1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "epipolarCurvesAlgorithm.hpp"
#include "parse/json.hpp"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127)
#endif
#include "calibration/calibrationUtils.hpp"
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include "calibration/keypointExtractor.hpp"
#include "calibration/keypointMatcher.hpp"
#include "core/controllerInputFrames.hpp"
#include "core/geoTransform.hpp"
#include "util/pngutil.hpp"
#include "util/registeredAlgo.hpp"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4190)
#endif
#include <opencv2/imgproc.hpp>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include <random>
#define POINT_PICKING_TARGET_N_PAIRS 10000
#define POINT_PICKING_MAX_TRIALS (1000 * POINT_PICKING_TARGET_N_PAIRS)
#define MIN_HANDLED_DEPTH 0.001f
#define MAX_HANDLED_DEPTH 100.0f
namespace VideoStitch {
namespace EpipolarCurves {
namespace {
Util::RegisteredAlgo<EpipolarCurvesAlgorithm> registered("epipolar");
}
const char* EpipolarCurvesAlgorithm::docString =
"An algorithm that shows epipolar curves in input pictures, based on provided points or automatically matched "
"ones.\n";
static const cv::Scalar colors[] = {{0, 0, 255}, {0, 255, 0}, {255, 0, 0}, {0, 255, 255}, {255, 255, 0}, {255, 0, 255}};
EpipolarCurvesAlgorithm::EpipolarCurvesAlgorithm(const Ptv::Value* config) : epipolarCurvesConfig(config) {}
EpipolarCurvesAlgorithm::~EpipolarCurvesAlgorithm() {}
/* Writes OpenCV image to file */
static Status dumpImageFile(const cv::Mat& image, const std::string& filename) {
bool (*writeImageFileFunction)(const char* filename, int64_t width, int64_t height, const void* data) = nullptr;
switch (image.type()) {
case CV_8UC4:
writeImageFileFunction = Util::PngReader::writeRGBAToFile;
break;
case CV_8UC3:
writeImageFileFunction = Util::PngReader::writeBGRToFile;
break;
case CV_8UC1:
writeImageFileFunction = Util::PngReader::writeMonochromToFile;
break;
default:
return {Origin::Output, ErrType::RuntimeError, "Invalid image format"};
}
if (!writeImageFileFunction(filename.c_str(), image.cols, image.rows, image.data)) {
return {Origin::Output, ErrType::RuntimeError, "Could not write output file to path: '" + filename + "'"};
}
return Status::OK();
}
// checks that a point can be correctly mapped
// points scaled from (0, 0, -1) are singular, they cannot be mapped correctly
static bool isMappable(const Core::SphericalCoords3& scaledPoint3d) {
const float norm = std::sqrt(scaledPoint3d.x * scaledPoint3d.x + scaledPoint3d.y * scaledPoint3d.y +
scaledPoint3d.z * scaledPoint3d.z);
return (std::abs(scaledPoint3d.z + norm) > 1.0e-6f);
}
/* Computes the Euclidian distance between two 2D points */
template <class Point2DType1, class Point2DType2>
float distance2D(const Point2DType1& pt1, const Point2DType2& pt2) {
return std::sqrt((pt1.x - pt2.x) * (pt1.x - pt2.x) + (pt1.y - pt2.y) * (pt1.y - pt2.y));
}
/* Computes the minimum stitching distance for a 3D unit point - returns false if not possible */
static bool computeMinimumStitchingDistanceFor3DPoint(
const Core::SphericalCoords3& refPoint3d, const std::vector<Core::TopLeftCoords2>& inputCenters,
const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
const Core::PanoDefinition* pano, float& stitchingDistance) {
const float minDepth = MIN_HANDLED_DEPTH;
const float maxDepth = MAX_HANDLED_DEPTH;
auto isDepthFor3DPointWithinInputBounds = [&](const videoreaderid_t id, const float depth) -> bool {
assert(depth >= 0.f);
Core::SphericalCoords3 scaledPoint3d = refPoint3d;
scaledPoint3d *= depth;
if (!isMappable(scaledPoint3d)) {
return false;
