epipolarCurvesAlgorithm.cpp 32.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm

#include "epipolarCurvesAlgorithm.hpp"

#include "parse/json.hpp"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127)
#endif
#include "calibration/calibrationUtils.hpp"
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include "calibration/keypointExtractor.hpp"
#include "calibration/keypointMatcher.hpp"
#include "core/controllerInputFrames.hpp"
#include "core/geoTransform.hpp"
#include "util/pngutil.hpp"
#include "util/registeredAlgo.hpp"

#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4190)
#endif
#include <opencv2/imgproc.hpp>
#ifdef _MSC_VER
#pragma warning(pop)
#endif

#include <random>

#define POINT_PICKING_TARGET_N_PAIRS 10000
#define POINT_PICKING_MAX_TRIALS (1000 * POINT_PICKING_TARGET_N_PAIRS)
#define MIN_HANDLED_DEPTH 0.001f
#define MAX_HANDLED_DEPTH 100.0f

namespace VideoStitch {
namespace EpipolarCurves {

namespace {
Util::RegisteredAlgo<EpipolarCurvesAlgorithm> registered("epipolar");
}

const char* EpipolarCurvesAlgorithm::docString =
    "An algorithm that shows epipolar curves in input pictures, based on provided points or automatically matched "
    "ones.\n";

static const cv::Scalar colors[] = {{0, 0, 255}, {0, 255, 0}, {255, 0, 0}, {0, 255, 255}, {255, 255, 0}, {255, 0, 255}};

EpipolarCurvesAlgorithm::EpipolarCurvesAlgorithm(const Ptv::Value* config) : epipolarCurvesConfig(config) {}

EpipolarCurvesAlgorithm::~EpipolarCurvesAlgorithm() {}

/* Writes OpenCV image to file */
static Status dumpImageFile(const cv::Mat& image, const std::string& filename) {
  bool (*writeImageFileFunction)(const char* filename, int64_t width, int64_t height, const void* data) = nullptr;
  switch (image.type()) {
    case CV_8UC4:
      writeImageFileFunction = Util::PngReader::writeRGBAToFile;
      break;
    case CV_8UC3:
      writeImageFileFunction = Util::PngReader::writeBGRToFile;
      break;
    case CV_8UC1:
      writeImageFileFunction = Util::PngReader::writeMonochromToFile;
      break;
    default:
      return {Origin::Output, ErrType::RuntimeError, "Invalid image format"};
  }
  if (!writeImageFileFunction(filename.c_str(), image.cols, image.rows, image.data)) {
    return {Origin::Output, ErrType::RuntimeError, "Could not write output file to path: '" + filename + "'"};
  }
  return Status::OK();
}

// checks that a point can be correctly mapped
// points scaled from (0, 0, -1) are singular, they cannot be mapped correctly
static bool isMappable(const Core::SphericalCoords3& scaledPoint3d) {
  const float norm = std::sqrt(scaledPoint3d.x * scaledPoint3d.x + scaledPoint3d.y * scaledPoint3d.y +
                               scaledPoint3d.z * scaledPoint3d.z);
  return (std::abs(scaledPoint3d.z + norm) > 1.0e-6f);
}

/* Computes the Euclidian distance between two 2D points */
template <class Point2DType1, class Point2DType2>
float distance2D(const Point2DType1& pt1, const Point2DType2& pt2) {
  return std::sqrt((pt1.x - pt2.x) * (pt1.x - pt2.x) + (pt1.y - pt2.y) * (pt1.y - pt2.y));
}

/* Computes the minimum stitching distance for a 3D unit point - returns false if not possible */
static bool computeMinimumStitchingDistanceFor3DPoint(
    const Core::SphericalCoords3& refPoint3d, const std::vector<Core::TopLeftCoords2>& inputCenters,
    const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
    const Core::PanoDefinition* pano, float& stitchingDistance) {
  const float minDepth = MIN_HANDLED_DEPTH;
  const float maxDepth = MAX_HANDLED_DEPTH;

  auto isDepthFor3DPointWithinInputBounds = [&](const videoreaderid_t id, const float depth) -> bool {
    assert(depth >= 0.f);
    Core::SphericalCoords3 scaledPoint3d = refPoint3d;
    scaledPoint3d *= depth;

    if (!isMappable(scaledPoint3d)) {
      return false;
    }

    const Core::CenterCoords2 centerProjected =
        transforms[id]->mapRigSphericalToInput(pano->getVideoInput(id), scaledPoint3d, 0);
    const Core::TopLeftCoords2 topLeftProjected(centerProjected, inputCenters[id]);

    return transforms[id]->isWithinInputBounds(pano->getVideoInput(id), topLeftProjected);
  };

