audioSampleConvertTest.cpp 30.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm

#include "gpu/testing.hpp"
#include "common/audioUtils.hpp"

#include "libvideostitch/audio.hpp"
#include <audio/converter.hpp>
#include <audio/resampler.hpp>

#include <cmath>
#include <iostream>

namespace VideoStitch {
namespace Testing {
using namespace VideoStitch::Audio;

static const size_t nSamples = 3;

void convUINT8_P() {
  uint8_t *raw[MAX_AUDIO_CHANNELS];
  auto audio = new uint8_t[nSamples * sizeof(uint8_t)];
  auto dummy = new uint8_t[nSamples * sizeof(uint8_t)];
  raw[0] = audio;
  raw[1] = dummy;

  uint8_t values[nSamples] = {0, 128, 255};
  for (size_t i = 0; i < nSamples; i++) {
    *audio++ = values[i];
    *dummy++ = 0x55;
  }

  Samples samples;
  {
    Samples init(SamplingRate::SR_48000, SamplingDepth::UINT8_P, ChannelLayout::STEREO, 0, raw, nSamples);
    samples = init.clone();
  }

  AudioTrack output(SPEAKER_FRONT_LEFT);
  convertSamplesToMonoDouble(samples, output, 2, SamplingDepth::UINT8_P);

  std::cout << "UINT8_P: " << output[0] << ", " << output[1] << ", " << output[2] << std::endl;

  ENSURE_EQ(-1.0, output[0]); /*  -1.0   */
  ENSURE_EQ(0.0, output[1]);  /*   0.0   */
  ENSURE_EQ(1.0, output[2]);  /*   1.0   */
}

void convUINT8() {
  uint8_t *raw[MAX_AUDIO_CHANNELS];
  auto audio = new uint8_t[nSamples * 2 * sizeof(uint8_t)];
  raw[0] = audio;

  uint8_t values[nSamples] = {0, 128, 255};
  for (size_t i = 0; i < nSamples; i++) {
    *audio++ = values[i];
    *audio++ = 0x55;
  }

  Samples init;
  {
    Samples tmp(SamplingRate::SR_48000, SamplingDepth::UINT8, ChannelLayout::STEREO, 0, raw, nSamples);
    // operator=(Samples&&)
    init = tmp.clone();
  }
  // Samples(Samples&&)
  Samples samples{std::move(init)};

  AudioTrack output(SPEAKER_FRONT_LEFT);
  convertSamplesToMonoDouble(samples, output, 2, SamplingDepth::UINT8);

  std::cout << "UINT8:   " << output[0] << ", " << output[1] << ", " << output[2] << std::endl;

  ENSURE_EQ(-1.0, output[0]); /*  -1.0   */
  ENSURE_EQ(0.0, output[1]);  /*   0.0   */
  ENSURE_EQ(1.0, output[2]);  /*   1.0   */
}

void convINT16_P() {
  uint8_t *raw[MAX_AUDIO_CHANNELS];
  raw[0] = new uint8_t[nSamples * sizeof(int16_t)];
  raw[1] = new uint8_t[nSamples * sizeof(int16_t)];

  int16_t *audio = (int16_t *)raw[0];
  int16_t *dummy = (int16_t *)raw[1];
  int16_t values[nSamples] = {static_cast<int16_t>(0x8000), 0, 0x7FFF};
  for (size_t i = 0; i < nSamples; i++) {
    *audio++ = values[i];
    *dummy++ = 0x5555;
  }

  Samples init;
  {
    Samples tmp(SamplingRate::SR_48000, SamplingDepth::INT16_P, ChannelLayout::STEREO, 0, raw, nSamples);
    // operator=(Samples&&)
    init = tmp.clone();
  }
  // Samples(Samples&&)
  Samples samples{std::move(init)};

  AudioTrack output(SPEAKER_FRONT_LEFT);
  convertSamplesToMonoDouble(samples, output, 2, SamplingDepth::INT16_P);

  std::cout << "INT16_P: " << output[0] << ", " << output[1] << ", " << output[2] << std::endl;

  ENSURE_EQ(-1.0, output[0]); /*  -1.0   */
  ENSURE_EQ(0.0, output[1]);  /*   0.0   */
  ENSURE_EQ(1.0, output[2]);  /*   1.0   */
}

void convINT16() {
  uint8_t *raw[MAX_AUDIO_CHANNELS];
  raw[0] = new uint8_t[nSamples * 2 * sizeof(int16_t)];

  int16_t *audio = (int16_t *)raw[0];
  int16_t values[nSamples] = {static_cast<int16_t>(0x8000), 0, 0x7FFF};
  for (size_t i = 0; i < nSamples; i++) {
    *audio++ = values[i];
    *audio++ = 0x5555;
  }

  Samples samples;
  {
    Samples init(SamplingRate::SR_48000, SamplingDepth::INT16, ChannelLayout::STEREO, 0, raw, nSamples);
    samples = init.clone();
  }

