1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "sampleDelay.hpp"
#include <cmath>
#include <cassert>
namespace VideoStitch {
namespace Audio {
// --- Constructor ------------------------------
SampleDelay::SampleDelay() : AudioObject("delay", AudioFunction::PROCESSOR), curDelayTime_(0) {}
// --- Helpers ----------------------------------
namespace {
inline size_t convertSecondsToSamples(double seconds) {
return static_cast<size_t>(seconds * getDefaultSamplingRate());
}
inline double convertSamplesToSeconds(size_t samples) {
return static_cast<double>(samples) / getDefaultSamplingRate();
}
} // namespace
// --- Set / get --------------------------------
Status SampleDelay::setDelaySeconds(double delayInSeconds) {
std::lock_guard<std::mutex> lock(delayMutex_);
curDelayTime_ = convertSecondsToSamples(delayInSeconds);
return Status::OK();
}
double SampleDelay::getDelaySeconds() {
std::lock_guard<std::mutex> lock(delayMutex_);
return convertSamplesToSeconds(curDelayTime_);
}
void SampleDelay::setDelaySamples(size_t delayInSamples) {
std::lock_guard<std::mutex> lock(delayMutex_);
curDelayTime_ = delayInSamples;
}
size_t SampleDelay::getDelaySamples() {
std::lock_guard<std::mutex> lock(delayMutex_);
return curDelayTime_;
}
// --- Processing -------------------------------
namespace {
void applyWindow(const std::vector<audioSample_t>& inFadeOut, const std::vector<audioSample_t>& inFadeIn,
std::vector<audioSample_t>* winOut) {
size_t numPoints = inFadeOut.size() * 2;
std::vector<audioSample_t> win;
for (size_t i = 0; i < numPoints; i++) {
// Generate Hann window (https://www.youtube.com/watch?v=oHg5SJYRHA0)
audioSample_t point = 0.5 - (0.5 * cos((2.0 * M_PI * (double)i) / ((double)numPoints - 1)));
win.push_back(point);
}
size_t offset = (numPoints / 2) - 1;
for (size_t i = 0; i < inFadeIn.size(); i++) {
audioSample_t sample = (inFadeIn.data()[i] * win.data()[i]) + (inFadeOut.data()[i] * win.data()[i + offset]);
winOut->push_back(sample);
}
}
size_t getDiff(size_t delayTime, size_t oldDelayTime, size_t inputSize) {
size_t diff = std::abs((int)delayTime - (int)oldDelayTime);
// Below we do xxEnd = CURRENT_DELAY_BUFFER.end() - inputSize - oldDelayTime + diff;
// and xxEnd = CURRENT_DELAY_BUFFER.end() - inputSize - delayTime + diff;
// so the following checks are necessary to not go beyond the end of CURRENT_DELAY_BUFFER.
// Also, the window can't be bigger that the block size.
if (diff > (int)inputSize - oldDelayTime) {
diff = inputSize - oldDelayTime;
}
if (diff > (int)inputSize - delayTime) {
diff = inputSize - delayTime;
}
if (diff > inputSize) {
diff = inputSize;
}
return diff;
}
} // namespace
/// \fn void SampleDelay::step(AudioBlock& in, AudioBlock& out)
/// \brief A sample delay audio processing block
/// \param in The audio input
/// \param out Delayed output
///
/// If the delay value changes, we apply Hann windowing to avoid clicks
///
/// input : +=======+
/// delay buffer : +-- // ---------+=======+
/// old delay : ******* oldDelayTime
/// old output : +=======+
/// old window : |--| inFadeOut
/// new delay : **** delayTime
/// new output : +=======+
/// new window : |--| inFadeIn
/// output : +<>+====+ winOut + samples from delay buffer
/// difference : -->| |<-- abs(delayTime - oldDelayTime)
///
///
/// If the delay doesn't change, we simply copy
///
/// input : +=======+
/// delay buffer : +-- // ------+=======+
/// output : +=======+
/// delay time : *****
#define CURRENT_DELAY_BUFFER delayBuffers_[track.channel()]
void SampleDelay::step(AudioBlock& out, const AudioBlock& in) {
for (auto& track : in) {
const size_t inputSize = track.size();
// Insert new samples into delay buffer
for (auto& s : track) {
CURRENT_DELAY_BUFFER.push_back(s);
}
// TODO DEBUG this with lucas
// CURRENT_DELAY_BUFFER.insert(CURRENT_DELAY_BUFFER.begin(), track.begin(), track.end());
size_t delayTime;
// size_t oldDelayTime;
{
std::lock_guard<std::mutex> lock(delayMutex_);
delayTime = curDelayTime_;
}
// TO DEBUG WITH LUCAS
// {
// std::lock_guard<std::mutex> lock(delayMutex_);
// // The maximum delay we can apply right now
// size_t possibleDelay = CURRENT_DELAY_BUFFER.size() - inputSize;
// // The delay we will apply : the minimum of requested and possible
// delayTime = (possibleDelay < curDelayTime_) ? possibleDelay : curDelayTime_;
// // This loop we'll check the previous delay time against the current
// // delay time to see if we need windowing. We'll save the delay time
// // we're using this loop to check the next time around.