  // Check if refPoint3d is visible by a number of cameras when scaled at maxDepth
  std::vector<videoreaderid_t> camerasIds;

  for (videoreaderid_t i = 0; i < pano->numVideoInputs(); ++i) {
    if (isDepthFor3DPointWithinInputBounds(i, maxDepth)) {
      camerasIds.push_back(i);
    }
  }

  // We need the point to be visible by at least two cameras, if not, pick another point
  if (camerasIds.size() < 2) {
    return false;
  }

  // Find the minimum depth that will make the point be visible by less than 2 cameras
  float depth_below = minDepth;
  float depth_above = maxDepth;

  while (depth_above - depth_below >= .001) {
    float mid_depth = (depth_above + depth_below) / 2;

    size_t numberOfCamerasWherePointIsVisible = 0;

    for (auto camId : camerasIds) {
      if (isDepthFor3DPointWithinInputBounds(camId, mid_depth)) {
        ++numberOfCamerasWherePointIsVisible;
      }
    }

    if (numberOfCamerasWherePointIsVisible < 2) {
      // stitching distance is too small, less than 2 cameras still see the point
      depth_below = mid_depth;
    } else {
      // stitching distance is is too large, more than 2 cameras see the point
      depth_above = mid_depth;
    }
  }

  stitchingDistance = (depth_above + depth_below) / 2;

  return true;
}

/* Computes the minimum stitching distance for every point of the output panorama */
static cv::Mat computeMinimumStitchingDistancePerPointInOutputPanorama(
    const std::vector<Core::TopLeftCoords2>& inputCenters,
    const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
    const Core::PanoDefinition* pano, double imageMaxOutputDepth) {
  const int panoWidth = (int)pano->getWidth();
  const int panoHeight = (int)pano->getHeight();

  /* supporting equirectangular outputs only for the moment */
  cv::Mat outputEquirectangularDepthImage(panoHeight, panoWidth, CV_32FC1, cv::Scalar::all(0.));

  const float panoCenterX = panoWidth / 2.0f;
  const float panoCenterY = panoHeight / 2.0f;
  const Core::TransformStack::GeoTransform* transform0 = transforms[0].get();

  /* Parallel execution using C++11 lambda. */
  outputEquirectangularDepthImage.forEach<float>([&](float& pixel, const int position[]) -> void {
    const Core::CenterCoords2 panoCoords(position[1] - panoCenterX, position[0] - panoCenterY);
    const Core::SphericalCoords3 refPoint3d = transform0->mapPanoramaToRigSpherical(panoCoords);

    computeMinimumStitchingDistanceFor3DPoint(refPoint3d, inputCenters, transforms, pano, pixel);
  });

  cv::Mat output8bits;
  if (imageMaxOutputDepth > 0) {
    outputEquirectangularDepthImage.convertTo(output8bits, CV_8UC1, 255. / imageMaxOutputDepth);
  } else {
    Logger::get(Logger::Error) << "Invalid max output depth " << imageMaxOutputDepth
                               << " given to convert floating point depth to 8 bit gray-scale intensities" << std::endl;
  }

  return output8bits;
}

/* Computes the minimum stitching distance by randomly picking points on the sphere */
static float computeMinimumStitchingDistanceByRandomPoints(
    const std::vector<Core::TopLeftCoords2>& inputCenters,
    const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
    const Core::PanoDefinition* pano) {
  float minStitchingDistance = std::numeric_limits<float>::max();

  /* Needs translations between cameras to work */
  if (pano->hasTranslations()) {
    float maxStitchingDistance = 0.0f;
    const int target_n_pairs = POINT_PICKING_TARGET_N_PAIRS;
    const int max_trials = POINT_PICKING_MAX_TRIALS;
    int n_pairs = 0;

    std::seed_seq seed{1, 2, 3, 4, 5, 6, 7, 8, 9};
    std::mt19937 gen(seed);

    std::uniform_real_distribution<double> distribution_theta(0, 2 * M_PI);
    std::uniform_real_distribution<double> distribution_u(-1, 1);