  AudioTrack output(SPEAKER_FRONT_LEFT);
  Audio::convertSamplesToMonoDouble(samples, output, 2, SamplingDepth::INT16);

  std::cout << "INT16:   " << output[0] << ", " << output[1] << ", " << output[2] << std::endl;

  ENSURE_EQ(-1.0, output[0]); /*  -1.0   */
  ENSURE_EQ(0.0, output[1]);  /*   0.0   */
  ENSURE_EQ(1.0, output[2]);  /*   1.0   */
}

void convINT24_P() {
  const size_t sampleBytes = 3;

  uint8_t *raw[MAX_AUDIO_CHANNELS];
  auto audio = new uint8_t[nSamples * sampleBytes];
  auto dummy = new uint8_t[nSamples * sampleBytes];
  raw[0] = audio;
  raw[1] = dummy;

  uint32_t values[nSamples] = {0x800000, 0, 0x7FFFFF};
  uint32_t dummyVal = 0x555555;
  for (size_t i = 0; i < nSamples; i++) {
    audio[i * sampleBytes] = static_cast<uint8_t>(values[i]);
    audio[i * sampleBytes + 1] = static_cast<uint8_t>(values[i] >> 8);
    audio[i * sampleBytes + 2] = static_cast<uint8_t>(values[i] >> 16);
    dummy[i * sampleBytes] = static_cast<uint8_t>(dummyVal);
    dummy[i * sampleBytes + 1] = static_cast<uint8_t>(dummyVal >> 8);
    dummy[i * sampleBytes + 2] = static_cast<uint8_t>(dummyVal >> 16);
  }

  Samples samples;
  {
    Samples init(SamplingRate::SR_48000, SamplingDepth::INT24_P, ChannelLayout::STEREO, 0, raw, nSamples);
    samples = init.clone();
  }

  AudioTrack output(SPEAKER_FRONT_LEFT);
  convertSamplesToMonoDouble(samples, output, 2, SamplingDepth::INT24_P);

  std::cout << "INT24_P: " << output[0] << ", " << output[1] << ", " << output[2] << std::endl;

  ENSURE_EQ(-1.0, output[0]); /*  -1.0   */
  ENSURE_EQ(0.0, output[1]);  /*   0.0   */
  ENSURE_EQ(1.0, output[2]);  /*   1.0   */
}

void convINT24() {
  const size_t sampleBytes = 3;

  uint8_t *raw[MAX_AUDIO_CHANNELS];
  auto audio = new uint8_t[nSamples * 2 * sampleBytes];
  raw[0] = audio;

  uint32_t values[nSamples] = {0x800000, 0, 0x7FFFFF};
  uint32_t dummyVal = 0x555555;
  for (size_t i = 0; i < nSamples; i++) {
    audio[2 * i * sampleBytes] = static_cast<uint8_t>(values[i]);
    audio[2 * i * sampleBytes + 1] = static_cast<uint8_t>(values[i] >> 8);
    audio[2 * i * sampleBytes + 2] = static_cast<uint8_t>(values[i] >> 16);
    audio[2 * i * sampleBytes + 3] = static_cast<uint8_t>(dummyVal);
    audio[2 * i * sampleBytes + 4] = static_cast<uint8_t>(dummyVal >> 8);
    audio[2 * i * sampleBytes + 5] = static_cast<uint8_t>(dummyVal >> 16);
  }

  Samples samples;
  {
    Samples init(SamplingRate::SR_48000, SamplingDepth::INT24, ChannelLayout::STEREO, 0, raw, nSamples);
    samples = init.clone();
  }

  AudioTrack output(SPEAKER_FRONT_LEFT);
  convertSamplesToMonoDouble(samples, output, 2, SamplingDepth::INT24);

  std::cout << "INT24:   " << output[0] << ", " << output[1] << ", " << output[2] << std::endl;

  ENSURE_EQ(-1.0, output[0]); /*  -1.0   */
  ENSURE_EQ(0.0, output[1]);  /*   0.0   */
  ENSURE_EQ(1.0, output[2]);  /*   1.0   */
}

void convFLT32_P() {
  uint8_t *raw[MAX_AUDIO_CHANNELS];
  raw[0] = new uint8_t[nSamples * sizeof(float)];
  raw[1] = new uint8_t[nSamples * sizeof(float)];

  float *audio = (float *)raw[0];
  float *dummy = (float *)raw[1];
  float values[nSamples] = {-1.0, 0, 1.0};
  for (size_t i = 0; i < nSamples; i++) {
    *audio++ = values[i];
    *dummy++ = 0.5;
  }

  Samples samples;
  {
    Samples init(SamplingRate::SR_48000, SamplingDepth::FLT_P, ChannelLayout::STEREO, 0, raw, nSamples);
    samples = init.clone();
  }

  AudioTrack output(SPEAKER_FRONT_LEFT);
  convertSamplesToMonoDouble(samples, output, 2, SamplingDepth::FLT_P);

  std::cout << "FLT32_P: " << output[0] << ", " << output[1] << ", " << output[2] << std::endl;

