1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "sampledStabilization.hpp"
#include "exposureStabilize.hpp"
#include "pointSampler.hpp"
//#define RANSAC_EXPERIMENT
#ifdef RANSAC_EXPERIMENT
#include "ransac.hpp"
#else
#include "util/lmfit/lmmin.hpp"
#endif
#include "backend/common/imageOps.hpp"
#include "backend/common/vectorOps.hpp"
#include "common/container.hpp"
#include "core/controllerInputFrames.hpp"
#include "core/photoTransform.hpp"
#include "gpu/memcpy.hpp"
#include "gpu/surface.hpp"
#include "util/registeredAlgo.hpp"
#include "libvideostitch/curves.hpp"
#include "libvideostitch/logging.hpp"
#include "libvideostitch/profile.hpp"
#include "libvideostitch/parse.hpp"
namespace VideoStitch {
namespace Util {
namespace {
RegisteredAlgo<SampledStabilizationAlgorithm> registered("exposure_stabilize");
RegisteredAlgo<SampledStabilizationOnlineAlgorithm, true> registeredOnline("exposure_stabilize");
inline Status exposureAlgorithmCancelled() {
return {Origin::ExposureAlgorithm, ErrType::OperationAbortedByUser, "Exposure stabilization cancelled"};
}
} // namespace
// For a description of the algorithm and notations here:
// cd ../../doc; pdflatex exp_correction.tex; acroread exp_correction.pdf
/**
* Lmmin problem for exposure stabilization.
*/
class SampledExposureStabilizationProblem : public ExposureStabilizationProblemBase {
public:
/**
* @param numParams Number of parameters to optimize.
* @param pano Panorama definition
* @param maxSampledPoints Stopping criterion: stops as soon as that many points have been drawn.
* @param minPointsPerInput Stopping criterion: stops as soon at all inputs have at least that number of points.
* @param neighbourhoodSize Size of the neighbourhood
* @param anchor Id of the anchor (zero-based).
*/
SampledExposureStabilizationProblem(const Core::PanoDefinition& pano, int maxSampledPoints, int minPointsPerInput,
int neighbourhoodSize, int anchor,
ExposureStabilizationProblemBase::ParameterSetType parameterSetType);
virtual ~SampledExposureStabilizationProblem();
const std::vector<PointPair*>& getPointPairs() const { return pointSampler.getPointPairs(); }
int getMinPointsInOneOutput() const { return pointSampler.getMinPointsInOneOutput(); }
const Core::HostPhotoTransform* getPhotoTransform(videoreaderid_t k) const { return photoTransforms[k]; }
int getNumConnectedComponents() const { return pointSampler.getNumConnectedComponents(); }
protected:
std::vector<Core::HostPhotoTransform*> photoTransforms;
PointSampler pointSampler;
private:
void eval(const double* params, int /*m_dat*/, double* fvec, const char* fFilter, int /*iterNum*/, bool*) const {
for (size_t i = 0; i < getPointPairs().size(); ++i) {
if (!fFilter || fFilter[i]) {
evalPointPair(params, getPointPairs()[i], fvec + 3 * i);
} else {
fvec[3 * i] = 0.0;
fvec[3 * i + 1] = 0.0;
fvec[3 * i + 2] = 0.0;
}
}
}
int getNumInputSamples() const { return (int)getPointPairs().size(); }
/**
* Evals a single point set.
*/
void evalPointPair(const double* params, const PointPair* pointPair, double* res) const {
if (!(pointPair->p_k->hasColor() && pointPair->p_l->hasColor())) {
res[0] = 0.0;
res[1] = 0.0;
res[2] = 0.0;
} else {
if (!isValid(params)) {
res[0] = std::numeric_limits<double>::max();
res[1] = std::numeric_limits<double>::max();
res[2] = std::numeric_limits<double>::max();
return;
}
const videoreaderid_t k = pointPair->p_k->videoInputId();
const videoreaderid_t l = pointPair->p_l->videoInputId();
const float3 colorMultK = getVideoColorMult(params, k);
const float3 colorMultL = getVideoColorMult(params, l);
const float3 accRgbK = photoTransforms[k]->mapPhotoLinearToPano(
photoTransforms[k]->mapPhotoCorrectLinear(colorMultK, pointPair->p_k->color()));
const float3 accRgbL = photoTransforms[l]->mapPhotoLinearToPano(
photoTransforms[l]->mapPhotoCorrectLinear(colorMultL, pointPair->p_l->color()));
res[0] = (1.0 / 255.0) * (double)(accRgbK.x - accRgbL.x);
res[1] = (1.0 / 255.0) * (double)(accRgbK.y - accRgbL.y);
res[2] = (1.0 / 255.0) * (double)(accRgbK.z - accRgbL.z);
// std::cout << *pointPair->p_k << " | " << *pointPair->p_l << " -> " << accRgbK.x << ", " << accRgbL.x <<
// std::endl;
}
}
};
SampledExposureStabilizationProblem::~SampledExposureStabilizationProblem() { deleteAll(photoTransforms); }
// When sampling, we must make sure to have a single connected compunent.