    // Randomly generate 3D points to determine their minimum stitching distance (which is the distance where they will
    // no longer be seen by two cameras)
    for (int trial = 0; trial <= max_trials && n_pairs <= target_n_pairs; ++trial) {
      // Generate a point on the unit sphere using sphere point picking, see
      // http://mathworld.wolfram.com/SpherePointPicking.html
      double theta = distribution_theta(gen);
      double u = distribution_u(gen);

      const Core::SphericalCoords3 refPoint3d(static_cast<float>(std::sqrt(1. - u * u) * std::cos(theta)),
                                              static_cast<float>(std::sqrt(1. - u * u) * std::sin(theta)),
                                              static_cast<float>(u));

      float stitchingDistance;

      if (computeMinimumStitchingDistanceFor3DPoint(refPoint3d, inputCenters, transforms, pano, stitchingDistance)) {
        // Get the max of and min of minimum stitching distance
        if (minStitchingDistance > stitchingDistance) {
          minStitchingDistance = stitchingDistance;
        }
        if (maxStitchingDistance < stitchingDistance) {
          maxStitchingDistance = stitchingDistance;
        }
        ++n_pairs;
      }
    }
  }

  return minStitchingDistance;
}

/* Load input images given an array of frame numbers */
static Status loadInputImages(std::map<frameid_t, std::vector<cv::Mat>>& inputImages, const Core::PanoDefinition* pano,
                              const std::vector<frameid_t>& frameNumbers) {
  inputImages.clear();

  auto container = Core::ControllerInputFrames<PixelFormat::RGBA, uint32_t>::create(pano);
  FAIL_RETURN(container.status());

  for (auto& frameNumber : frameNumbers) {
    std::map<readerid_t, PotentialValue<GPU::HostBuffer<uint32_t>>> loadedFrames;

    FAIL_RETURN(container->seek(frameNumber));
    container->load(loadedFrames);

    /*Load input images for this frame number*/
    for (const auto& loadedFrame : loadedFrames) {
      readerid_t inputId = loadedFrame.first;
      auto potLoadedFrame = loadedFrame.second;
      FAIL_RETURN(potLoadedFrame.status());

      GPU::HostBuffer<uint32_t> frame = potLoadedFrame.value();

      /* Get the size of the current image */
      const Core::InputDefinition& inputDef = pano->getInput(inputId);
      const int width = static_cast<int>(inputDef.getWidth());
      const int height = static_cast<int>(inputDef.getHeight());

      auto potHostFrame =
          GPU::HostBuffer<unsigned char>::allocate(frame.numElements() * 4, "EpipolarCurves frame loading");
      FAIL_RETURN(potHostFrame.status());
      GPU::HostBuffer<unsigned char> hostFrame = potHostFrame.value();
      std::memcpy(hostFrame.hostPtr(), frame.hostPtr(), frame.byteSize());

      cv::Mat bgrImage;
      cv::Mat rgbaImage(cv::Size(width, height), CV_8UC4, frame.hostPtr(), cv::Mat::AUTO_STEP);
      cv::cvtColor(rgbaImage, bgrImage, CV_RGBA2BGR);

      inputImages[frameNumber].push_back(bgrImage);

      hostFrame.release();
    }
  }

  return Status::OK();
}

static Status extractKeyPoints(
    std::map<std::pair<videoreaderid_t, videoreaderid_t>, Core::ControlPointList>& matchedPointsMap,
    std::map<videoreaderid_t, std::vector<Core::TopLeftCoords2>>& pointsMap, const std::vector<cv::Mat>& inputImages,
    const std::vector<Core::TopLeftCoords2>& inputCenters,
    const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
    const Core::PanoDefinition* pano, const double decimationCellFactor) {
  /* Extraction and description of features on a list of images */
  Calibration::KeypointExtractor kpExtractor(2, 2, 0.001);
  Calibration::KeypointMatcher kpMatcher(0.99);

  std::vector<Calibration::KPList> keypoints;
  std::vector<Calibration::DescriptorList> descriptors;
  keypoints.resize(inputImages.size());
  descriptors.resize(inputImages.size());

  /*Loop over cameras*/
  for (videoreaderid_t camId = 0; camId < (videoreaderid_t)inputImages.size(); ++camId) {
    /*Do the real extraction part*/
    FAIL_RETURN(kpExtractor.extract(inputImages[camId], keypoints[camId], descriptors[camId], cv::Mat()));
  }