  ENSURE_EQ(-1.0, output[0]); /*  -1.0   */
  ENSURE_EQ(0.0, output[1]);  /*   0.0   */
  ENSURE_EQ(1.0, output[2]);  /*   1.0   */
}

void convFLT32() {
  uint8_t *raw[MAX_AUDIO_CHANNELS];
  raw[0] = new uint8_t[nSamples * 2 * sizeof(float)];

  float *audio = (float *)raw[0];
  float values[nSamples] = {-1, 0, 1};
  for (size_t i = 0; i < nSamples; i++) {
    *audio++ = values[i];
    *audio++ = 0.5;
  }

  Samples samples;
  {
    Samples init(SamplingRate::SR_48000, SamplingDepth::FLT, ChannelLayout::STEREO, 0, raw, nSamples);
    samples = init.clone();
  }

  AudioTrack output(SPEAKER_FRONT_LEFT);
  convertSamplesToMonoDouble(samples, output, 2, SamplingDepth::FLT);

  std::cout << "FLT32:   " << output[0] << ", " << output[1] << ", " << output[2] << std::endl;

  ENSURE_EQ(-1.0, output[0]); /*  -1.0   */
  ENSURE_EQ(0.0, output[1]);  /*   0.0   */
  ENSURE_EQ(1.0, output[2]);  /*   1.0   */
}

void reInitSamples(audioSample_t *s) {
  s[0] = -1.0;
  s[1] = 0.;
  s[2] = 1.0;
}

void convToPlanar() {
  audioSample_t in[3] = {-1.0, 0., 1.0};
  {
    uint8_t *out = reinterpret_cast<uint8_t *>(in);
    int res = convertToSamplesPlanar(in, 3, SamplingDepth::UINT8_P);
    ENSURE_EQ(res, 3, "check number of samples converted");
    ENSURE_EQ(0, (int)out[0], "check minimum value");    // -1.0 -> 0
    ENSURE_EQ(128, (int)out[1], "check value 0");        // 0.0 -> 128
    ENSURE_EQ(255, (int)out[2], "check maximum value");  // 1.0 -> 255
    std::cout << "Test conversion audioSamples to UINT8_P OK" << std::endl;
    reInitSamples(in);
  }

  {
    int16_t *out = reinterpret_cast<int16_t *>(in);
    int res = convertToSamplesPlanar(in, 3, SamplingDepth::INT16_P);
    ENSURE_EQ(res, 3, "check number of samples converted");
    ENSURE_EQ(-32768, (int)out[0], "check minimum value");  // -1.0 -> -32768
    ENSURE_EQ(0, (int)out[1], "check value 0");             // 0.0 -> 0
    ENSURE_EQ(32767, (int)out[2], "check maximum value");   // 1.0 -> 32767
    std::cout << "Test conversion audioSamples to INT16_P OK" << std::endl;
    reInitSamples(in);
  }

  {
    int32_t *out = reinterpret_cast<int32_t *>(in);
    int res = convertToSamplesPlanar(in, 3, SamplingDepth::INT32_P);
    ENSURE_EQ(res, 3, "check number of samples converted");
    ENSURE_EQ(INT32_MIN, (int32_t)out[0], "check minimum value");  // -1.0 -> -2147483648
    ENSURE_EQ(0, (int32_t)out[1], "check value 0");                // 0.0 -> 0
    ENSURE_EQ(INT32_MAX, (int32_t)out[2], "check maximum value");  // 1.0 -> 2147483647
    std::cout << "Test conversion audioSamples to INT32_P OK" << std::endl;
    reInitSamples(in);
  }

  {
      // TODO test INT24_P
  }

  {
    float *out = reinterpret_cast<float *>(in);
    int res = convertToSamplesPlanar(in, 3, SamplingDepth::FLT_P);
    ENSURE_EQ(res, 3, "check number of samples converted");
    ENSURE_EQ((float)-1., out[0], "check minimum value");  // -1.0 -> -1.0
    ENSURE_EQ((float)0., out[1], "check value 0");         // 0.0 -> 0.0
    ENSURE_EQ((float)1., out[2], "check maximum value");   // 1.0 -> 1.0
    std::cout << "Test conversion audioSamples to FLT_P OK" << std::endl;
    reInitSamples(in);
  }

  {
    double *out = reinterpret_cast<double *>(in);
    int res = convertToSamplesPlanar(in, 3, SamplingDepth::DBL_P);
    ENSURE_EQ(res, 3, "check number of samples converted");
    ENSURE_EQ(-1., out[0], "check minimum value");  // -1.0 -> -1.0
    ENSURE_EQ(0., out[1], "check value 0");         // 0.0 -> 0.0
    ENSURE_EQ(1., out[2], "check maximum value");   // 1.0 -> 1.0
    std::cout << "Test conversion audioSamples to DBL_P OK" << std::endl;
    reInitSamples(in);
  }
}