// Else, it can become possible to optimize each groups of inputs individually and end up having them badly fit.
SampledExposureStabilizationProblem::SampledExposureStabilizationProblem(
const Core::PanoDefinition& pano, int maxSampledPoints, int minPointsPerInput, int neighbourhoodSize, int anchor,
ExposureStabilizationProblemBase::ParameterSetType parameterSetType)
: ExposureStabilizationProblemBase(pano, anchor, parameterSetType),
pointSampler(pano, maxSampledPoints, minPointsPerInput, neighbourhoodSize) {
for (videoreaderid_t i = 0; i < pano.numVideoInputs(); ++i) {
photoTransforms.push_back(Core::HostPhotoTransform::create(pano.getVideoInput(i)));
}
}
SampledStabilizationBase::SampledStabilizationBase(const Ptv::Value* config)
: maxSampledPoints(100000), minPointsPerInput(80), neighbourhoodSize(30), stabilizeWB(false) {
if (config != NULL) {
const Ptv::Value* value = config->has("max_sampled_points");
if (value && value->getType() == Ptv::Value::INT) {
maxSampledPoints = (int)value->asInt();
if (maxSampledPoints < 0) {
maxSampledPoints = 0;
}
}
value = config->has("min_points_per_input");
if (value && value->getType() == Ptv::Value::INT) {
minPointsPerInput = (int)value->asInt();
if (minPointsPerInput < 0) {
minPointsPerInput = 0;
}
}
value = config->has("neighbourhood_size");
if (value && value->getType() == Ptv::Value::INT) {
neighbourhoodSize = (int)value->asInt();
if (neighbourhoodSize < 0) {
neighbourhoodSize = 0;
}
}
value = config->has("anchor");
if (value && value->getType() == Ptv::Value::INT) {
anchor = (int)value->asInt();
}
value = config->has("stabilize_wb");
if (value && value->getType() == Ptv::Value::BOOL) {
stabilizeWB = value->asBool();
}
}
}
namespace {
/**
* Returns true if a value is nearly saturated.
*/
bool isNearlyBurnt(const float3& rgb) {
return rgb.x < 10.0f || rgb.x > 245.0f || rgb.y < 10.0f || rgb.y > 245.0f || rgb.z < 10.0f || rgb.z > 245.0f;
}
#ifdef RANSAC_EXPERIMENT
class ExposureRansacSolver : public RansacSolver {
private:
// Ransac: For the problem to be at least constrained, we need: params.size() elements.
// There are at least minPointsPerInput points per input, i.e. at least pano.numVideoInputs() * minPointsPerInput / 2
// samples in total. We require two thirds of these to be consensual.
ExposureRansacSolver(const SolverProblem& problem, int minSamplesForFit, int numIters, int minConsensusSamples,
bool debug = false)
: RansacSolver(problem, params.size(), 100, (pano.numVideoInputs() * minPointsPerInput) / 3, debug) {}
bool isConsensualSample(double* values) const {
// values[0] is a difference in red value in [0;1].
return values[0] * values[0] + values[1] * values[1] + values[2] * values[2] < 0.0001;
}
};
#endif
Solver<SolverProblem>* createSolver(const SolverProblem& problem) {
#ifdef RANSAC_EXPERIMENT
LmminSolver* solver = new LmminSolver(problem, NULL, false);
#else
LmminSolver<SolverProblem>* solver = new LmminSolver<SolverProblem>(problem, NULL, false);
// We must make large steps for things to move, else the gradient will be zero.