  /*Perform matching for all pairs*/
  for (videoreaderid_t camId1 = 0; camId1 < (videoreaderid_t)inputImages.size() - 1; ++camId1) {
    for (videoreaderid_t camId2 = camId1 + 1; camId2 < (videoreaderid_t)inputImages.size(); ++camId2) {
      /*Raw blind matching*/
      Core::ControlPointList matched, validated, decimated;
      std::pair<videoreaderid_t, videoreaderid_t> pair{camId1, camId2};
      FAIL_RETURN(kpMatcher.match(0, pair, keypoints[camId1], descriptors[camId1], keypoints[camId2],
                                  descriptors[camId2], matched));

      /*Validate the matches by reprojecting them*/
      for (Core::ControlPoint& cp : matched) {
        const Core::TopLeftCoords2 pointCam1(static_cast<float>(cp.x0), static_cast<float>(cp.y0));
        const Core::TopLeftCoords2 pointCam2(static_cast<float>(cp.x1), static_cast<float>(cp.y1));

        const Core::CenterCoords2 centeredPointCam1(pointCam1, inputCenters[camId1]);
        const Core::CenterCoords2 centeredPointCam2(pointCam2, inputCenters[camId2]);

        // Up-lifting points to spheres far away
        const Core::SphericalCoords3 spherePointCam1 = transforms[camId1]->mapInputToRigSpherical(
            pano->getVideoInput(camId1), centeredPointCam1, 0, MAX_HANDLED_DEPTH);
        const Core::CenterCoords2 centeredPointCam1InCam2 =
            transforms[camId2]->mapRigSphericalToInput(pano->getVideoInput(camId2), spherePointCam1, 0);
        const Core::TopLeftCoords2 pointCam1InCam2(centeredPointCam1InCam2, inputCenters[camId2]);

        /* Reject points if reprojection is too far */
        if (distance2D(pointCam2, pointCam1InCam2) > 200.f) {
          continue;
        }

        cp.rx0 = pointCam1InCam2.x;
        cp.ry0 = pointCam1InCam2.y;

        validated.push_back(cp);
      }

      /*Sort and decimate the ControlPoints to limit their density*/
      validated.sort(Core::ControlPointComparator());
      Calibration::decimateSortedControlPoints(decimated, validated, pano->getVideoInput(camId1).getWidth(),
                                               pano->getVideoInput(camId1).getHeight(), decimationCellFactor);

      Logger::get(Logger::Verbose) << "Found " << matched.size() << " rough matched points between camera #" << camId1
                                   << " and camera #" << camId2 << std::endl;
      Logger::get(Logger::Verbose) << "Validated " << validated.size() << " matched points between camera #" << camId1
                                   << " and camera #" << camId2 << std::endl;
      Logger::get(Logger::Verbose) << "Decimated to " << decimated.size() << " points" << std::endl;

      /*Merging result*/
      matchedPointsMap[pair].insert(matchedPointsMap[pair].end(), decimated.begin(), decimated.end());

      /*Add matched points to single points map*/
      for (const auto& it : decimated) {
        pointsMap[it.index0].push_back(Core::TopLeftCoords2(static_cast<float>(it.x0), static_cast<float>(it.y0)));
        pointsMap[it.index1].push_back(Core::TopLeftCoords2(static_cast<float>(it.x1), static_cast<float>(it.y1)));
      }
    }
  }
  return Status::OK();
}

/* Returns a map of epipolar curves per camera, given a camera ID and 2D point */
static void computeEpipolarCurves(std::map<videoreaderid_t, std::vector<cv::Point>>& curveMap,
                                  const std::pair<videoreaderid_t, Core::TopLeftCoords2>& point,
                                  const std::vector<Core::TopLeftCoords2>& inputCenters,
                                  const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
                                  const Core::PanoDefinition* pano) {
  const videoreaderid_t fromId = point.first;
  const Core::TopLeftCoords2 topLeftPoint = point.second;
  const Core::CenterCoords2 centerPoint(topLeftPoint, inputCenters[fromId]);

  curveMap.clear();

  for (videoreaderid_t camId = 0; camId < pano->numVideoInputs(); camId++) {
    if (fromId == camId) {
      continue;
    }

    // minimum distance for which lifting points and reprojecting them is meaningful
    // (the sphere at this distance should contain both camera centers of projection)
    const float minDistance =
        std::max(transforms[fromId]->computeInputMinimumRigSphereRadius(pano->getVideoInput(fromId), 0),
                 transforms[camId]->computeInputMinimumRigSphereRadius(pano->getVideoInput(camId), 0));