void testConvInterLeavedData() {
  int nSamples = 2;
  audioSample_t **inData = new audioSample_t *[MAX_AUDIO_CHANNELS];
  ChannelLayout inL = STEREO;
  int nChannels = getNbChannelsFromChannelLayout(inL);
  inData[0] = (audioSample_t *)calloc(nSamples, sizeof(audioSample_t));
  inData[1] = (audioSample_t *)calloc(nSamples, sizeof(audioSample_t));
  inData[0][0] = 0.5;
  inData[0][1] = 1.;
  inData[1][0] = -0.5;
  inData[1][1] = -1.;
  // Planar Stereo -> interleave UINT8
  {
    uint8_t *outData = new uint8_t[nSamples * nChannels];
    convertToSamplesInterleaved(inData, nChannels, nSamples, outData, SamplingDepth::UINT8);
    ENSURE_EQ(192, (int)outData[0], "test interleaver");            /* 0.5 */
    ENSURE_EQ(63, (int)outData[1], "test interleaver");             /* -0.5 */
    ENSURE_EQ((int)UINT8_MAX, (int)outData[2], "test interleaver"); /* 1.0 */
    ENSURE_EQ(0, (int)outData[3], "test interleaver");              /* -1.0 */
    std::cout << "test planar stereo -> interleave UINT8 OK" << std::endl;
    delete[] outData;
  }
  // Planar Stereo -> interleave INT16
  {
    int16_t *outData = new int16_t[nSamples * nChannels];
    convertToSamplesInterleaved(inData, nChannels, nSamples, (uint8_t *)outData, SamplingDepth::INT16);
    ENSURE_EQ(INT16_MAX / 2 + 1, (int)outData[0], "test interleaver"); /* 0.5 */
    ENSURE_EQ(INT16_MIN / 2, (int)outData[1], "test interleaver");     /* -0.5 */
    ENSURE_EQ((int)INT16_MAX, (int)outData[2], "test interleaver");    /* 1.0 */
    ENSURE_EQ(INT16_MIN, (int)outData[3], "test interleaver");         /* -1.0 */
    delete[] outData;
    std::cout << "test planar stereo -> interleave INT16 OK" << std::endl;
  }
  // Planar Stereo -> interleave INT24
  {
    uint8_t *outData = new uint8_t[nSamples * nChannels * 3];
    convertToSamplesInterleaved(inData, nChannels, nSamples, (uint8_t *)outData, SamplingDepth::INT24);
    int tmp;
    std::memcpy(&tmp, outData, sizeof(int));
    ENSURE_EQ(INT24_MAX / 2 + 1, tmp, "test interleaver"); /* 0.5 */
    std::memcpy(&tmp, outData + 3, sizeof(int));
    ENSURE_EQ(INT24_MIN / 2, tmp, "test interleaver"); /* -0.5 */
    std::memcpy(&tmp, outData + 6, sizeof(int));
    ENSURE_EQ(INT24_MAX, tmp, "test interleaver"); /* 1.0 */
    delete[] outData;
    std::cout << "test planar stereo -> interleave INT24 OK" << std::endl;
  }
  // Planar Stereo -> interleave INT32
  {
    int32_t *outData = new int32_t[nSamples * nChannels];
    convertToSamplesInterleaved(inData, nChannels, nSamples, (uint8_t *)outData, SamplingDepth::INT32);
    ENSURE_EQ(INT32_MAX / 2 + 1, (int)outData[0], "test interleaver"); /* 0.5 */
    ENSURE_EQ(INT32_MIN / 2, (int)outData[1], "test interleaver");     /* -0.5 */
    ENSURE_EQ(INT32_MAX, (int)outData[2], "test interleaver");         /* 1.0 */
    ENSURE_EQ(INT32_MIN, (int)outData[3], "test interleaver");         /* -1.0 */
    delete[] outData;
    std::cout << "test planar stereo -> interleave INT32 OK" << std::endl;
  }
  // Planar Stereo -> interleave FLT
  {
    float *outData = new float[nSamples * nChannels];
    convertToSamplesInterleaved(inData, nChannels, nSamples, (uint8_t *)outData, SamplingDepth::FLT);
    ENSURE_EQ(outData[0], (float)inData[0][0], "test interleaver");
    ENSURE_EQ(outData[1], (float)inData[1][0], "test interleaver");
    ENSURE_EQ(outData[2], (float)inData[0][1], "test interleaver");
    ENSURE_EQ(outData[3], (float)inData[1][1], "test interleaver");
    delete[] outData;
    std::cout << "test planar stereo -> interleave FLT OK" << std::endl;
  }

  // Planar Stereo -> interleave DBL
  {
    double *outData = new double[nSamples * nChannels];
    convertToSamplesInterleaved(inData, nChannels, nSamples, (uint8_t *)outData, SamplingDepth::DBL);
    ENSURE_EQ(inData[0][0], outData[0], "test interleaver"); /* 0.5 */
    ENSURE_EQ(inData[1][0], outData[1], "test interleaver"); /* -0.5 */
    ENSURE_EQ(inData[0][1], outData[2], "test interleaver"); /* 1.0 */
    ENSURE_EQ(inData[1][1], outData[3], "test interleaver"); /* -1.0 */
    delete[] outData;
    std::cout << "test planar stereo -> interleave DBL OK" << std::endl;
  }
  free(inData[0]);
  free(inData[1]);
  delete[] inData;
}