}
const Core::CenterCoords2 centerProjected =
transforms[id]->mapRigSphericalToInput(pano->getVideoInput(id), scaledPoint3d, 0);
const Core::TopLeftCoords2 topLeftProjected(centerProjected, inputCenters[id]);
return transforms[id]->isWithinInputBounds(pano->getVideoInput(id), topLeftProjected);
};
// Check if refPoint3d is visible by a number of cameras when scaled at maxDepth
std::vector<videoreaderid_t> camerasIds;
for (videoreaderid_t i = 0; i < pano->numVideoInputs(); ++i) {
if (isDepthFor3DPointWithinInputBounds(i, maxDepth)) {
camerasIds.push_back(i);
}
}
// We need the point to be visible by at least two cameras, if not, pick another point
if (camerasIds.size() < 2) {
return false;
}
// Find the minimum depth that will make the point be visible by less than 2 cameras
float depth_below = minDepth;
float depth_above = maxDepth;
while (depth_above - depth_below >= .001) {
float mid_depth = (depth_above + depth_below) / 2;
size_t numberOfCamerasWherePointIsVisible = 0;
for (auto camId : camerasIds) {
if (isDepthFor3DPointWithinInputBounds(camId, mid_depth)) {
++numberOfCamerasWherePointIsVisible;
}
}
if (numberOfCamerasWherePointIsVisible < 2) {
// stitching distance is too small, less than 2 cameras still see the point
depth_below = mid_depth;
} else {
// stitching distance is is too large, more than 2 cameras see the point
depth_above = mid_depth;
}
}
stitchingDistance = (depth_above + depth_below) / 2;
return true;
}
/* Computes the minimum stitching distance for every point of the output panorama */
static cv::Mat computeMinimumStitchingDistancePerPointInOutputPanorama(
const std::vector<Core::TopLeftCoords2>& inputCenters,
const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
const Core::PanoDefinition* pano, double imageMaxOutputDepth) {
const int panoWidth = (int)pano->getWidth();
const int panoHeight = (int)pano->getHeight();
/* supporting equirectangular outputs only for the moment */
cv::Mat outputEquirectangularDepthImage(panoHeight, panoWidth, CV_32FC1, cv::Scalar::all(0.));
const float panoCenterX = panoWidth / 2.0f;
const float panoCenterY = panoHeight / 2.0f;
const Core::TransformStack::GeoTransform* transform0 = transforms[0].get();
/* Parallel execution using C++11 lambda. */
outputEquirectangularDepthImage.forEach<float>([&](float& pixel, const int position[]) -> void {
const Core::CenterCoords2 panoCoords(position[1] - panoCenterX, position[0] - panoCenterY);
const Core::SphericalCoords3 refPoint3d = transform0->mapPanoramaToRigSpherical(panoCoords);
computeMinimumStitchingDistanceFor3DPoint(refPoint3d, inputCenters, transforms, pano, pixel);
});
cv::Mat output8bits;
if (imageMaxOutputDepth > 0) {
outputEquirectangularDepthImage.convertTo(output8bits, CV_8UC1, 255. / imageMaxOutputDepth);
} else {
Logger::get(Logger::Error) << "Invalid max output depth " << imageMaxOutputDepth
<< " given to convert floating point depth to 8 bit gray-scale intensities" << std::endl;
}
return output8bits;
}
/* Computes the minimum stitching distance by randomly picking points on the sphere */
static float computeMinimumStitchingDistanceByRandomPoints(
const std::vector<Core::TopLeftCoords2>& inputCenters,
const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
const Core::PanoDefinition* pano) {
float minStitchingDistance = std::numeric_limits<float>::max();
/* Needs translations between cameras to work */
if (pano->hasTranslations()) {
float maxStitchingDistance = 0.0f;
const int target_n_pairs = POINT_PICKING_TARGET_N_PAIRS;
const int max_trials = POINT_PICKING_MAX_TRIALS;
int n_pairs = 0;