solver->getControl().epsilon = 0.01;
return solver;
#endif
}
} // namespace
// -------------------------- Offline algorithm -----------------------------
const char* SampledStabilizationAlgorithm::docString =
"An algorithm that minimizes photometric distorsions in space and time. The default configuration is: "
"{\n"
" \"max_sampled_points\": 100000 # Stopping criterion 1. We'll stop after drawing that many sample points.\n"
" \"min_points_per_input\": 80 # Stopping criterion 2. Each input shall have at least min_points_per_input "
"samples.\n"
" \"neighbourhood_size\": 5 # Size of the neighbourhood to use to compute luminosity.\n"
" \"first_frame\": 0 # Restriction in time.\n"
" \"last_frame\": inf # Restriction in time.\n"
" \"time_step\": 60 # Number of frames between two keyframes.\n"
" \"anchor\": 0 # The input to use as anchor. If -1, anchor all inputs.\n"
" \"stabilize_wb\": false # If true, also stabilizes white balance.\n"
" \"temporal\": false # If true, also stabilizes the global exposure / wb for temporal "
"consistency.\n"
" \"preserve_outside\": false # If true, use create keyframes on each side to preserve values ouside of "
"the [first,last] range.\n"
" \"return_point_set\": false # If true, returns the sampled point set.\n"
"}\n";
SampledStabilizationAlgorithm::SampledStabilizationAlgorithm(const Ptv::Value* config)
: SampledStabilizationBase(config),
firstFrame(0),
lastFrame(std::numeric_limits<int>::max()),
timeStep(60),
preserveOutside(false),
returnPointSet(false) {
if (config != NULL) {
const Ptv::Value* value = config->has("first_frame");
if (value && value->getType() == Ptv::Value::INT) {
firstFrame = (int)value->asInt();
if (firstFrame < 0) {
firstFrame = 0;
}
}
value = config->has("last_frame");
if (value && value->getType() == Ptv::Value::INT) {
lastFrame = (int)value->asInt();
if (lastFrame < firstFrame) {
lastFrame = firstFrame;
}
}
value = config->has("time_step");
if (value && value->getType() == Ptv::Value::INT) {
timeStep = (int)value->asInt();
if (timeStep < 1) {
timeStep = 1;
}
}
value = config->has("temporal");
if (value && value->getType() == Ptv::Value::BOOL) {
temporalStabilization = value->asBool();
}
value = config->has("preserve_outside");
if (value && value->getType() == Ptv::Value::BOOL) {
preserveOutside = value->asBool();
}
value = config->has("return_point_set");
if (value && value->getType() == Ptv::Value::BOOL) {
returnPointSet = value->asBool();
}
}
}
Potential<Ptv::Value> SampledStabilizationAlgorithm::apply(Core::PanoDefinition* pano, ProgressReporter* progress,
OpaquePtr**) const {
if (progress && progress->notify("Sampling points", 0.0)) {
return exposureAlgorithmCancelled();
}
Potential<SampledExposureStabilizationProblem> problem = createProblem(pano);
FAIL_RETURN(problem.status());
const std::unique_ptr<Solver<SolverProblem>> solver(createSolver(*problem.object()));
// Parameters. Reuse the result from one iteration to the other as initial guess.
std::vector<double> params;
problem->computeInitialGuess(params);
auto container = Core::ControllerInputFrames<PixelFormat::RGBA, uint32_t>::create(pano);
FAIL_RETURN(container.status());
for (int time = firstFrame; time < lastFrame; time += timeStep) {
problem->setTime(time);
FAIL_RETURN(container->seek(time));
std::map<readerid_t, PotentialValue<GPU::HostBuffer<uint32_t>>> frames;
container->load(frames);
std::vector<GPU::HostBuffer<uint32_t>> succesfullyLoadedFrames;
for (auto frame : frames) {
if (frame.second.ok()) {
succesfullyLoadedFrames.push_back(frame.second.value());
} else {
return frame.second.status();
}
}
if (progress &&
progress->notify("Stabilizing exposure", (100.0 * (time - firstFrame)) / (lastFrame - firstFrame + 1))) {
return exposureAlgorithmCancelled();
}
sample(pano, succesfullyLoadedFrames, *problem.object());
// Find the set of parameters that minimize spatial inconsitencies.
std::vector<double> prevParams(params); // Keep a copy in case we fail.