audioSample_t **callocTestata(int nSamples, ChannelLayout l) {
  audioSample_t **data = new audioSample_t *[MAX_AUDIO_CHANNELS];
  ChannelMap mask = SPEAKER_FRONT_LEFT;
  for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) {
    if (mask & l) {
      data[i] = (audioSample_t *)calloc(nSamples, sizeof(audioSample_t));
    } else {
      data[i] = nullptr;
    }
    mask = (ChannelMap)(mask << 1);
  }
  return data;
}
void freeTestata(audioSample_t **data) {
  for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) {
    if (data[i]) {
      free(data[i]);
    }
  }
  free(data);
}

audioSample_t **initData(int nSamples, ChannelLayout l) {
  audioSample_t **data = new audioSample_t *[MAX_AUDIO_CHANNELS];
  ChannelMap mask = SPEAKER_FRONT_LEFT;
  for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) {
    if (mask & l) {
      data[i] = (audioSample_t *)calloc(nSamples, sizeof(audioSample_t));
      data[i][0] = 1.;
      data[i][1] = 2.;
    } else {
      data[i] = nullptr;
    }
    mask = (ChannelMap)(mask << 1);
  }
  return data;
}

void testMonoConversion(ChannelLayout inL, ChannelLayout outL) {
  AudioBlock inData;
  Samples outData;
  inData.setChannelLayout(inL);
  inData.resize(3);
  inData[SPEAKER_FRONT_LEFT][0] = 1.;
  inData[SPEAKER_FRONT_LEFT][1] = 2.;
  inData[SPEAKER_FRONT_LEFT][2] = 3.;

  AudioResampler *rsp = AudioResampler::create(SamplingRate::SR_22050, SamplingDepth::DBL_P, SamplingRate::SR_22050,
                                               SamplingDepth::DBL_P, outL, 3);
  rsp->resample(inData, outData);

  ENSURE_EQ((int)SamplingDepth::DBL_P, (int)outData.getSamplingDepth(),
            "Check sampling depth");  // just in case the resampler is going crazy
  ENSURE_EQ((int)SamplingRate::SR_22050, (int)outData.getSamplingRate(),
            "Check sampling rate");  // just in case the resampler is going crazy

  ENSURE_EQ(outL, outData.getChannelLayout(), "Check output channel layout");
  ENSURE_EQ(3, (int)outData.getNbOfSamples(), "Check nb samples");

  audioSample_t **dbl = (audioSample_t **)outData.getSamples().data();

  /// Check pan law conversion for MONO to any layout without center channel
  /// In that case, the mono signal is duplicated on the front_left and the front_right channel with a -4.5 dB
  /// attenuation
  ChannelMap m = (ChannelMap)0x1;
  bool hasCenterSpeaker = (((SPEAKER_FRONT_CENTER | SPEAKER_BACK_CENTER) & outL) != 0);
  for (int c = 0; c < MAX_AUDIO_CHANNELS; ++c) {
    m = (ChannelMap)((int64_t)(m) << 1);
    for (int s = 0; s < 3; ++s) {
      if (m & SPEAKER_FRONT_CENTER & outL) {
        // Check front center speaker
        ENSURE_EQ(inData[SPEAKER_FRONT_LEFT][s], dbl[getChannelIndexFromChannelMap(m)][s],
                  "Check front center output samples");
      } else if (m & SPEAKER_BACK_CENTER & outL && !(SPEAKER_FRONT_CENTER & outL)) {
        // Check back center speaker if no front center speaker
        ENSURE_EQ(inData[SPEAKER_FRONT_LEFT][s], dbl[getChannelIndexFromChannelMap(m)][s],
                  "Check back center output samples");
      } else if (m & SPEAKER_FRONT_LEFT && !hasCenterSpeaker) {
        // Check left channel if no center speaker
        ENSURE_EQ(kMonoToStereoNorm * inData[SPEAKER_FRONT_LEFT][s], dbl[getChannelIndexFromChannelMap(m)][s],
                  "Check front left output samples");
      } else if (m & SPEAKER_FRONT_RIGHT && !hasCenterSpeaker) {
        // Check right channel if no center speaker
        ENSURE_EQ(kMonoToStereoNorm * inData[SPEAKER_FRONT_LEFT][s], dbl[getChannelIndexFromChannelMap(m)][s],
                  "Check front right output samples");
      } else if (m & outL) {
        // other speakers should be set to zero
        std::stringstream ss;
        ss << "Check output samples of " << getStringFromChannelType(m);
        ENSURE_EQ((audioSample_t)0, dbl[getChannelIndexFromChannelMap(m)][s], ss.str().c_str());
      }
    }
  }
  delete rsp;
}

void testAnyOtherConversion(ChannelLayout inL, ChannelLayout outL) {
  std::cout << "Test conversion " << getStringFromChannelLayout(inL) << " to " << getStringFromChannelLayout(outL)
            << std::endl;
  ChannelLayout intersect = (ChannelLayout)(inL & outL);

  //  assert( intersect != outL );
  assert(inL != MONO);