std::seed_seq seed{1, 2, 3, 4, 5, 6, 7, 8, 9};
std::mt19937 gen(seed);
std::uniform_real_distribution<double> distribution_theta(0, 2 * M_PI);
std::uniform_real_distribution<double> distribution_u(-1, 1);
// Randomly generate 3D points to determine their minimum stitching distance (which is the distance where they will
// no longer be seen by two cameras)
for (int trial = 0; trial <= max_trials && n_pairs <= target_n_pairs; ++trial) {
// Generate a point on the unit sphere using sphere point picking, see
// http://mathworld.wolfram.com/SpherePointPicking.html
double theta = distribution_theta(gen);
double u = distribution_u(gen);
const Core::SphericalCoords3 refPoint3d(static_cast<float>(std::sqrt(1. - u * u) * std::cos(theta)),
static_cast<float>(std::sqrt(1. - u * u) * std::sin(theta)),
static_cast<float>(u));
float stitchingDistance;
if (computeMinimumStitchingDistanceFor3DPoint(refPoint3d, inputCenters, transforms, pano, stitchingDistance)) {
// Get the max of and min of minimum stitching distance
if (minStitchingDistance > stitchingDistance) {
minStitchingDistance = stitchingDistance;
}
if (maxStitchingDistance < stitchingDistance) {
maxStitchingDistance = stitchingDistance;
}
++n_pairs;
}
}
}
return minStitchingDistance;
}
/* Load input images given an array of frame numbers */
static Status loadInputImages(std::map<frameid_t, std::vector<cv::Mat>>& inputImages, const Core::PanoDefinition* pano,
const std::vector<frameid_t>& frameNumbers) {
inputImages.clear();
auto container = Core::ControllerInputFrames<PixelFormat::RGBA, uint32_t>::create(pano);
FAIL_RETURN(container.status());
for (auto& frameNumber : frameNumbers) {
std::map<readerid_t, PotentialValue<GPU::HostBuffer<uint32_t>>> loadedFrames;
FAIL_RETURN(container->seek(frameNumber));
container->load(loadedFrames);
/*Load input images for this frame number*/
for (const auto& loadedFrame : loadedFrames) {
readerid_t inputId = loadedFrame.first;
auto potLoadedFrame = loadedFrame.second;
FAIL_RETURN(potLoadedFrame.status());
GPU::HostBuffer<uint32_t> frame = potLoadedFrame.value();
/* Get the size of the current image */
const Core::InputDefinition& inputDef = pano->getInput(inputId);
const int width = static_cast<int>(inputDef.getWidth());
const int height = static_cast<int>(inputDef.getHeight());
auto potHostFrame =
GPU::HostBuffer<unsigned char>::allocate(frame.numElements() * 4, "EpipolarCurves frame loading");
FAIL_RETURN(potHostFrame.status());
GPU::HostBuffer<unsigned char> hostFrame = potHostFrame.value();
std::memcpy(hostFrame.hostPtr(), frame.hostPtr(), frame.byteSize());
cv::Mat bgrImage;
cv::Mat rgbaImage(cv::Size(width, height), CV_8UC4, frame.hostPtr(), cv::Mat::AUTO_STEP);
cv::cvtColor(rgbaImage, bgrImage, CV_RGBA2BGR);
inputImages[frameNumber].push_back(bgrImage);
hostFrame.release();
}
}
return Status::OK();
}
static Status extractKeyPoints(
std::map<std::pair<videoreaderid_t, videoreaderid_t>, Core::ControlPointList>& matchedPointsMap,
std::map<videoreaderid_t, std::vector<Core::TopLeftCoords2>>& pointsMap, const std::vector<cv::Mat>& inputImages,
const std::vector<Core::TopLeftCoords2>& inputCenters,
const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
const Core::PanoDefinition* pano, const double decimationCellFactor) {
/* Extraction and description of features on a list of images */
Calibration::KeypointExtractor kpExtractor(2, 2, 0.001);
Calibration::KeypointMatcher kpMatcher(0.99);
std::vector<Calibration::KPList> keypoints;
std::vector<Calibration::DescriptorList> descriptors;
keypoints.resize(inputImages.size());
descriptors.resize(inputImages.size());
