bufferTest.cpp 13.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm

#include "gpu/testing.hpp"

#include <gpu/buffer.hpp>
#include <gpu/memcpy.hpp>
#include <gpu/uniqueBuffer.hpp>

#include "libvideostitch/gpu_device.hpp"

#include <algorithm>
#include <vector>
#include <set>

namespace VideoStitch {
namespace Testing {

std::size_t sumOfArray(const std::vector<std::size_t>& array) {
  std::size_t sum = 0;

  for (auto it : array) {
    sum += it;
  }

  return sum;
}

// Allocate host buffer through GPU API, fill with random data
// Round trip through device and compare
template <typename T>
void testHostBuffer(std::size_t bufferSize, unsigned int hostSourceFlags, unsigned int hostSinkFlninags) {
  GPU::HostBuffer<T> uninitialized;
  ENSURE(!uninitialized.hostPtr());
  GPU::HostBuffer<T> copy = uninitialized;
  ENSURE(copy == uninitialized);

  // releasing uninitialized buffer now asserts(false)
  // can no longer test for it
  // ENSURE( !copy.release() );

  auto devBuf = GPU::Buffer<T>::allocate(bufferSize, "HostBufferTest");
  ENSURE(devBuf.ok());
  ENSURE(getBufferPoolCurrentSize() == bufferSize * sizeof(T));
  ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == bufferSize * sizeof(T));

  auto potHostBuf = GPU::HostBuffer<T>::allocate(bufferSize, "HostBufferTest");
  ENSURE(potHostBuf.ok());

  ENSURE(GPU::HostBuffer<T>::getPoolSize() == bufferSize * sizeof(T));

  auto hostBuf = potHostBuf.value();
  ENSURE(hostBuf != uninitialized);

  srand(42);

  for (std::size_t i = 0; i < bufferSize; ++i) {
    hostBuf.hostPtr()[i] = static_cast<T>(rand());
  }

  auto stream = GPU::Stream::create();
  ENSURE(stream.ok());

  auto potHostBufSink = GPU::HostBuffer<T>::allocate(bufferSize, "HostBufferTest");
  ENSURE(potHostBufSink.ok());

  ENSURE(GPU::HostBuffer<T>::getPoolSize() == 2 * bufferSize * sizeof(T));

  ENSURE(GPU::memcpyAsync(devBuf.value(), hostBuf.as_const(), stream.value()));
  ENSURE(GPU::memcpyAsync(potHostBufSink.value(), devBuf.value().as_const(), stream.value()));

  stream.value().synchronize();

  ENSURE_ARRAY_EQ(hostBuf.hostPtr(), potHostBufSink.value().hostPtr(), bufferSize);

  ENSURE(stream.value().destroy());
  ENSURE(potHostBufSink.value().release());
  ENSURE(GPU::HostBuffer<T>::getPoolSize() == bufferSize * sizeof(T));
  ENSURE(hostBuf.release());
  ENSURE(GPU::HostBuffer<T>::getPoolSize() == 0);
  ENSURE(devBuf.value().release());
  ENSURE(getBufferPoolCurrentSize() == 0);
  ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == 0);
}

template <typename T>
void testHostBuffer(size_t bufferSize) {
  // test different flags only with small buffers to keep test time down
  if (bufferSize > 256) {
    testHostBuffer<T>(bufferSize, GPUHostAllocDefault, GPUHostAllocDefault);
    return;
  }

  std::set<unsigned int> flagCombo = {GPUHostAllocDefault,
                                      GPUHostAllocPinned,
                                      GPUHostAllocHostWriteOnly,
                                      GPUHostAllocDefault | GPUHostAllocPinned,
                                      GPUHostAllocDefault | GPUHostAllocHostWriteOnly,
                                      GPUHostAllocPinned | GPUHostAllocHostWriteOnly,
                                      GPUHostAllocDefault | GPUHostAllocPinned | GPUHostAllocHostWriteOnly};

  for (unsigned int sourceFlags : flagCombo) {
    for (unsigned int sinkFlags : flagCombo) {
      testHostBuffer<T>(bufferSize, sourceFlags, sinkFlags);
    }
  }
}