  AudioBlock inData;
  Samples outData;
  inData.setChannelLayout(inL);
  inData.resize(3);

  ChannelMap m = (ChannelMap)0x1;
  for (int c = 0; c < MAX_AUDIO_CHANNELS; ++c) {
    if (m & inL) {
      inData[m][0] = 1.;
      inData[m][1] = 2.;
      inData[m][2] = 3.;
    }
    m = (ChannelMap)((int64_t)(m) << 1);
  }

  AudioResampler *rsp = AudioResampler::create(SamplingRate::SR_22050, SamplingDepth::DBL_P, SamplingRate::SR_22050,
                                               SamplingDepth::DBL_P, outL, 3);
  rsp->resample(inData, outData);

  ENSURE_EQ((int)SamplingDepth::DBL_P, (int)outData.getSamplingDepth(),
            "Check sampling depth");  // just in case the resampler is going crazy
  ENSURE_EQ((int)SamplingRate::SR_22050, (int)outData.getSamplingRate(),
            "Check sampling rate");  // just in case the resampler is going crazy

  ENSURE_EQ(outL, outData.getChannelLayout(), "Check output channel layout");
  ENSURE_EQ(3, (int)outData.getNbOfSamples(), "Check nb samples");

  audioSample_t **dbl = (audioSample_t **)outData.getSamples().data();

  m = (ChannelMap)0x1;
  for (int c = 0; c < MAX_AUDIO_CHANNELS; ++c) {
    for (int s = 0; s < 3; ++s) {
      if (m & intersect) {
        ENSURE_EQ(inData[m][s], dbl[getChannelIndexFromChannelMap(m)][s], "Check sample value");
      } else if (m & outL) {
        ENSURE_EQ(0., dbl[getChannelIndexFromChannelMap(m)][s], "Check sample value");
      }
    }
    m = (ChannelMap)((int64_t)(m) << 1);
  }
  delete rsp;
}

/// This test tests only the layout conversion by the resampler
/// That's why we force the sampling rate and the sampling depth to be the same in input and output
/// We check only the output layout and the values of the output samples

void convLayoutSamples() {
  std::cout << "Test MONO -> STEREO" << std::endl;
  testMonoConversion(MONO, STEREO);
  std::cout << "Test MONO -> _2POINT1" << std::endl;
  testMonoConversion(MONO, _2POINT1);
  std::cout << "Test MONO -> 2_1" << std::endl;
  testMonoConversion(MONO, _2_1);
  std::cout << "Test MONO -> SURROUND" << std::endl;
  testMonoConversion(MONO, SURROUND);
  std::cout << "Test MONO -> _3POINT1" << std::endl;
  testMonoConversion(MONO, _3POINT1);
  std::cout << "Test MONO -> _4POINT0" << std::endl;
  testMonoConversion(MONO, _4POINT0);
  std::cout << "Test MONO -> _4POINT1" << std::endl;
  testMonoConversion(MONO, _4POINT1);
  std::cout << "Test MONO -> _2_2" << std::endl;
  testMonoConversion(MONO, _2_2);
  std::cout << "Test MONO -> QUAD" << std::endl;
  testMonoConversion(MONO, QUAD);
  std::cout << "Test MONO -> _5POINT0" << std::endl;
  testMonoConversion(MONO, _5POINT0);
  std::cout << "Test MONO -> _5POINT1" << std::endl;
  testMonoConversion(MONO, _5POINT1);
  std::cout << "Test MONO -> _5POINT0_BACK" << std::endl;
  testMonoConversion(MONO, _5POINT0_BACK);
  std::cout << "Test MONO -> _5POINT1_BACK" << std::endl;
  testMonoConversion(MONO, _5POINT1_BACK);
  std::cout << "Test MONO -> _6POINT0" << std::endl;
  testMonoConversion(MONO, _6POINT0);
  std::cout << "Test MONO -> _6POINT0_FRONT" << std::endl;
  testMonoConversion(MONO, _6POINT0_FRONT);
  std::cout << "Test MONO -> HEXAGONAL" << std::endl;
  testMonoConversion(MONO, HEXAGONAL);
  std::cout << "Test MONO -> _6POINT1" << std::endl;
  testMonoConversion(MONO, _6POINT1);
  std::cout << "Test MONO -> _6POINT1_BACK" << std::endl;
  testMonoConversion(MONO, _6POINT1_BACK);
  std::cout << "Test MONO -> _6POINT1_FRONT" << std::endl;
  testMonoConversion(MONO, _6POINT1_FRONT);
  std::cout << "Test MONO -> _7POINT0" << std::endl;
  testMonoConversion(MONO, _7POINT0);
  std::cout << "Test MONO -> _7POINT0_FRONT" << std::endl;
  testMonoConversion(MONO, _7POINT0_FRONT);
  std::cout << "Test MONO -> _7POINT1" << std::endl;
  testMonoConversion(MONO, _7POINT1);
  std::cout << "Test MONO -> _7POINT1_WIDE" << std::endl;
  testMonoConversion(MONO, _7POINT1_WIDE);
  std::cout << "Test MONO -> _7POINT1_WIDE_BACK" << std::endl;
  testMonoConversion(MONO, _7POINT1_WIDE_BACK);
  std::cout << "Test MONO -> OCTAGONAL" << std::endl;
  testMonoConversion(MONO, OCTAGONAL);