/*Loop over cameras*/
for (videoreaderid_t camId = 0; camId < (videoreaderid_t)inputImages.size(); ++camId) {
/*Do the real extraction part*/
FAIL_RETURN(kpExtractor.extract(inputImages[camId], keypoints[camId], descriptors[camId], cv::Mat()));
}
/*Perform matching for all pairs*/
for (videoreaderid_t camId1 = 0; camId1 < (videoreaderid_t)inputImages.size() - 1; ++camId1) {
for (videoreaderid_t camId2 = camId1 + 1; camId2 < (videoreaderid_t)inputImages.size(); ++camId2) {
/*Raw blind matching*/
Core::ControlPointList matched, validated, decimated;
std::pair<videoreaderid_t, videoreaderid_t> pair{camId1, camId2};
FAIL_RETURN(kpMatcher.match(0, pair, keypoints[camId1], descriptors[camId1], keypoints[camId2],
descriptors[camId2], matched));
/*Validate the matches by reprojecting them*/
for (Core::ControlPoint& cp : matched) {
const Core::TopLeftCoords2 pointCam1(static_cast<float>(cp.x0), static_cast<float>(cp.y0));
const Core::TopLeftCoords2 pointCam2(static_cast<float>(cp.x1), static_cast<float>(cp.y1));
const Core::CenterCoords2 centeredPointCam1(pointCam1, inputCenters[camId1]);
const Core::CenterCoords2 centeredPointCam2(pointCam2, inputCenters[camId2]);
// Up-lifting points to spheres far away
const Core::SphericalCoords3 spherePointCam1 = transforms[camId1]->mapInputToRigSpherical(
pano->getVideoInput(camId1), centeredPointCam1, 0, MAX_HANDLED_DEPTH);
const Core::CenterCoords2 centeredPointCam1InCam2 =
transforms[camId2]->mapRigSphericalToInput(pano->getVideoInput(camId2), spherePointCam1, 0);
const Core::TopLeftCoords2 pointCam1InCam2(centeredPointCam1InCam2, inputCenters[camId2]);
/* Reject points if reprojection is too far */
if (distance2D(pointCam2, pointCam1InCam2) > 200.f) {
continue;
}
cp.rx0 = pointCam1InCam2.x;
cp.ry0 = pointCam1InCam2.y;
validated.push_back(cp);
}
/*Sort and decimate the ControlPoints to limit their density*/
validated.sort(Core::ControlPointComparator());
Calibration::decimateSortedControlPoints(decimated, validated, pano->getVideoInput(camId1).getWidth(),
pano->getVideoInput(camId1).getHeight(), decimationCellFactor);
Logger::get(Logger::Verbose) << "Found " << matched.size() << " rough matched points between camera #" << camId1
<< " and camera #" << camId2 << std::endl;
Logger::get(Logger::Verbose) << "Validated " << validated.size() << " matched points between camera #" << camId1
<< " and camera #" << camId2 << std::endl;
Logger::get(Logger::Verbose) << "Decimated to " << decimated.size() << " points" << std::endl;
/*Merging result*/
matchedPointsMap[pair].insert(matchedPointsMap[pair].end(), decimated.begin(), decimated.end());
/*Add matched points to single points map*/
for (const auto& it : decimated) {
pointsMap[it.index0].push_back(Core::TopLeftCoords2(static_cast<float>(it.x0), static_cast<float>(it.y0)));
pointsMap[it.index1].push_back(Core::TopLeftCoords2(static_cast<float>(it.x1), static_cast<float>(it.y1)));
}
}
}
return Status::OK();
}
/* Returns a map of epipolar curves per camera, given a camera ID and 2D point */
static void computeEpipolarCurves(std::map<videoreaderid_t, std::vector<cv::Point>>& curveMap,
const std::pair<videoreaderid_t, Core::TopLeftCoords2>& point,
const std::vector<Core::TopLeftCoords2>& inputCenters,
const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
const Core::PanoDefinition* pano) {
const videoreaderid_t fromId = point.first;
const Core::TopLeftCoords2 topLeftPoint = point.second;
const Core::CenterCoords2 centerPoint(topLeftPoint, inputCenters[fromId]);
curveMap.clear();
for (videoreaderid_t camId = 0; camId < pano->numVideoInputs(); camId++) {