void testCachedBuffer(std::size_t width, std::size_t height) {
  /* XXX TODO FIXME port
  auto potCachedBuf = GPU::Cached2DBuffer<uint32_t>::allocate(width, height, "CachedBufferTest");
  ENSURE( potCachedBuf.ok() );
  ENSURE( GPU::getCachedBufferPoolCurrentSize() == width * height * sizeof(uint32_t) );
  ENSURE( sumOfArray(GPU::getCachedBufferPoolCurrentSizeByDevices()) == width * height * sizeof(uint32_t) );

  auto cachedBuf = potCachedBuf.value();
  ENSURE( cachedBuf.width() == width );
  ENSURE( cachedBuf.height() == height );

  ENSURE( cachedBuf.as_const() == cachedBuf.as_const() );

  GPU::Cached2DBuffer<uint32_t> uninitialized;
  ENSURE( !uninitialized.width() && !uninitialized.height() );
  GPU::Cached2DBuffer<uint32_t> copy = uninitialized;
  ENSURE( !copy.width() && !copy.height() );
  ENSURE( !copy.as_const().width() && !copy.as_const().height() );

  ENSURE( copy == uninitialized );
  ENSURE( copy != cachedBuf );

  // releasing uninitialized buffer now asserts(false)
  // can no longer test for it
  // ENSURE( !copy.release() );

  ENSURE( cachedBuf.release() );
  ENSURE( GPU::getCachedBufferPoolCurrentSize() == 0 );
  ENSURE( sumOfArray(GPU::getCachedBufferPoolCurrentSizeByDevices()) == 0 );
  */
}

template <typename T>
void testRoundTrip(size_t bufferSize) {
  auto buf = GPU::Buffer<T>::allocate(bufferSize, "BufferTest");
  ENSURE(buf.ok());
  ENSURE(buf.value().byteSize() == bufferSize * sizeof(T));

  srand(42);

  std::vector<T> hostData(bufferSize);
  std::generate(hostData.begin(), hostData.end(), rand);

  ENSURE(GPU::memcpyBlocking(buf.value(), hostData.data()));

  std::vector<T> fromDevice(bufferSize);

  ENSURE(GPU::memcpyBlocking(fromDevice.data(), buf.value().as_const()));

  ENSURE_ARRAY_EQ(hostData.data(), fromDevice.data(), bufferSize);

  ENSURE(buf.value().release());
}

template <typename T>
void testBufferMemset(size_t bufferSize) {
  auto buf = GPU::Buffer<T>::allocate(bufferSize, "BufferTest");
  ENSURE(buf.ok());
  ENSURE(buf.value().byteSize() == bufferSize * sizeof(T));

  srand(42);

  std::vector<T> hostData(bufferSize);
  std::generate(hostData.begin(), hostData.end(), rand);

  auto uniq = GPU::UniqueStream::create();
  ENSURE(uniq.status());
  auto stream = uniq.ref().borrow();

  ENSURE(GPU::memcpyAsync(buf.value(), hostData.data(), stream));

  ENSURE(GPU::memsetToZeroAsync(buf.value(), bufferSize * sizeof(T), stream));

  std::vector<T> fromDevice(bufferSize);
  ENSURE(GPU::memcpyAsync(fromDevice.data(), buf.value().as_const(), stream));
  stream.synchronize();

  for (size_t i = 0; i < bufferSize; i++) {
    ENSURE_EQ((T)0, fromDevice[i]);
  }

  ENSURE(buf.value().release());
}

template <typename T>
void testBuffer(size_t bufferSize) {
  auto buf = GPU::Buffer<T>::allocate(bufferSize, "BufferTest");
  ENSURE(buf.ok());
  ENSURE(buf.value().byteSize() == bufferSize * sizeof(T));
  ENSURE(buf.value().wasAllocated());
  ENSURE(getBufferPoolCurrentSize() == bufferSize * sizeof(T));
  ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == bufferSize * sizeof(T));

  GPU::Buffer<T> uninitialized;
  ENSURE(!uninitialized.wasAllocated());
  GPU::Buffer<T> copy = uninitialized;
  ENSURE(!copy.wasAllocated());
  ENSURE(!copy.as_const().wasAllocated());

