.0^2 as the
// threshold
if ((diff.transpose() * invcov * diff) > 9.0) {
continue;
}
filtered.push_back(*it);
}
}
void Calibration::fillPanoWithControlPoints(Core::PanoDefinition& pano) {
// aggregate the list of control points that passed the extrinsics stage
Core::ControlPointList full_extrinsics_list;
for (auto& matchlist : extrinsicsmatches_map) {
full_extrinsics_list.insert(full_extrinsics_list.end(), matchlist.second.begin(), matchlist.second.end());
}
// remove synthetic control points from list, if any
if (calibConfig.isGeneratingSyntheticKeypoints()) {
full_extrinsics_list.remove_if([](const Core::ControlPoint& cp) -> bool { return cp.artificial; });
}
pano.setCalibrationControlPointList(full_extrinsics_list);
Logger::get(Logger::Info) << "Calibration: returning " << full_extrinsics_list.size() << " control points"
<< std::endl;
if (Logger::getLevel() >= Logger::Verbose) {
reportControlPointsStats(full_extrinsics_list);
}
}
void Calibration::projectFromCurrentSettings(Core::ControlPointList& input, videoreaderid_t idcam1,
videoreaderid_t idcam2, const double sphereScale) {
const std::shared_ptr<Camera> camera1 = cameras[idcam1];
const std::shared_ptr<Camera> camera2 = cameras[idcam2];
Eigen::Vector3d meanpt3d;
Eigen::Vector2d meanpt2d;
for (auto& it : input) {
it.rx0 = it.ry0 = it.rx1 = it.ry1 = 0.;
Eigen::Vector2d impt1(it.x0, it.y0), impt2(it.x1, it.y1);
// project impt1 onto second camera
bool res = camera1->lift(meanpt3d, impt1, sphereScale);
if (!res) {
continue;
}
res = camera2->project(meanpt2d, meanpt3d);
if (!res) {
continue;
}
// store the projection result
it.rx0 = meanpt2d(0);
it.ry0 = meanpt2d(1);
// project impt2 onto first camera
res = camera2->lift(meanpt3d, impt2, sphereScale);
if (!res) {
continue;
}
res = camera1->project(meanpt2d, meanpt3d);
if (!res) {
continue;
}
// store the projection result
it.rx1 = meanpt2d(0);
it.ry1 = meanpt2d(1);
}
}
Status Calibration::applyPresetsGeometry(Core::PanoDefinition& pano) {
FAIL_RETURN(fillPano(pano, cameras));
return Status::OK();
}
} // namespace Calibration
} // namespace VideoStitch
#endif // __clang_analyzer__