if (fromId == camId) {
continue;
}
// minimum distance for which lifting points and reprojecting them is meaningful
// (the sphere at this distance should contain both camera centers of projection)
const float minDistance =
std::max(transforms[fromId]->computeInputMinimumRigSphereRadius(pano->getVideoInput(fromId), 0),
transforms[camId]->computeInputMinimumRigSphereRadius(pano->getVideoInput(camId), 0));
Core::TopLeftCoords2 lastAddedPoint;
for (float distance = MAX_HANDLED_DEPTH; distance >= minDistance;
(distance <= 3.f) ? distance -= .01f : distance -= .5f) {
Core::SphericalCoords3 scaledPoint3d =
transforms[fromId]->mapInputToRigSpherical(pano->getVideoInput(fromId), centerPoint, 0, distance);
Core::CenterCoords2 centerProjected =
transforms[camId]->mapRigSphericalToInput(pano->getVideoInput(camId), scaledPoint3d, 0);
Core::TopLeftCoords2 topLeftProjected(centerProjected, inputCenters[camId]);
if (transforms[camId]->isWithinInputBounds(pano->getVideoInput(camId), topLeftProjected)) {
// add point only if there is at least a one pixel difference with the last added one
if (curveMap[camId].empty() || distance2D(lastAddedPoint, topLeftProjected) >= 1.f) {
lastAddedPoint = topLeftProjected;
curveMap[camId].push_back(cv::Point(static_cast<int>(std::round(topLeftProjected.x)),
static_cast<int>(std::round(topLeftProjected.y))));
}
}
}
}
}
/* Draws the epipolar curves given a map of points in several cameras */
static void drawEpipolarCurves(std::vector<cv::Mat>& inputImages,
const std::map<videoreaderid_t, std::vector<Core::TopLeftCoords2>>& pointsMap,
const std::vector<Core::TopLeftCoords2>& inputCenters,
const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
const Core::PanoDefinition* pano) {
/* For each camera in map */
for (const auto& it : pointsMap) {
videoreaderid_t refId = it.first;
cv::Scalar color = colors[refId % (sizeof(colors) / sizeof(colors[0]))];
/* For each point for this camera */
for (const auto& topLeftPoint : it.second) {
std::map<videoreaderid_t, std::vector<cv::Point>> curveMap;
/* Compute epipolar curves in other cameras */
computeEpipolarCurves(curveMap, {refId, topLeftPoint}, inputCenters, transforms, pano);
/* Do the actual drawing */
for (videoreaderid_t camId = 0; camId < pano->numVideoInputs(); camId++) {
if (refId == camId) {
cv::circle(
inputImages[refId],
cv::Point(static_cast<int>(std::round(topLeftPoint.x)), static_cast<int>(std::round(topLeftPoint.y))), 10,
color, 2);
} else {
if (!curveMap[camId].empty()) {
/* If curve has a single point, draw a cross, else the curve */
if (curveMap[camId].size() == 1) {
cv::line(inputImages[camId], curveMap[camId][0] + cv::Point(-10, 0),
curveMap[camId][0] + cv::Point(10, 0), color, 2);
cv::line(inputImages[camId], curveMap[camId][0] + cv::Point(0, -10),
curveMap[camId][0] + cv::Point(0, 10), color, 2);
} else {
cv::polylines(inputImages[camId], curveMap[camId], false, color, 2);
}
}
}
}
}
}
}
/* Computes and draws the depth for each point in map */
static void computeAndDrawDepths(
std::vector<cv::Mat>& inputImages,
const std::map<std::pair<videoreaderid_t, videoreaderid_t>, Core::ControlPointList>& matchedPointsMap,
const std::vector<Core::TopLeftCoords2>& inputCenters,
const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
const Core::PanoDefinition* pano) {
// Compute depth of matched points by intersecting rays out of cameras
for (const auto& matchedPoint : matchedPointsMap) {
const videoreaderid_t camId1 = matchedPoint.first.first;
const videoreaderid_t camId2 = matchedPoint.first.second;
for (const Core::ControlPoint& cp : matchedPoint.second) {