{
SIMPLEPROFILE_MS("solve");
if (solver->run(params)) {
problem->saveControlPoint(params);
} else {
params = prevParams; // Reset to previous value.
Logger::get(Logger::Verbose) << "Could not compute exposure for frame " << time << ", skipping." << std::endl;
}
}
}
if (!problem->injectSavedControlPoints(pano, preserveOutside, firstFrame, lastFrame)) {
return Potential<Ptv::Value>(Status::OK());
}
Ptv::Value* returnValue = NULL;
if (returnPointSet) {
returnValue = Ptv::Value::emptyObject();
std::vector<Ptv::Value*>& pointPairs = returnValue->get("homographies")->asList();
for (std::vector<PointPair*>::const_iterator it = problem->getPointPairs().begin();
it != problem->getPointPairs().end(); ++it) {
Ptv::Value* pointPair = Ptv::Value::emptyObject();
pointPairs.push_back(pointPair);
Ptv::Value* point = Ptv::Value::emptyObject();
point->get("x")->asDouble() = (*it)->p_k->coords().x;
point->get("y")->asDouble() = (*it)->p_k->coords().y;
point->get("input")->asInt() = (*it)->p_k->videoInputId();
pointPair->asList().push_back(point);
point = Ptv::Value::emptyObject();
point->get("x")->asDouble() = (*it)->p_l->coords().x;
point->get("y")->asDouble() = (*it)->p_l->coords().y;
point->get("input")->asInt() = (*it)->p_l->videoInputId();
pointPair->asList().push_back(point);
}
}
if (progress) {
progress->notify("Done", 100.0);
}
return returnValue ? Potential<Ptv::Value>(returnValue) : Potential<Ptv::Value>(Status::OK());
}
// -------------------------- Online algorithm -----------------------------
const char* SampledStabilizationOnlineAlgorithm::docString =
"An algorithm that minimizes photometric distorsions in space and time. The default configuration is: "
"{\n"
" \"max_sampled_points\": 100000 # Stopping criterion 1. We'll stop after drawing that many sample points.\n"
" \"min_points_per_input\": 80 # Stopping criterion 2. Each input shall have at least min_points_per_input "
"samples.\n"
" \"neighbourhood_size\": 5 # Size of the neighbourhood to use to compute luminosity.\n"
" \"anchor\": 0 # The input to use as anchor. If -1, anchor all inputs.\n"
" \"stabilize_wb\": false # If true, also stabilizes white balance.\n"
"}\n";
void clearBuffers(std::vector<GPU::HostBuffer<uint32_t>>& buffers) {
for (auto buffer : buffers) {
buffer.release();
}
}
const std::unordered_map<std::string, std::pair<const Core::Curve& (Core::InputDefinition::*)(void)const,
void (Core::InputDefinition::*)(Core::Curve*)>>
SampledStabilizationOnlineAlgorithm::functionMap = {
{"exposureValue", {&Core::InputDefinition::getExposureValue, &Core::InputDefinition::replaceExposureValue}},
{"redCB", {&Core::InputDefinition::getRedCB, &Core::InputDefinition::replaceRedCB}},
{"greenCB", {&Core::InputDefinition::getGreenCB, &Core::InputDefinition::replaceGreenCB}},
{"blueCB", {&Core::InputDefinition::getBlueCB, &Core::InputDefinition::replaceBlueCB}}};
const mtime_t SampledStabilizationOnlineAlgorithm::InterpolationDurationMultiplier = 1000000;
SampledStabilizationOnlineAlgorithm::SampledStabilizationOnlineAlgorithm(const Ptv::Value* config)
: SampledStabilizationBase(config), interpolationFixationFrames(5) {
double runInterval = 0.6;
VideoStitch::Parse::populateDouble("Ptv", *config, "run_interval", runInterval, false);
int interpolationPercent = 50;
VideoStitch::Parse::populateInt("Ptv", *config, "interpolation_interval_percent", interpolationPercent, false);
VideoStitch::Parse::populateInt("Ptv", *config, "safety_margin_frames", interpolationFixationFrames, false);
interpolationDuration = mtime_t((interpolationPercent / 100.) * InterpolationDurationMultiplier * runInterval);
}
Potential<Ptv::Value> SampledStabilizationOnlineAlgorithm::onFrame(
Core::PanoDefinition& pano, std::vector<std::pair<videoreaderid_t, GPU::Surface&>>& frames, mtime_t date,
FrameRate frameRate, Util::OpaquePtr** /*ctx*/) {
auto algorithmStartTime = std::chrono::steady_clock::now();
auto stitcherStartFrame = frameRate.timestampToFrame(date);
auto preservedCurves = preserveCurves(pano, stitcherStartFrame);
if (frames.empty()) {
return {Origin::ExposureAlgorithm, ErrType::InvalidConfiguration, "No input frames"};
}
Potential<SampledExposureStabilizationProblem> problem = createProblem(&pano);
FAIL_RETURN(problem.status());
problem->setTime(stitcherStartFrame);
const std::unique_ptr<Solver<SolverProblem>> solver(createSolver(*problem.object()));
std::vector<double> params;
problem->computeInitialGuess(params);
PROPAGATE_FAILURE_STATUS(processFrames(frames, pano, problem));
// Find the set of parameters that minimize spatial inconsistencies.