    Core::TopLeftCoords2 lastAddedPoint;

    for (float distance = MAX_HANDLED_DEPTH; distance >= minDistance;
         (distance <= 3.f) ? distance -= .01f : distance -= .5f) {
      Core::SphericalCoords3 scaledPoint3d =
          transforms[fromId]->mapInputToRigSpherical(pano->getVideoInput(fromId), centerPoint, 0, distance);
      Core::CenterCoords2 centerProjected =
          transforms[camId]->mapRigSphericalToInput(pano->getVideoInput(camId), scaledPoint3d, 0);
      Core::TopLeftCoords2 topLeftProjected(centerProjected, inputCenters[camId]);

      if (transforms[camId]->isWithinInputBounds(pano->getVideoInput(camId), topLeftProjected)) {
        // add point only if there is at least a one pixel difference with the last added one
        if (curveMap[camId].empty() || distance2D(lastAddedPoint, topLeftProjected) >= 1.f) {
          lastAddedPoint = topLeftProjected;
          curveMap[camId].push_back(cv::Point(static_cast<int>(std::round(topLeftProjected.x)),
                                              static_cast<int>(std::round(topLeftProjected.y))));
        }
      }
    }
  }
}

/* Draws the epipolar curves given a map of points in several cameras */
static void drawEpipolarCurves(std::vector<cv::Mat>& inputImages,
                               const std::map<videoreaderid_t, std::vector<Core::TopLeftCoords2>>& pointsMap,
                               const std::vector<Core::TopLeftCoords2>& inputCenters,
                               const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
                               const Core::PanoDefinition* pano) {
  /* For each camera in map */
  for (const auto& it : pointsMap) {
    videoreaderid_t refId = it.first;

    cv::Scalar color = colors[refId % (sizeof(colors) / sizeof(colors[0]))];

    /* For each point for this camera */
    for (const auto& topLeftPoint : it.second) {
      std::map<videoreaderid_t, std::vector<cv::Point>> curveMap;

      /* Compute epipolar curves in other cameras */
      computeEpipolarCurves(curveMap, {refId, topLeftPoint}, inputCenters, transforms, pano);

      /* Do the actual drawing */
      for (videoreaderid_t camId = 0; camId < pano->numVideoInputs(); camId++) {
        if (refId == camId) {
          cv::circle(
              inputImages[refId],
              cv::Point(static_cast<int>(std::round(topLeftPoint.x)), static_cast<int>(std::round(topLeftPoint.y))), 10,
              color, 2);
        } else {
          if (!curveMap[camId].empty()) {
            /* If curve has a single point, draw a cross, else the curve */
            if (curveMap[camId].size() == 1) {
              cv::line(inputImages[camId], curveMap[camId][0] + cv::Point(-10, 0),
                       curveMap[camId][0] + cv::Point(10, 0), color, 2);
              cv::line(inputImages[camId], curveMap[camId][0] + cv::Point(0, -10),
                       curveMap[camId][0] + cv::Point(0, 10), color, 2);
            } else {
              cv::polylines(inputImages[camId], curveMap[camId], false, color, 2);
            }
          }
        }
      }
    }
  }
}

/* Computes and draws the depth for each point in map */
static void computeAndDrawDepths(
    std::vector<cv::Mat>& inputImages,
    const std::map<std::pair<videoreaderid_t, videoreaderid_t>, Core::ControlPointList>& matchedPointsMap,
    const std::vector<Core::TopLeftCoords2>& inputCenters,
    const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
    const Core::PanoDefinition* pano) {
  // Compute depth of matched points by intersecting rays out of cameras
  for (const auto& matchedPoint : matchedPointsMap) {
    const videoreaderid_t camId1 = matchedPoint.first.first;
    const videoreaderid_t camId2 = matchedPoint.first.second;

    for (const Core::ControlPoint& cp : matchedPoint.second) {
      const Core::TopLeftCoords2 pointCam1(static_cast<float>(cp.x0), static_cast<float>(cp.y0));
      const Core::TopLeftCoords2 pointCam2(static_cast<float>(cp.x1), static_cast<float>(cp.y1));

      const Core::CenterCoords2 centeredPointCam1(pointCam1, inputCenters[camId1]);
      const Core::CenterCoords2 centeredPointCam2(pointCam2, inputCenters[camId2]);