const Core::TopLeftCoords2 pointCam1(static_cast<float>(cp.x0), static_cast<float>(cp.y0));
const Core::TopLeftCoords2 pointCam2(static_cast<float>(cp.x1), static_cast<float>(cp.y1));
const Core::CenterCoords2 centeredPointCam1(pointCam1, inputCenters[camId1]);
const Core::CenterCoords2 centeredPointCam2(pointCam2, inputCenters[camId2]);
// Up-lifting points to spheres of radius 1.0 and 2.0
const Core::SphericalCoords3 firstScaledPointCam1 = transforms[camId1]->mapInputToScaledCameraSphereInRigBase(
pano->getVideoInput(camId1), centeredPointCam1, 0, 1.0);
const Core::SphericalCoords3 secondScaledPointCam1 = transforms[camId1]->mapInputToScaledCameraSphereInRigBase(
pano->getVideoInput(camId1), centeredPointCam1, 0, 2.0);
const Core::SphericalCoords3 firstScaledPointCam2 = transforms[camId2]->mapInputToScaledCameraSphereInRigBase(
pano->getVideoInput(camId2), centeredPointCam2, 0, 1.0);
const Core::SphericalCoords3 secondScaledPointCam2 = transforms[camId2]->mapInputToScaledCameraSphereInRigBase(
pano->getVideoInput(camId2), centeredPointCam2, 0, 2.0);
// Get distance of closest points between rays (or skew lines)
// https://en.wikipedia.org/wiki/Skew_lines#Nearest_Points
// Reusing the notations of the Wikipedia article
// Get vectors of rays out of cameras
// Using cv::Vec3d for points to ease arithmetic operations on them
const cv::Vec3d p1(firstScaledPointCam1.x, firstScaledPointCam1.y, firstScaledPointCam1.z);
const cv::Vec3d p2(firstScaledPointCam2.x, firstScaledPointCam2.y, firstScaledPointCam2.z);
// Ray unit vectors out of the cameras (note that they have unit norm)
const cv::Vec3d d1(secondScaledPointCam1.x - firstScaledPointCam1.x,
secondScaledPointCam1.y - firstScaledPointCam1.y,
secondScaledPointCam1.z - firstScaledPointCam1.z);
const cv::Vec3d d2(secondScaledPointCam2.x - firstScaledPointCam2.x,
secondScaledPointCam2.y - firstScaledPointCam2.y,
secondScaledPointCam2.z - firstScaledPointCam2.z);
const double u = d1.dot(d2);
if (std::abs(u - 1.) > std::numeric_limits<double>::epsilon()) {
cv::Vec3d n = d1.cross(d2);
cv::Vec3d n1 = d1.cross(n);
cv::Vec3d n2 = d2.cross(n);
const double t1 = (p2 - p1).dot(n2) / d1.dot(n2);
const double t2 = (p1 - p2).dot(n1) / d2.dot(n1);
// c1 and c2 form the shortest line segment joining skew lines from cam1 and cam2
cv::Vec3d c1 = p1 + t1 * d1;
cv::Vec3d c2 = p2 + t2 * d2;
/* Depth of closest points on skew lines in world space */
const double depthCam1 = std::sqrt(c1.dot(c1));
const double depthCam2 = std::sqrt(c2.dot(c2));
Logger::get(Logger::Debug) << "distance p1 p2 " << std::sqrt((c1 - c2).dot(c1 - c2)) << std::endl;
// Reprojecting centeredPointCam1 onto Cam2, to know if we are within the input bounds
const double scaleForPointCam1 =
t1 + 1 /* because t1 is the distance starting at firstScaledPointCam1, already at camera sphere scale 1 */;
const Core::SphericalCoords3 pointCam1ToD1 = transforms[camId1]->mapInputToScaledCameraSphereInRigBase(
pano->getVideoInput(camId1), centeredPointCam1, 0, static_cast<float>(scaleForPointCam1));
const Core::CenterCoords2 pointCam1ToCam2 =
transforms[camId2]->mapRigSphericalToInput(pano->getVideoInput(camId2), pointCam1ToD1, 0);
const Core::TopLeftCoords2 reprojected(pointCam1ToCam2, inputCenters[camId2]);
Logger::get(Logger::Debug) << "cam1 to cam2 " << reprojected.x << ", " << reprojected.y << ", cam2 " << cp.x1
<< ", " << cp.y1 << ", distance " << distance2D(reprojected, pointCam2)
<< ", rx0, ry0 " << cp.rx0 << ", " << cp.ry0 << ", distance "
<< distance2D(cv::Point2f(static_cast<float>(cp.rx0), static_cast<float>(cp.ry0)),
