1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#if !defined(__clang_analyzer__)
#include "audio/orah/orahAudioSync.hpp"
#include "gpu/testing.hpp"
#include "libvideostitch/logging.hpp"
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <fstream>
#include <vector>
#include <utility>
#include <thread>
// Uncomment to process audio and dump to raw PCM file then return.
// To be used for listening tests. Set output filename as well.
//
//#define DUMP_FILE "/users/videostitch/test.dat"
#define _LOG Logger::get(Logger::Info)
namespace VideoStitch {
namespace Testing {
typedef Audio::Orah::orahSample_t sample_t;
static const int blockSize{1024}; // 512 samples * 2 (interleaved) channels
#ifdef DUMP_FILE
static const int realDataSize{(int)(44100 * 2 * 20)}; // 20 seconds
#else
static const int realDataSize{(int)(44100 * 2 * 7)}; // 7 seconds, more than kSyncTimeout
#endif
static const int fakeDataSize{blockSize * 20}; // 20 blocks
static const int kClickDelay{110}; // See orahAudioSync.cpp
// Create blanks.
// Mark one sample before and one after to check for correct blanking
static void genData(sample_t *buf, int len, int offset) {
memset(buf, 4, sizeof(sample_t) * len);
for (int i = 0, k = 0; i < ORAH_SYNC_NUM_BLANKS; i++) {
if (offset > 0 || i != 0) {
buf[i * 88 * 2 + k - 1 + offset] = 12345;
}
for (int j = 0; j < 88; j++, k++) {
buf[i * 88 * 2 + j + offset] = 0;
}
buf[i * 88 * 2 + k + offset] = 12345;
}
}
static std::ifstream f;
static void readData(sample_t *buf1, sample_t *buf2, int len) {
sample_t s[4];
for (int i = 0; i < len;) {
f.read((char *)&s[0], 8);
buf1[i] = s[0];
buf2[i++] = s[2];
buf1[i] = s[1];
buf2[i++] = s[3];
}
}
#ifdef DUMP_FILE
static std::ofstream ofile;
static void writeOut(std::vector<Audio::Samples> &out) {
auto *s1 = ((sample_t **)out[0].getSamples())[0];
auto *s2 = ((sample_t **)out[1].getSamples())[0];
for (int i = 0; i < blockSize; i += 2) {
ofile.write((char *)&s1[i], 4);
ofile.write((char *)&s2[i], 4);
}
}
#endif
static int testAudioSync(const char *fname) {
f.open(fname, std::ios::in | std::ios::binary);
if (!f.is_open()) {
std::cerr << "Could not open file " << fname << " for reading." << std::endl;
return -1;
}
f.seekg(0x2c, std::ios::beg); // Start of audio data
#ifdef DUMP_FILE
ofile.open(DUMP_FILE, std::ios::out | std::ios::binary);
if (!ofile.is_open()) {
std::cerr << "Could not open file for writing." << std::endl;
return -1;
}
#endif
Audio::Orah::OrahAudioSync oas0(Audio::BlockSize::BS_512); // Must be blockSize / 2
ENSURE(0 == oas0.getOffset(), "Initial offset value should be 0.");
// Buffers
//
// Output
std::vector<Audio::Samples> out;
Audio::Samples::data_buffer_t blockOut1;
Audio::Samples::data_buffer_t blockOut2;
blockOut1[0] = new uint8_t[blockSize * sizeof(sample_t)];
blockOut2[0] = new uint8_t[blockSize * sizeof(sample_t)];
Audio::Samples o1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
blockOut1, blockSize);
Audio::Samples o2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
blockOut2, blockSize);
out.push_back(std::move(o1));
out.push_back(std::move(o2));
// Generated data
std::vector<sample_t> data[2]; // Two-channel "streams"
data[0].resize(fakeDataSize);
data[1].resize(fakeDataSize);
// Input
Audio::Samples::data_buffer_t block1;
Audio::Samples::data_buffer_t block2;
// Test timeout/cross-correlation on real data
_LOG << std::endl << "==== Testing real data: Cross-correlation 0 ====" << std::endl;