SIMPLEPROFILE_MS("solve");
if (solver->run(params)) {
problem->constantControlPoint(params);
// This may seem redundant here as we then will replace result with new curves, but the thing is that here we don't
// have access to new splines So pano is used as a transfer vehicle for the data.
problem->injectSavedControlPoints(&pano, false, 0, 0);
auto newDate = date + std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() -
algorithmStartTime)
.count();
auto algorithmFinishFrame = frameRate.timestampToFrame(newDate) + interpolationFixationFrames;
updateInputCurves(pano, preservedCurves, algorithmFinishFrame,
algorithmFinishFrame + frameRate.timestampToFrame(interpolationDuration));
return Potential<Ptv::Value>(Status::OK());
} else {
return {Origin::ExposureAlgorithm, ErrType::RuntimeError,
"Unable to compute a uniform exposure for the panorama.\n"
"Please check that the geometric calibration of the camera array is correct and that there is enough "
"overlap between the cameras.\n"
"Exposure compensation will work best on static scenes with little movement."};
}
}
Status SampledStabilizationOnlineAlgorithm::processFrames(
const std::vector<std::pair<videoreaderid_t, GPU::Surface&>>& frames, Core::PanoDefinition& pano,
const Potential<SampledExposureStabilizationProblem>& problem) {
std::vector<GPU::HostBuffer<uint32_t>> inputBuffers;
// Copy the host buffers
for (auto frame : frames) {
auto hostBuffer =
GPU::HostBuffer<uint32_t>::allocate(frame.second.width() * frame.second.height(), "Exposure Stabilization");
if (hostBuffer.ok()) {
const Status copyStatus = GPU::memcpyBlocking(hostBuffer.value().hostPtr(), frame.second);
if (copyStatus.ok()) {
inputBuffers.push_back(hostBuffer.value());
} else {
clearBuffers(inputBuffers);
// Logger::get(Logger::Error) << "Exposure host error: " << Status::getErrorMessage(copyStatus.code()) <<
// std::endl; return Potential<Ptv::Value>(copyStatus);
return Status(Origin::ExposureAlgorithm, ErrType::OutOfResources,
"Can't allocate host memory for exposure stabilization", hostBuffer.status());
}
} else {
clearBuffers(inputBuffers);
return Status(Origin::ExposureAlgorithm, ErrType::RuntimeError,
"Can't copy host memory for exposure stabilization", hostBuffer.status());
}
}
sample(&pano, inputBuffers, *problem.object());
// Release the host buffers
clearBuffers(inputBuffers);
return Status();
}
std::unordered_map<std::string, std::vector<Core::Spline*>> SampledStabilizationOnlineAlgorithm::preserveCurves(
const Core::PanoDefinition& panorama, frameid_t frame) {
std::unordered_map<std::string, std::vector<Core::Spline*>> result;
for (const auto& curveFunctions : functionMap) {
for (const auto& input : panorama.getVideoInputs()) {
result[curveFunctions.first].push_back(
Core::Spline::point(frame, (input.get().*curveFunctions.second.first)().at(frame)));
}
}
return result;
}
void SampledStabilizationOnlineAlgorithm::updateInputCurves(
Core::PanoDefinition& panorama, std::unordered_map<std::string, std::vector<Core::Spline*>> preservedCurves,
frameid_t algorithmFinishFrame, frameid_t interpolationFinishFrame) {
for (const auto& curveFunctions : functionMap) {
size_t counter = 0;
for (auto& input : panorama.getVideoInputs()) {
auto curveValue = (input.get().*curveFunctions.second.first)().at(0);