pointCam2)
<< std::endl;
Logger::get(Logger::Debug) << "depth 1 " << depthCam1 << std::endl;
Logger::get(Logger::Debug) << "depth 2 " << depthCam2 << std::endl;
cv::Scalar colorCamId1 = colors[camId1 % (sizeof(colors) / sizeof(colors[0]))];
cv::Scalar colorCamId2 = colors[camId2 % (sizeof(colors) / sizeof(colors[0]))];
/* Draw the depth value in centimeters next to the points */
if (transforms[camId2]->isWithinInputBounds(pano->getVideoInput(camId2), reprojected)) {
cv::putText(inputImages[camId1], std::to_string(int(std::round(depthCam1 * 100.f))),
cv::Point(static_cast<int>(std::round(pointCam1.x + 20.f)),
static_cast<int>(std::round(pointCam1.y - 10.f))),
cv::FONT_HERSHEY_SIMPLEX, 1, colorCamId1, 2, cv::LINE_AA);
cv::putText(inputImages[camId2], std::to_string(int(std::round(depthCam2 * 100.f))),
cv::Point(static_cast<int>(std::round(pointCam2.x + 20.f)),
static_cast<int>(std::round(pointCam2.y - 10.f))),
cv::FONT_HERSHEY_SIMPLEX, 1, colorCamId2, 2, cv::LINE_AA);
} else {
cv::putText(inputImages[camId1], "unknown",
cv::Point(static_cast<int>(std::round(pointCam1.x + 20.f)),
static_cast<int>(std::round(pointCam1.y - 10.f))),
cv::FONT_ITALIC, 1, colorCamId1, 2, cv::LINE_AA);
cv::putText(inputImages[camId2], "unknown",
cv::Point(static_cast<int>(std::round(pointCam2.x + 20.f)),
static_cast<int>(std::round(pointCam2.y - 10.f))),
cv::FONT_ITALIC, 1, colorCamId2, 2, cv::LINE_AA);
}
}
}
}
}
/* Computes and draws a spherical grid in the input pictures */
static void computeAndDrawSphericalGrid(
std::vector<cv::Mat>& inputImages, const float sphereScale, const std::vector<Core::TopLeftCoords2>& inputCenters,
const std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>>& transforms,
const Core::PanoDefinition* pano) {
float longitude, latitude;
videoreaderid_t camId;
std::vector<cv::Point> curve;
auto drawAndFlushCurve = [&]() {
const int npts = static_cast<int>(curve.size());
if (npts) {
const cv::Point* pts = curve.data();
cv::polylines(inputImages[camId], &pts, &npts, 1, false, colors[camId]);
curve.clear();
}
};
/* Lambda function to add a point to a curve if it falls within input picture, and draw and flush the curve if it
* falls outside */
auto addPointToCurve = [&]() {
Core::SphericalCoords3 scaledPoint3d(sphereScale * std::cos(latitude) * std::sin(longitude),
sphereScale * std::sin(latitude),
sphereScale * std::cos(latitude) * std::cos(longitude));
if (!isMappable(scaledPoint3d)) {
return;
}
Core::CenterCoords2 centerProjected =
transforms[camId]->mapRigSphericalToInput(pano->getVideoInput(camId), scaledPoint3d, 0);
Core::TopLeftCoords2 topLeftProjected(centerProjected, inputCenters[camId]);
if (transforms[camId]->isWithinInputBounds(pano->getVideoInput(camId), topLeftProjected)) {
curve.push_back(cv::Point(static_cast<int>(std::round(topLeftProjected.x)),
static_cast<int>(std::round(topLeftProjected.y))));
} else {
drawAndFlushCurve();
}
};
const float F_PI = static_cast<float>(M_PI);
for (camId = 0; camId < pano->numVideoInputs(); camId++) {
/* Project 20 latitude lines in the camId input picture */
for (latitude = -F_PI / 2; latitude <= F_PI / 2; latitude += F_PI / 20) {
for (longitude = -F_PI; longitude < F_PI; longitude += 2 * F_PI / 2000) {
addPointToCurve();
}
drawAndFlushCurve();
}
/* Then project 20 longitude lines */
for (longitude = -F_PI; longitude < F_PI; longitude += 2 * F_PI / 20) {
for (latitude = -F_PI / 2; latitude <= F_PI / 2; latitude += F_PI / 2000) {
addPointToCurve();
}
drawAndFlushCurve();
}
}
}
Potential<Ptv::Value> EpipolarCurvesAlgorithm::apply(Core::PanoDefinition* pano, ProgressReporter*,