      // Up-lifting points to spheres of radius 1.0 and 2.0
      const Core::SphericalCoords3 firstScaledPointCam1 = transforms[camId1]->mapInputToScaledCameraSphereInRigBase(
          pano->getVideoInput(camId1), centeredPointCam1, 0, 1.0);
      const Core::SphericalCoords3 secondScaledPointCam1 = transforms[camId1]->mapInputToScaledCameraSphereInRigBase(
          pano->getVideoInput(camId1), centeredPointCam1, 0, 2.0);
      const Core::SphericalCoords3 firstScaledPointCam2 = transforms[camId2]->mapInputToScaledCameraSphereInRigBase(
          pano->getVideoInput(camId2), centeredPointCam2, 0, 1.0);
      const Core::SphericalCoords3 secondScaledPointCam2 = transforms[camId2]->mapInputToScaledCameraSphereInRigBase(
          pano->getVideoInput(camId2), centeredPointCam2, 0, 2.0);

      // Get distance of closest points between rays (or skew lines)
      // https://en.wikipedia.org/wiki/Skew_lines#Nearest_Points
      // Reusing the notations of the Wikipedia article

      // Get vectors of rays out of cameras
      // Using cv::Vec3d for points to ease arithmetic operations on them
      const cv::Vec3d p1(firstScaledPointCam1.x, firstScaledPointCam1.y, firstScaledPointCam1.z);
      const cv::Vec3d p2(firstScaledPointCam2.x, firstScaledPointCam2.y, firstScaledPointCam2.z);
      // Ray unit vectors out of the cameras (note that they have unit norm)
      const cv::Vec3d d1(secondScaledPointCam1.x - firstScaledPointCam1.x,
                         secondScaledPointCam1.y - firstScaledPointCam1.y,
                         secondScaledPointCam1.z - firstScaledPointCam1.z);
      const cv::Vec3d d2(secondScaledPointCam2.x - firstScaledPointCam2.x,
                         secondScaledPointCam2.y - firstScaledPointCam2.y,
                         secondScaledPointCam2.z - firstScaledPointCam2.z);

      const double u = d1.dot(d2);
      if (std::abs(u - 1.) > std::numeric_limits<double>::epsilon()) {
        cv::Vec3d n = d1.cross(d2);
        cv::Vec3d n1 = d1.cross(n);
        cv::Vec3d n2 = d2.cross(n);

        const double t1 = (p2 - p1).dot(n2) / d1.dot(n2);
        const double t2 = (p1 - p2).dot(n1) / d2.dot(n1);

        // c1 and c2 form the shortest line segment joining skew lines from cam1 and cam2
        cv::Vec3d c1 = p1 + t1 * d1;
        cv::Vec3d c2 = p2 + t2 * d2;

        /* Depth of closest points on skew lines in world space */
        const double depthCam1 = std::sqrt(c1.dot(c1));
        const double depthCam2 = std::sqrt(c2.dot(c2));

        Logger::get(Logger::Debug) << "distance p1 p2 " << std::sqrt((c1 - c2).dot(c1 - c2)) << std::endl;

        // Reprojecting centeredPointCam1 onto Cam2, to know if we are within the input bounds
        const double scaleForPointCam1 =
            t1 + 1 /* because t1 is the distance starting at firstScaledPointCam1, already at camera sphere scale 1 */;
        const Core::SphericalCoords3 pointCam1ToD1 = transforms[camId1]->mapInputToScaledCameraSphereInRigBase(
            pano->getVideoInput(camId1), centeredPointCam1, 0, static_cast<float>(scaleForPointCam1));
        const Core::CenterCoords2 pointCam1ToCam2 =
            transforms[camId2]->mapRigSphericalToInput(pano->getVideoInput(camId2), pointCam1ToD1, 0);
        const Core::TopLeftCoords2 reprojected(pointCam1ToCam2, inputCenters[camId2]);

        Logger::get(Logger::Debug) << "cam1 to cam2 " << reprojected.x << ", " << reprojected.y << ", cam2 " << cp.x1
                                   << ", " << cp.y1 << ", distance " << distance2D(reprojected, pointCam2)
                                   << ", rx0, ry0 " << cp.rx0 << ", " << cp.ry0 << ", distance "
                                   << distance2D(cv::Point2f(static_cast<float>(cp.rx0), static_cast<float>(cp.ry0)),
                                                 pointCam2)
                                   << std::endl;