int sCount = 0;
int n = 0;
while (n < realDataSize - blockSize) {
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
readData((sample_t *)block1[0], (sample_t *)block2[0], blockSize);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s2));
in.push_back(std::move(s1));
oas0.process(in, out);
#ifdef DUMP_FILE
writeOut(out);
n += blockSize;
}
ofile.close();
return 0;
#else
n += blockSize;
sCount += blockSize;
}
#endif
_LOG << "====" << std::endl;
float os = oas0.getOffsetBlocking(); // Will wait for cross-correlation to finish if running
_LOG << "Offset: " << os << std::endl;
ENSURE(3088 == os, "Xcorr offset calculation failed");
_LOG << std::endl;
// Rewind audio file
f.seekg(0x2c, std::ios::beg); // Start of audio data
Audio::Orah::OrahAudioSync oas(Audio::BlockSize::BS_512); // Must be blockSize / 2
// Test timeout/cross-correlation on real data
_LOG << "==== Testing real data: Cross-correlation 1 ====" << std::endl;
sCount = 0;
n = 0;
while (n < realDataSize - blockSize) {
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
readData((sample_t *)block1[0], (sample_t *)block2[0], blockSize);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s1));
in.push_back(std::move(s2));
oas.process(in, out);
n += blockSize;
sCount += blockSize;
}
_LOG << "====" << std::endl;
os = oas.getOffsetBlocking(); // Will wait for cross-correlation to finish if running
_LOG << "Offset: " << os << std::endl;
ENSURE(3088 == os, "Xcorr offset calculation failed");
_LOG << std::endl;
_LOG << "==== Testing real data: Blanks and masking ====" << std::endl;
// Keep looking for blanks (there are some!) and when the
// delay value changes to 3086, we stop and check that
// the blanks have been correctly erased.
n = 0;
while (n < realDataSize - blockSize) {
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
readData((sample_t *)block1[0], (sample_t *)block2[0], blockSize);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s1));
in.push_back(std::move(s2));
oas.process(in, out);
if (oas.getOffset() != os) {
break;
}
n += blockSize;
sCount += blockSize;
}
_LOG << "====" << std::endl;
_LOG << "Offset: " << oas.getOffset() << std::endl;
ENSURE(oas.getOffset() == 3086, "Bad detected offset");
// We don't really care what the blanks were replaced with, as
// this is tuned through listening tests, just that there is no
// more string of zeros.
std::vector<sample_t> a1(&((sample_t **)out[0].getSamples().data())[0][0],
&((sample_t **)out[0].getSamples().data())[0][blockSize]);
std::vector<sample_t> a2(&((sample_t **)out[1].getSamples().data())[0][0],
&((sample_t **)out[1].getSamples().data())[0][blockSize]);
auto sk1 = std::search_n(a1.begin(), a1.end(), 15, 0);
auto sk2 = std::search_n(a2.begin(), a2.end(), 15, 0);
if (sk1 != a1.end()) {
auto pos = std::distance(a1.begin(), sk1);
_LOG << "Suspicious zeros at " << pos << " of current block. (" << pos + sCount << ")" << std::endl;
}
if (sk2 != a2.end()) {
auto pos = std::distance(a2.begin(), sk2);
_LOG << "Suspicious zeros at " << pos << " of current block. (" << pos + sCount << ")" << std::endl;
}
ENSURE(sk1 == a1.end(), "Blank 1 not erased");
ENSURE(sk2 == a2.end(), "Blank 2 not erased");
_LOG << std::endl;
// Turn off click suppression for the next few tests so we can
// detect that the blanks are correctly aligned, and that samples
// are correctly interpolated.