auto& spline = preservedCurves[curveFunctions.first][counter];
// At the beginning here spline is just a point, so finishFrame is ok here
spline->cubicTo(algorithmFinishFrame, spline->at(algorithmFinishFrame))
->cubicTo(interpolationFinishFrame, curveValue)
->cubicTo(interpolationFinishFrame + interpolationFixationFrames, curveValue);
(input.get().*curveFunctions.second.second)(new Core::Curve(spline));
counter++;
}
}
}
void SampledStabilizationBase::sample(Core::PanoDefinition* pano, std::vector<GPU::HostBuffer<uint32_t>>& frames,
SampledExposureStabilizationProblem& problem) const {
SIMPLEPROFILE_MS("read");
for (videoreaderid_t inputID = 0; inputID < (videoreaderid_t)frames.size(); inputID++) {
auto frame = frames[inputID];
/*{
const Core::InputDefinition& input = pano->getVideoInput(pFrame->first);
Util::PngReader writer;
std::stringstream ss;
ss << "expo-" << pFrame->first << ".png";
writer.writeRGBAToFile(ss.str().c_str(), input.getWidth(), input.getHeight(), (void*)pFrame->second);
}*/
for (std::vector<PointPair*>::const_iterator it = problem.getPointPairs().begin();
it != problem.getPointPairs().end(); ++it) {
Point* p = NULL;
if ((*it)->p_k->videoInputId() == inputID) {
p = (*it)->p_k;
} else if ((*it)->p_l->videoInputId() == inputID) {
p = (*it)->p_l;
} else {
continue;
}
const int p_k_x = (int)p->coords().x;
const int p_k_y = (int)p->coords().y;
float3 accRgb = make_float3(0.0f, 0.0f, 0.0f);
int numAcc = 0;
const Core::InputDefinition& input = pano->getVideoInput(inputID);
for (int y = std::max(p_k_y - neighbourhoodSize, 0);
y <= std::min(p_k_y + neighbourhoodSize, (int)input.getHeight() - 1); ++y) {
for (int x = std::max(p_k_x - neighbourhoodSize, 0);
x <= std::min(p_k_x + neighbourhoodSize, (int)input.getWidth() - 1); ++x) {
// Ignore any zero alpha (masked) pixels.
uint32_t v = frame[y * input.getWidth() + x];
if (Image::RGBA::a(v) != 0) {
const float3 rgb =
make_float3((float)Image::RGBA::r(v), (float)Image::RGBA::g(v), (float)Image::RGBA::b(v));
if (!isNearlyBurnt(rgb)) {
// Disable points that are over/underexposed.
accRgb += rgb;
++numAcc;
}
}
}
}
if (numAcc > 0) {
const float3 a = (1.0f / (float)numAcc) * accRgb;
const float3 c = problem.getPhotoTransform(inputID)->mapPhotoInputToLinear(input, p->coords(), a);
p->setColor(c);
} else {
p->setNoColor();
}
}
}
}
Potential<SampledExposureStabilizationProblem> SampledStabilizationBase::createProblem(
Core::PanoDefinition* pano) const {
auto problem = std::make_unique<SampledExposureStabilizationProblem>(
*pano, maxSampledPoints, minPointsPerInput, neighbourhoodSize, anchor,
stabilizeWB ? ExposureStabilizationProblemBase::WBParameterSet
: ExposureStabilizationProblemBase::EvParameterSet);
// Make sure we have at least 1 point per input.
if (problem->getMinPointsInOneOutput() == 0) {
return {Origin::ExposureAlgorithm, ErrType::RuntimeError,
"Unable to perform an exposure compensation. At least one input does not have a sufficiently large "
"overlapping area with its neighbors."};
}
if (problem->getNumConnectedComponents() > 1) {
return {Origin::ExposureAlgorithm, ErrType::RuntimeError,
"Unable to perform an exposure compensation. There are too few overlapping areas between the inputs."};
}
return problem.release();
}
} // namespace Util
} // namespace VideoStitch