  ENSURE(copy == uninitialized);
  ENSURE(copy != buf.value());

  // releasing uninitialized buffer now asserts(false)
  // can no longer test for it
  // ENSURE( !copy.release() );

  ENSURE(buf.value().release());
  ENSURE(getBufferPoolCurrentSize() == 0);
  ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == 0);
}

void testBufferCasting(size_t bufferSize) {
  auto potBuf = GPU::Buffer<uint32_t>::allocate(bufferSize, "BufferTest");
  ENSURE(potBuf.ok());

  GPU::Buffer<uint32_t> buf32 = potBuf.value();

  // Conversion from T to const T should be automatic, like with real types
  // so that a read-write Buffer can be used in read-only context
  GPU::Buffer<const uint32_t> buf32_const = buf32;
  ENSURE(buf32_const.byteSize() == buf32.byteSize());
  ENSURE(buf32_const.numElements() == buf32.numElements());
  ENSURE(buf32_const == buf32);

  // but we can make it const explicitely
  GPU::Buffer<const uint32_t> buf32_const_expl = buf32.as_const();
  ENSURE(buf32_const_expl.byteSize() == buf32.byteSize());
  ENSURE(buf32_const_expl.numElements() == buf32.numElements());
  ENSURE(buf32_const_expl == buf32);

  GPU::Buffer<uint8_t> buf8 = buf32.as<uint8_t>();
  ENSURE(buf8.byteSize() == buf32.byteSize());
  ENSURE(buf8.numElements() == buf32.numElements() * 4);
  ENSURE(buf8.as<uint32_t>() == buf32);

  GPU::Buffer<float> buf8f = buf32.as<float>();
  ENSURE(buf8f.byteSize() == buf32.byteSize());
  ENSURE(buf8f.numElements() == buf32.numElements());
  ENSURE(buf8f.as<uint32_t>() == buf32);

  ENSURE(buf32.release());
}

template <typename T>
void testUniqueBuffer(size_t bufferSize) {
  // unique buffer and its automatic GPU memory release
  {
    {
      auto potUniqBuffer = GPU::uniqueBuffer<T>(bufferSize, "UniqueBuffer test");
      ENSURE(potUniqBuffer.ok());

      auto buf = potUniqBuffer.borrow();

      ENSURE(buf.byteSize() == bufferSize * sizeof(T));
      ENSURE(buf.wasAllocated());
      ENSURE(getBufferPoolCurrentSize() == bufferSize * sizeof(T));
      ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == bufferSize * sizeof(T));
    }

    // unique buffer should have been released automatically
    ENSURE(getBufferPoolCurrentSize() == 0);
    ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == 0);
  }

  // uninitialized unique buffers (--> class members!), and borrowing them
  {
    GPU::UniqueBuffer<T> uninitialized;
    ENSURE(!uninitialized);

    {
      GPU::Buffer<T> uninitBorrow = uninitialized.borrow();
      ENSURE(!uninitBorrow.wasAllocated());
    }

    {
      auto uninitBorrowConst = uninitialized.borrow_const();
      ENSURE(!uninitBorrowConst.wasAllocated());
    }
    // make sure an uninitialized unique buffer can be destroyed without problems
  }

  // realloc
  {
    GPU::UniqueBuffer<T> uniqueBuffer;
    ENSURE(!uniqueBuffer);

    // nothing allocated yet
    ENSURE(getBufferPoolCurrentSize() == 0);
    ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == 0);

    // re-alloc of uninitialized buffer is valid
    uniqueBuffer.recreate(bufferSize, "UniqueBuffer test");

    {
      auto buf = uniqueBuffer.borrow();
      ENSURE(buf.byteSize() == bufferSize * sizeof(T));
      ENSURE(buf.wasAllocated());
      ENSURE(getBufferPoolCurrentSize() == bufferSize * sizeof(T));
      ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == bufferSize * sizeof(T));
    }

    // re-alloc of valid buffer
    auto reallocBufferSize = bufferSize + 7;
    uniqueBuffer.recreate(reallocBufferSize, "UniqueBuffer test");