Util::OpaquePtr**) const {
if (!epipolarCurvesConfig.isValid()) {
return {Origin::EpipolarCurvesAlgorithm, ErrType::InvalidConfiguration, "Invalid configuration for algorithm"};
}
/* Prepare transforms and input centers coordinates */
std::vector<std::unique_ptr<Core::TransformStack::GeoTransform>> transforms;
std::vector<Core::TopLeftCoords2> inputCenters;
for (const auto& videoInputDef : pano->getVideoInputs()) {
transforms.push_back(std::unique_ptr<Core::TransformStack::GeoTransform>(
Core::TransformStack::GeoTransform::create(*pano, videoInputDef)));
inputCenters.push_back(Core::TopLeftCoords2(static_cast<float>(videoInputDef.get().getWidth() / 2),
static_cast<float>(videoInputDef.get().getHeight() / 2)));
}
/* Get minimum stitching distance by randomly picking points on the sphere */
const float minStitchingDistance = computeMinimumStitchingDistanceByRandomPoints(inputCenters, transforms, pano);
Logger::get(Logger::Info) << "Minimum stitching distance computed from Pano geometry " << minStitchingDistance
<< std::endl;
/* Get minimum stitching distance for every panorama output point and generate a picture */
const cv::Mat minStitchingDistanceInOutputPanoram = computeMinimumStitchingDistancePerPointInOutputPanorama(
inputCenters, transforms, pano, epipolarCurvesConfig.getImageMaxOutputDepth());
FAIL_RETURN(dumpImageFile(minStitchingDistanceInOutputPanoram, "output_min_stitching_distance.png"));
/* Draw depth for each point in map by triangulation, if we have translations between cameras */
/* Load input images */
std::vector<frameid_t> frameNumbers = epipolarCurvesConfig.getFrames();
std::map<frameid_t, std::vector<cv::Mat>> inputImagesMap;
FAIL_RETURN(loadInputImages(inputImagesMap, pano, frameNumbers));
/* For each input frame number, extract keypoints, draw epipolar curves and depths */
for (auto& frameNumber : epipolarCurvesConfig.getFrames()) {
assert(pano->numVideoInputs() == (videoreaderid_t)inputImagesMap[frameNumber].size());
std::map<videoreaderid_t, std::vector<Core::TopLeftCoords2>> pointsMap = epipolarCurvesConfig.getSinglePointsMap();
std::map<std::pair<videoreaderid_t, videoreaderid_t>, Core::ControlPointList> matchedPointsMap =
epipolarCurvesConfig.getMatchedPointsMap();
if (epipolarCurvesConfig.getIsAutoPointMatching()) {
FAIL_RETURN(extractKeyPoints(matchedPointsMap, pointsMap, inputImagesMap[frameNumber], inputCenters, transforms,
pano, epipolarCurvesConfig.getDecimationCellFactor()));
}
/* Draw epipolar curves for each point in map */
drawEpipolarCurves(inputImagesMap[frameNumber], pointsMap, inputCenters, transforms, pano);
/* Draw depth for each point in map, if we have translations between cameras */
if (pano->hasTranslations()) {
computeAndDrawDepths(inputImagesMap[frameNumber], matchedPointsMap, inputCenters, transforms, pano);
}
/* Draw spherical grid */
if (epipolarCurvesConfig.getSphericalGridRadius() > 0) {
computeAndDrawSphericalGrid(inputImagesMap[frameNumber],
static_cast<float>(epipolarCurvesConfig.getSphericalGridRadius()), inputCenters,
transforms, pano);
}
/* Save input images */
for (videoreaderid_t camid = 0; camid < (videoreaderid_t)inputImagesMap[frameNumber].size(); camid++) {
FAIL_RETURN(dumpImageFile(
inputImagesMap[frameNumber][camid],
pano->getVideoInput(camid).getReaderConfig().asString() + "_frame_" + std::to_string(frameNumber) + ".png"))
}
}
/*Create the result*/
Potential<Ptv::Value> ret(Ptv::Value::emptyObject());
ret->push("minStitchingDistance", new Parse::JsonValue(minStitchingDistance));
return ret;
}
} // namespace EpipolarCurves
} // namespace VideoStitch