        Logger::get(Logger::Debug) << "depth 1 " << depthCam1 << std::endl;
        Logger::get(Logger::Debug) << "depth 2 " << depthCam2 << std::endl;

        cv::Scalar colorCamId1 = colors[camId1 % (sizeof(colors) / sizeof(colors[0]))];
        cv::Scalar colorCamId2 = colors[camId2 % (sizeof(colors) / sizeof(colors[0]))];

        /* Draw the depth value in centimeters next to the points */
        if (transforms[camId2]->isWithinInputBounds(pano->getVideoInput(camId2), reprojected)) {
          cv::putText(inputImages[camId1], std::to_string(int(std::round(depthCam1 * 100.f))),
                      cv::Point(static_cast<int>(std::round(pointCam1.x + 20.f)),
                                static_cast<int>(std::round(pointCam1.y - 10.f))),
                      cv::FONT_HERSHEY_SIMPLEX, 1, colorCamId1, 2, cv::LINE_AA);
          cv::putText(inputImages[camId2], std::to_string(int(std::round(depthCam2 * 100.f))),
                      cv::Point(static_cast<int>(std::round(pointCam2.x + 20.f)),
                                static_cast<int>(std::round(pointCam2.y - 10.f))),
                      cv::FONT_HERSHEY_SIMPLEX, 1, colorCamId2, 2, cv::LINE_AA);
        } else {
          cv::putText(inputImages[camId1], "unknown",
                      cv::Point(static_cast<int>(std::round(pointCam1.x + 20.f)),
                                static_cast<int>(std::round(pointCam1.y - 10.f))),
                      cv::FONT_ITALIC, 1, colorCamId1, 2, cv::LINE_AA);
          cv::putText(inputImages[camId2], "unknown",
                      cv::Point(static_cast<int>(std::round(pointCam2.x + 20.f)),
                                static_cast<int>(std::round(pointCam2.y - 10.f))),
                      cv::FONT_ITALIC, 1, colorCamId2, 2, cv::LINE_AA);
        }
      }
    }
  }
}

/* Computes and draws a spherical grid in the input pictures */
static void computeAndDrawSphericalGrid(
    std::vector<cv::Mat>& inputImages, const float sphereScale, const std::vector<Core::TopLeftCoords2>& inputCenters,
    const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
    const Core::PanoDefinition* pano) {
  float longitude, latitude;
  videoreaderid_t camId;
  std::vector<cv::Point> curve;

  auto drawAndFlushCurve = [&]() {
    const int npts = static_cast<int>(curve.size());
    if (npts) {
      const cv::Point* pts = curve.data();
      cv::polylines(inputImages[camId], &pts, &npts, 1, false, colors[camId]);
      curve.clear();
    }
  };

  /* Lambda function to add a point to a curve if it falls within input picture, and draw and flush the curve if it
   * falls outside */
  auto addPointToCurve = [&]() {
    Core::SphericalCoords3 scaledPoint3d(sphereScale * std::cos(latitude) * std::sin(longitude),
                                         sphereScale * std::sin(latitude),
                                         sphereScale * std::cos(latitude) * std::cos(longitude));

    if (!isMappable(scaledPoint3d)) {
      return;
    }

    Core::CenterCoords2 centerProjected =
        transforms[camId]->mapRigSphericalToInput(pano->getVideoInput(camId), scaledPoint3d, 0);
    Core::TopLeftCoords2 topLeftProjected(centerProjected, inputCenters[camId]);

    if (transforms[camId]->isWithinInputBounds(pano->getVideoInput(camId), topLeftProjected)) {
      curve.push_back(cv::Point(static_cast<int>(std::round(topLeftProjected.x)),
                                static_cast<int>(std::round(topLeftProjected.y))));
    } else {
      drawAndFlushCurve();
    }
  };

  const float F_PI = static_cast<float>(M_PI);

  for (camId = 0; camId < pano->numVideoInputs(); camId++) {
    /* Project 20 latitude lines in the camId input picture */
    for (latitude = -F_PI / 2; latitude <= F_PI / 2; latitude += F_PI / 20) {
      for (longitude = -F_PI; longitude < F_PI; longitude += 2 * F_PI / 2000) {
        addPointToCurve();
      }
      drawAndFlushCurve();
    }
    /* Then project 20 longitude lines */
    for (longitude = -F_PI; longitude < F_PI; longitude += 2 * F_PI / 20) {
      for (latitude = -F_PI / 2; latitude <= F_PI / 2; latitude += F_PI / 2000) {
        addPointToCurve();
      }
      drawAndFlushCurve();
    }
  }
}