  std::vector<ChannelLayout> layouts = {UNKNOWN,        MONO,
                                        STEREO,         _2POINT1,
                                        _2_1,           SURROUND,
                                        _3POINT1,       _4POINT0,
                                        _4POINT1,       _2_2,
                                        QUAD,           _5POINT0,
                                        _5POINT1,       _5POINT0_BACK,
                                        _5POINT1_BACK,  _6POINT0,
                                        _6POINT0_FRONT, HEXAGONAL,
                                        _6POINT1,       _6POINT1_BACK,
                                        _6POINT1_FRONT, _7POINT0,
                                        _7POINT0_FRONT, _7POINT1,
                                        _7POINT1_WIDE,  _7POINT1_WIDE_BACK,
                                        OCTAGONAL,      AMBISONICS_WXY,
                                        AMBISONICS_WXYZ};

  for (auto inL : layouts) {
    if (inL != UNKNOWN && inL != MONO && inL != AMBISONICS_WXY && inL != AMBISONICS_WXYZ) {
      for (auto outL : layouts) {
        if (outL != UNKNOWN && outL != AMBISONICS_WXY && outL != AMBISONICS_WXYZ) {
          testAnyOtherConversion(inL, outL);
        }
      }
    }
  }
}

///
/// \brief resamplerTest
///        This test the audio resampler
/// \param refPath reference file
/// \param outPath output file
/// \param outrate output sampling rate
///
void resamplerTest(const std::string &refPath, const std::string &outPath, const double outrate) {
  int blockSize = 512;
  // Read input file
  WavReader refFile(refPath);
  refFile.printInfo();
  ChannelLayout layout = MONO;
  if (refFile.getChannels() == 2) {
    layout = STEREO;
  }

  // Create resampler
  AudioResampler *rsp = AudioResampler::create(getSamplingRateFromInt(static_cast<int>(refFile.getSampleRate())),
                                               SamplingDepth::DBL_P, getSamplingRateFromInt(static_cast<int>(outrate)),
                                               SamplingDepth::DBL_P, layout, blockSize);
  ENSURE_EQ(blockSize, rsp->getBlockSize(), "check resampler block size");

  int nSamples = refFile.getnSamples(), nReadSamples = 0;
  int nSamplesToRead = nSamples;
  int nResampled = 0;
  WavWriter outFile(outPath.c_str(), layout, outrate);
  while (nSamplesToRead > 0) {
    AudioBlock inBlock(layout);
    AudioBlock outBlock(layout);
    Samples audioInSamples;
    // read reference file
    if (nSamplesToRead >= blockSize) {
      nReadSamples = blockSize;
    } else if (nReadSamples > 0) {
      nReadSamples = nSamplesToRead;
    } else {
      break;
    }
    refFile.step(inBlock, nReadSamples);
    // Convert AudioBlock to Samples
    audioBlock2Samples(audioInSamples, inBlock);
    // Resample Samples to AudioBlock
    rsp->resample(audioInSamples, outBlock);
    nResampled += outBlock[SPEAKER_FRONT_LEFT].size();
    // Write results in outFile
    outFile.step(outBlock);
    nSamplesToRead -= nReadSamples;
  }
  outFile.close();
  delete rsp;
}

/// Test that there is no crash if the resampler tries to resample to an invalid configuration
void invalidResamplerTest(const std::string &refPath) {
  int blockSize = 512;
  // Read input file
  WavReader refFile(refPath);
  refFile.printInfo();
  ChannelLayout layout = MONO;
  if (refFile.getChannels() == 2) {
    layout = STEREO;
  }

  // Create resampler
  std::vector<std::unique_ptr<AudioResampler>> rsps;
  {
    for (const double outrate : {44100., 48000., 12345., 0., -1.}) {
      for (const SamplingDepth depth : {SamplingDepth::FLT, SamplingDepth::SD_NONE}) {
        AudioResampler *rsp = AudioResampler::create(
            getSamplingRateFromInt(static_cast<int>(refFile.getSampleRate())), SamplingDepth::DBL_P,
            getSamplingRateFromInt(static_cast<int>(outrate)), depth, layout, blockSize);
        ENSURE_EQ(blockSize, rsp->getBlockSize(), "check resampler block size");
        rsps.emplace_back(rsp);
      }
    }
  }

  int nSamples = refFile.getnSamples(), nReadSamples = 0;
  int nSamplesToRead = nSamples;
  while (nSamplesToRead > 0) {
    AudioBlock inBlock(layout);
    Samples audioInSamples;
    // read reference file
    if (nSamplesToRead >= blockSize) {
      nReadSamples = blockSize;
    } else if (nReadSamples > 0) {
      nReadSamples = nSamplesToRead;
    } else {
      break;
    }
    refFile.step(inBlock, nReadSamples);
    // Convert AudioBlock to Samples
    audioBlock2Samples(audioInSamples, inBlock);