oas.diableClickSuppresion(true);
int bPos;
#if 1
_LOG << "==== Testing fake data: Blanks, half sample offset ====" << std::endl;
// Test half-sample detection on synthetic data
bPos = 151;
genData(data[0].data(), fakeDataSize, 0);
genData(data[1].data(), fakeDataSize, bPos);
n = 0;
while (n < fakeDataSize) {
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
std::copy(&data[0][n], &data[0][n] + blockSize, (sample_t *)block1[0]);
std::copy(&data[1][n], &data[1][n] + blockSize, (sample_t *)block2[0]);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s1));
in.push_back(std::move(s2));
oas.process(in, out);
n += blockSize;
}
_LOG << "====" << std::endl;
_LOG << "Offset: " << oas.getOffset() << std::endl;
ENSURE((float)bPos / 2.0f == oas.getOffset(), "Half sample offset calculation failed");
// Test half-sample delay
{
std::fill(begin(data[0]), end(data[0]), -1);
std::fill(begin(data[1]), end(data[1]), -1);
for (int i = 0; i < 10; i += 2) {
data[0][i] = (sample_t)(i / 2) * 2;
data[0][i + 1] = (sample_t)(i / 2) * 2;
data[1][i + bPos] = (sample_t)(i) + 1;
data[1][i + bPos + 1] = (sample_t)(i) + 1;
}
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
std::copy(&data[0][0], &data[0][0] + blockSize, (sample_t *)block1[0]);
std::copy(&data[1][0], &data[1][0] + blockSize, (sample_t *)block2[0]);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s1));
in.push_back(std::move(s2));
oas.process(in, out);
sample_t *oPtr1 = ((sample_t **)out[0].getSamples().data())[0];
sample_t *oPtr2 = ((sample_t **)out[1].getSamples().data())[0];
ENSURE(oPtr1[bPos + kClickDelay] == 1, "Fractional delay test failed");
ENSURE(oPtr2[bPos + kClickDelay] == 1, "Fractional delay test failed");
ENSURE(oPtr1[bPos + kClickDelay + 1] == 1, "Fractional delay test failed");
ENSURE(oPtr2[bPos + kClickDelay + 1] == 1, "Fractional delay test failed");
ENSURE(oPtr1[bPos + kClickDelay + 2] == 3, "Fractional delay test failed");
ENSURE(oPtr2[bPos + kClickDelay + 2] == 3, "Fractional delay test failed");
ENSURE(oPtr1[bPos + kClickDelay + 3] == 3, "Fractional delay test failed");
ENSURE(oPtr2[bPos + kClickDelay + 3] == 3, "Fractional delay test failed");
_LOG << "Fractional delay (half sample): OK" << std::endl;
}
_LOG << std::endl;
#endif
#if 1
_LOG << "==== Testing fake data: Blanks in one channel (will reset) ====" << std::endl;
// Generate blanks in one channel
std::fill(begin(data[0]), end(data[0]), -1);
std::fill(begin(data[1]), end(data[1]), -1);
genData(data[0].data(), fakeDataSize, 0);
n = 0;
while (n < fakeDataSize) {
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
std::copy(&data[0][n], &data[0][n] + blockSize, (sample_t *)block1[0]);
std::copy(&data[1][n], &data[1][n] + blockSize, (sample_t *)block2[0]);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s1));
in.push_back(std::move(s2));
oas.process(in, out);
n += blockSize;
}
// Read real data until blank search times out
f.seekg(0x2c, std::ios::beg); // Start of audio data
while (n < realDataSize - blockSize) {
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
readData((sample_t *)block1[0], (sample_t *)block2[0], blockSize);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s1));
in.push_back(std::move(s2));
oas.process(in, out);
n += blockSize;
sCount += blockSize;
}
_LOG << "====" << std::endl;
_LOG << "Offset: " << oas.getOffset() << std::endl;