Potential<Ptv::Value> EpipolarCurvesAlgorithm::apply(Core::PanoDefinition* pano, ProgressReporter*,
                                                     Util::OpaquePtr**) const {
  if (!epipolarCurvesConfig.isValid()) {
    return {Origin::EpipolarCurvesAlgorithm, ErrType::InvalidConfiguration, "Invalid configuration for algorithm"};
  }

  /* Prepare transforms and input centers coordinates */
  std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>> transforms;
  std::vector<Core::TopLeftCoords2> inputCenters;
  for (const auto& videoInputDef : pano->getVideoInputs()) {
    transforms.push_back(std::unique_ptr<Core::TransformStack::GeoTransform>(
        Core::TransformStack::GeoTransform::create(*pano, videoInputDef)));
    inputCenters.push_back(Core::TopLeftCoords2(static_cast<float>(videoInputDef.get().getWidth() / 2),
                                                static_cast<float>(videoInputDef.get().getHeight() / 2)));
  }

  /* Get minimum stitching distance by randomly picking points on the sphere */
  const float minStitchingDistance = computeMinimumStitchingDistanceByRandomPoints(inputCenters, transforms, pano);
  Logger::get(Logger::Info) << "Minimum stitching distance computed from Pano geometry " << minStitchingDistance
                            << std::endl;

  /* Get minimum stitching distance for every panorama output point and generate a picture */
  const cv::Mat minStitchingDistanceInOutputPanoram = computeMinimumStitchingDistancePerPointInOutputPanorama(
      inputCenters, transforms, pano, epipolarCurvesConfig.getImageMaxOutputDepth());
  FAIL_RETURN(dumpImageFile(minStitchingDistanceInOutputPanoram, "output_min_stitching_distance.png"));

  /* Draw depth for each point in map by triangulation, if we have translations between cameras */

  /* Load input images */
  std::vector<frameid_t> frameNumbers = epipolarCurvesConfig.getFrames();
  std::map<frameid_t, std::vector<cv::Mat>> inputImagesMap;

  FAIL_RETURN(loadInputImages(inputImagesMap, pano, frameNumbers));

  /* For each input frame number, extract keypoints, draw epipolar curves and depths */
  for (auto& frameNumber : epipolarCurvesConfig.getFrames()) {
    assert(pano->numVideoInputs() == (videoreaderid_t)inputImagesMap[frameNumber].size());

    std::map<videoreaderid_t, std::vector<Core::TopLeftCoords2>> pointsMap = epipolarCurvesConfig.getSinglePointsMap();
    std::map<std::pair<videoreaderid_t, videoreaderid_t>, Core::ControlPointList> matchedPointsMap =
        epipolarCurvesConfig.getMatchedPointsMap();

    if (epipolarCurvesConfig.getIsAutoPointMatching()) {
      FAIL_RETURN(extractKeyPoints(matchedPointsMap, pointsMap, inputImagesMap[frameNumber], inputCenters, transforms,
                                   pano, epipolarCurvesConfig.getDecimationCellFactor()));
    }

    /* Draw epipolar curves for each point in map */
    drawEpipolarCurves(inputImagesMap[frameNumber], pointsMap, inputCenters, transforms, pano);

    /* Draw depth for each point in map, if we have translations between cameras */
    if (pano->hasTranslations()) {
      computeAndDrawDepths(inputImagesMap[frameNumber], matchedPointsMap, inputCenters, transforms, pano);
    }

    /* Draw spherical grid */
    if (epipolarCurvesConfig.getSphericalGridRadius() > 0) {
      computeAndDrawSphericalGrid(inputImagesMap[frameNumber],
                                  static_cast<float>(epipolarCurvesConfig.getSphericalGridRadius()), inputCenters,
                                  transforms, pano);
    }

    /* Save input images */
    for (videoreaderid_t camid = 0; camid < (videoreaderid_t)inputImagesMap[frameNumber].size(); camid++) {
      FAIL_RETURN(dumpImageFile(
          inputImagesMap[frameNumber][camid],
          pano->getVideoInput(camid).getReaderConfig().asString() + "_frame_" + std::to_string(frameNumber) + ".png"))
    }
  }

  /*Create the result*/
  Potential<Ptv::Value> ret(Ptv::Value::emptyObject());

  ret->push("minStitchingDistance", new Parse::JsonValue(minStitchingDistance));

  return ret;
}

}  // namespace EpipolarCurves
}  // namespace VideoStitch