    for (const auto &rsp : rsps) {
      AudioBlock outBlock(layout);
      Samples inCopy{audioInSamples.clone()};
      // Resample Samples to AudioBlock
      rsp->resample(inCopy, outBlock);
    }

    nSamplesToRead -= nReadSamples;
  }
}

void testAudioBlockAndInterLeaved() {
  AudioBlock in(_3POINT1);
  in.resize(3);
  in[SPEAKER_FRONT_LEFT][0] = 1;
  in[SPEAKER_FRONT_LEFT][1] = 2;
  in[SPEAKER_FRONT_LEFT][2] = 3;
  in[SPEAKER_FRONT_RIGHT][0] = 4;
  in[SPEAKER_FRONT_RIGHT][1] = 5;
  in[SPEAKER_FRONT_RIGHT][2] = 6;
  in[SPEAKER_FRONT_CENTER][0] = 7;
  in[SPEAKER_FRONT_CENTER][1] = 8;
  in[SPEAKER_FRONT_CENTER][2] = 9;
  in[SPEAKER_LOW_FREQUENCY][0] = 10;
  in[SPEAKER_LOW_FREQUENCY][1] = 11;
  in[SPEAKER_LOW_FREQUENCY][2] = 12;
  std::unique_ptr<audioSample_t[]> out(
      new audioSample_t[in.numSamples() * getNbChannelsFromChannelLayout(in.getLayout())]);
  convertAudioBlockToInterleavedSamples(in, out.get());
  ENSURE_EQ(1., out.get()[0], "Check sample value.");
  ENSURE_EQ(4., out.get()[1], "Check sample value.");
  ENSURE_EQ(7., out.get()[2], "Check sample value.");
  ENSURE_EQ(10., out.get()[3], "Check sample value.");
  ENSURE_EQ(2., out.get()[4], "Check sample value.");
  ENSURE_EQ(5., out.get()[5], "Check sample value.");
  ENSURE_EQ(8., out.get()[6], "Check sample value.");
  ENSURE_EQ(11., out.get()[7], "Check sample value.");
  ENSURE_EQ(3., out.get()[8], "Check sample value.");
  ENSURE_EQ(6., out.get()[9], "Check sample value.");
  ENSURE_EQ(9., out.get()[10], "Check sample value.");
  ENSURE_EQ(12., out.get()[11], "Check sample value.");

  AudioBlock inAgain;
  convertInterleavedSamplesToAudioBlock(out.get(), (int)in.numSamples(), in.getLayout(), inAgain);

  ENSURE(inAgain.getLayout() == in.getLayout(), "Check layout");
  ENSURE(inAgain.numSamples() == in.numSamples(), "Check layout");
  for (const auto &track : inAgain) {
    for (size_t s = 0; s < in.numSamples(); s++) {
      ENSURE(in[track.channel()][s] == track[s], "Check sample value");
    }
  }
}

}  // namespace Testing
}  // namespace VideoStitch

int main(int /* argc */, char ** /* argv */) {
  VideoStitch::Testing::initTest();

  VideoStitch::Testing::convUINT8_P();
  VideoStitch::Testing::convUINT8();

  VideoStitch::Testing::convINT16_P();
  VideoStitch::Testing::convINT16();

  VideoStitch::Testing::convINT24_P();
  VideoStitch::Testing::convINT24();

  VideoStitch::Testing::convFLT32_P();
  VideoStitch::Testing::convFLT32();

  VideoStitch::Testing::convToPlanar();

  VideoStitch::Testing::convLayoutSamples();

  VideoStitch::Testing::testConvInterLeavedData();

  VideoStitch::Testing::testAudioBlockAndInterLeaved();

  // Test resampler mono 44k1 -> 48k
  std::cout << "RUN Test resampler mono 44k1 -> mono 48k" << std::endl;
  std::string testData = VideoStitch::Testing::getDataFolder();
  VideoStitch::Testing::resamplerTest("data/snd/cos44k1.wav", testData + "/rsp.wav", 48000.);
  VideoStitch::Testing::compareWavFile("data/snd/ref_rsp_48k.wav", testData + "/rsp.wav", 0.01, 20);
  std::cout << "RUN Test resampler mono 44k1 -> mono 48k : PASSED" << std::endl;

  // Test resampler stereo 48k -> stereo 44k1
  std::cout << "RUN Test resampler stereo 48k -> stereo 44k1" << std::endl;
  VideoStitch::Testing::resamplerTest("data/snd/test_rsp_48k_stereo.wav", testData + "/rsp_stereo.wav", 44100.);
  VideoStitch::Testing::compareWavFile("data/snd/ref_rsp_cos44k1_stereo.wav", testData + "/rsp_stereo.wav",
                                       10. / 32267., 20);
  std::cout << "Test resampler stereo 48k -> stereo 44k1 : PASSED" << std::endl;

  VideoStitch::Testing::invalidResamplerTest("data/snd/ref_rsp_cos44k1_stereo.wav");

  return 0;
}