ENSURE((float)bPos / 2.0f == oas.getOffset(), "Offset should not change if search times out");
_LOG << std::endl;
#endif
#if 1
_LOG << "==== Testing fake data: Blanks, full sample offset and latency ====" << std::endl;
// Test full-sample detection on synthetic data
bPos = 160;
genData(data[0].data(), fakeDataSize, bPos);
genData(data[1].data(), fakeDataSize, 0);
n = 0;
while (n < fakeDataSize) {
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
std::copy(&data[0][n], &data[0][n] + blockSize, (sample_t *)block1[0]);
std::copy(&data[1][n], &data[1][n] + blockSize, (sample_t *)block2[0]);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s1));
in.push_back(std::move(s2));
oas.process(in, out);
n += blockSize;
}
_LOG << "====" << std::endl;
_LOG << "Offset: " << oas.getOffset() << std::endl;
ENSURE((float)bPos / 2.0f == oas.getOffset(), "Whole sample offset calculation failed");
// Test full sample delay
{
std::fill(begin(data[0]), end(data[0]), -1);
std::fill(begin(data[1]), end(data[1]), -1);
for (int i = 0; i < 10; i += 2) {
data[1][i] = (sample_t)(i / 2) * 2;
data[1][i + 1] = (sample_t)(i / 2) * 2;
data[0][i + bPos] = (sample_t)(i) + 1;
data[0][i + bPos + 1] = (sample_t)(i) + 1;
}
// To check processing delay, we put a value somewhere, and make sure
// it comes out delayed by processing delay.
int ot = 20;
data[1][ot] = 12345;
std::vector<Audio::Samples> in;
block1[0] = new uint8_t[blockSize * sizeof(sample_t)];
block2[0] = new uint8_t[blockSize * sizeof(sample_t)];
std::copy(&data[0][0], &data[0][0] + blockSize, (sample_t *)block1[0]);
std::copy(&data[1][0], &data[1][0] + blockSize, (sample_t *)block2[0]);
Audio::Samples s1(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block1, blockSize / 2);
Audio::Samples s2(Audio::SamplingRate::SR_44100, Audio::SamplingDepth::INT16, Audio::ChannelLayout::STEREO, 0,
block2, blockSize / 2);
in.push_back(std::move(s1));
in.push_back(std::move(s2));
oas.process(in, out);
sample_t *oPtr1 = ((sample_t **)out[0].getSamples().data())[0];
sample_t *oPtr2 = ((sample_t **)out[1].getSamples().data())[0];
ENSURE(oPtr1[bPos + kClickDelay] == 1, "Fractional delay test failed");
ENSURE(oPtr2[bPos + kClickDelay] == 0, "Fractional delay test failed");
ENSURE(oPtr1[bPos + kClickDelay + 1] == 1, "Fractional delay test failed");
ENSURE(oPtr2[bPos + kClickDelay + 1] == 0, "Fractional delay test failed");
ENSURE(oPtr1[bPos + kClickDelay + 2] == 3, "Fractional delay test failed");
ENSURE(oPtr2[bPos + kClickDelay + 2] == 2, "Fractional delay test failed");
ENSURE(oPtr1[bPos + kClickDelay + 3] == 3, "Fractional delay test failed");
ENSURE(oPtr2[bPos + kClickDelay + 3] == 2, "Fractional delay test failed");
_LOG << "Fractional delay (whole sample): OK" << std::endl;
// Make sure processing delay is correct. We places out sample at `ot`,
// so it should now be at `ot` + procDelay*2.
_LOG << "Processing latency: " << oas.getProcessingDelay() << std::endl;
ENSURE(oPtr2[ot + int(2.f * oas.getProcessingDelay())] == 12345, "Get processing delay test failed");
}
_LOG << std::endl;
#endif
return 0;
}
} // namespace Testing
} // namespace VideoStitch
int main(int argc, char **argv) {
if (argc != 2) {
std::cerr << "No test file given" << std::endl;
return 17;
} else {
std::cout << "Using " << argv[1] << " for test" << std::endl;
}
return VideoStitch::Testing::testAudioSync(argv[1]);
}
#endif // !defined(__clang_analyzer__)