// oldDelayTime = oldDelayTime_;
// oldDelayTime_ = delayTime;
// }
// If the delay has changed, apply windowing
// if (delayTime != oldDelayTime) {
// std::cout << "windowing when lucas will come back" << std::endl;
// size_t diff = getDiff(delayTime, oldDelayTime, inputSize);
// // inFadeOut = from : delayBuf.end() - in.size() - oldDelay
// // to : delayBuf.end() - in.size() - oldDelay + delayDiff
// std::vector<audioSample_t> inFadeOut;
// auto fadeOutStart = CURRENT_DELAY_BUFFER.end() - inputSize - oldDelayTime;
// auto fadeOutEnd = CURRENT_DELAY_BUFFER.end() - inputSize - oldDelayTime + diff;
// inFadeOut.insert(inFadeOut.begin(), fadeOutStart, fadeOutEnd);
// // inFadeIn = from : delayBuf.end() - in.size() - delay
// // to : delayBuf.end() - in.size() - delay + delayDiff
// std::vector<audioSample_t> inFadeIn;
// auto fadeInStart = CURRENT_DELAY_BUFFER.end() - inputSize - delayTime;
// auto fadeInEnd = CURRENT_DELAY_BUFFER.end() - inputSize - delayTime + diff;
// inFadeIn.insert(inFadeIn.begin(), fadeInStart, fadeInEnd);
// std::vector<audioSample_t> winOut;
// applyWindow(inFadeOut, inFadeIn, &winOut);
// out[track.channel()].assign(winOut.begin(), winOut.end());
// // fill = from : delayBuf.end() - in.size() - delay + delayDiff
// // to : delayBuf.end() - delay
// if (winOut.size() < inputSize) {
// auto fillStart = CURRENT_DELAY_BUFFER.end() - inputSize - delayTime + diff;
// auto fillEnd = CURRENT_DELAY_BUFFER.end() - delayTime;
// copy(fillStart, fillEnd, back_inserter(out[track.channel()]));
// }
// } else {
// auto copyStart = CURRENT_DELAY_BUFFER.end() - delayTime - inputSize;
// auto copyEnd = CURRENT_DELAY_BUFFER.end() - delayTime;
// out[track.channel()].assign(copyStart, copyEnd);
// }
if ((inputSize + delayTime) > CURRENT_DELAY_BUFFER.size()) {
// Not enough samples to fill a buffer : zero padding
out[track.channel()].assign(inputSize, 0);
} else {
auto copyStart = CURRENT_DELAY_BUFFER.end() - delayTime - inputSize;
auto copyEnd = CURRENT_DELAY_BUFFER.end() - delayTime;
out[track.channel()].assign(copyStart, copyEnd);
}
// Remove oldest samples if we're up to kMaxTime
size_t maxSamples = static_cast<size_t>(getDefaultSamplingRate() * kMaxDelayTime);
if (CURRENT_DELAY_BUFFER.size() > maxSamples) {
size_t numSamplesToErase = CURRENT_DELAY_BUFFER.size() - maxSamples;
CURRENT_DELAY_BUFFER.erase(CURRENT_DELAY_BUFFER.begin(), CURRENT_DELAY_BUFFER.begin() + numSamplesToErase);
}
}
}
#undef CURRENT_DELAY_BUFFER
void SampleDelay::step(AudioBlock& buf) { step(buf, buf); }
} // namespace Audio
} // namespace VideoStitch