    {
      auto buf = uniqueBuffer.borrow();
      ENSURE(buf.byteSize() == reallocBufferSize * sizeof(T));
      ENSURE(buf.wasAllocated());
      ENSURE(getBufferPoolCurrentSize() == reallocBufferSize * sizeof(T));
      ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == reallocBufferSize * sizeof(T));
    }

    uniqueBuffer.releaseOwnership().release();
    ENSURE(!uniqueBuffer);

    // unique buffer was manually released
    ENSURE(getBufferPoolCurrentSize() == 0);
    ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == 0);

    // allocated again
    uniqueBuffer.recreate(reallocBufferSize, "UniqueBuffer test");
    uniqueBuffer.recreate(reallocBufferSize + 3, "UniqueBuffer test");
    uniqueBuffer.recreate(reallocBufferSize + 5, "UniqueBuffer test");
    uniqueBuffer.recreate(reallocBufferSize, "UniqueBuffer test");

    {
      auto buf = uniqueBuffer.borrow();
      ENSURE(buf.byteSize() == reallocBufferSize * sizeof(T));
      ENSURE(buf.wasAllocated());
      ENSURE(getBufferPoolCurrentSize() == reallocBufferSize * sizeof(T));
      ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == reallocBufferSize * sizeof(T));
    }

    // should be released when it goes out of scope
  }

  ENSURE(getBufferPoolCurrentSize() == 0);
  ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == 0);

  // unique buffer release ownership
  {
    GPU::UniqueBuffer<T> uniqueBuffer;
    ENSURE(!uniqueBuffer);

    uniqueBuffer.alloc(bufferSize, "UniqueBuffer test");

    GPU::Buffer<T> buf = uniqueBuffer.releaseOwnership();

    ENSURE(getBufferPoolCurrentSize() == bufferSize * sizeof(T));
    ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == bufferSize * sizeof(T));

    buf.release();

    ENSURE(getBufferPoolCurrentSize() == 0);
    ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == 0);
  }

  // potential unique buffer release ownership
  {
    {
      GPU::Buffer<T> buf;

      {
        auto potUniqBuffer = GPU::uniqueBuffer<T>(bufferSize, "UniqueBuffer test");
        ENSURE(potUniqBuffer.ok());
        buf = potUniqBuffer.borrow();
        potUniqBuffer.releaseOwnership();
      }

      ENSURE(buf.byteSize() == bufferSize * sizeof(T));
      ENSURE(buf.wasAllocated());
      ENSURE(getBufferPoolCurrentSize() == bufferSize * sizeof(T));
      ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == bufferSize * sizeof(T));

      buf.release();
    }
  }

  // released manually
  ENSURE(getBufferPoolCurrentSize() == 0);
  ENSURE(sumOfArray(getBufferPoolCurrentSizeByDevices()) == 0);
}

}  // namespace Testing
}  // namespace VideoStitch

#define RUN_BUFFER_TESTS(BufferType)                              \
  VideoStitch::Testing::testBuffer<BufferType>(bufferSize);       \
  VideoStitch::Testing::testRoundTrip<BufferType>(bufferSize);    \
  VideoStitch::Testing::testHostBuffer<BufferType>(bufferSize);   \
  VideoStitch::Testing::testBufferMemset<BufferType>(bufferSize); \
  VideoStitch::Testing::testUniqueBuffer<BufferType>(bufferSize);

int main(int /*argc*/, char** /*argv*/) {
  VideoStitch::Testing::initTest();

  VideoStitch::Testing::ENSURE(VideoStitch::GPU::setDefaultBackendDevice(0));

  for (std::size_t bufferSize : {1, 7, 32, 129}) {
    RUN_BUFFER_TESTS(unsigned char);
    RUN_BUFFER_TESTS(uint32_t);
    VideoStitch::Testing::testBufferCasting(bufferSize);
    std::size_t width = static_cast<std::size_t>(sqrt(static_cast<double>(bufferSize)));
    std::size_t height = static_cast<std::size_t>(pow(static_cast<double>(bufferSize), 0.45));
    VideoStitch::Testing::testCachedBuffer(width, height);
  }

  return 0;
}