1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "sgm.hpp"
#include <libvideostitch/logging.hpp>
#ifndef __ANDROID__
#include "opencv2/core/hal/interface.h"
#else
#include "opencv2/hal/intrin.hpp"
#endif
#include <limits.h>
#if CV_SIMD128
#undef CV_SIMD128
#define CV_SIMD128 0
#endif
namespace VideoStitch {
namespace Core {
namespace SGM {
void aggregateDisparityVolumeSGM(const cv::Mat& costVolume, const VideoStitch::Core::Rect& rect, cv::Mat& disparity,
cv::Mat& buffer, int minDisparity, int numDisparities, int P1, int P2,
int uniquenessRatio, const SGMmode mode) {
#if CV_SIMD128
// maxDisparity is supposed to multiple of 16, so we can forget doing else
static const uchar LSBTab[] = {
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2,
0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0,
1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1,
0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0,
2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3,
0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0,
1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};
static const cv::v_uint16x8 v_LSB(0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80);
const bool useSIMD = cv::hasSIMD128() &&
(minDisparity + numDisparities) % 16 == 0 /* maxDisparity multiple of 16 */ &&
((size_t)costVolume.ptr()) % 16 == 0 /* costVolume is aligned on 16 */;
if (useSIMD) {
Logger::get(Logger::Info) << "useSIMD is true" << std::endl;
}
#endif
CV_Assert(costVolume.type() == cv::DataType<CostType>::type);
CV_Assert(disparity.type() == cv::DataType<DispType>::type);
const int ALIGN = 16;
const CostType MAX_COST = std::numeric_limits<CostType>::max();
int minD = minDisparity, maxD = minD + numDisparities;
// default values if 0s are passed
uniquenessRatio = uniquenessRatio >= 0 ? uniquenessRatio : 0;
P1 = P1 > 0 ? P1 : 2;
P2 = std::max(P2 > 0 ? P2 : 5, P1 + 1);
int k, width = disparity.cols, height = disparity.rows;
int D = maxD - minD;
int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP * DISP_SCALE;
bool fullDP = mode == SGMmode::SGM_8DIRS;
int npasses = fullDP ? 2 : 1;
// NR - the number of directions. the loop on x below that computes Lr assumes that NR == 8.
// if you change NR, please, modify the loop as well.
int D2 = D + 16, NRD2 = NR2 * D2;
// the number of L_r(.,.) and min_k L_r(.,.) lines in the buffer:
// for 8-way dynamic programming we need the current row and
// the previous row, i.e. 2 rows in total
const int NLR = 2;
const int LrBorder = NLR - 1;
// for each possible stereo match (img1(x,y) <=> img2(x-d,y))
// we keep pixel difference cost (C) and the summary cost over NR directions (S).
// we also keep all the partial costs for the previous line L_r(x,d) and also min_k L_r(x, k)
const size_t costBufSize = width * D;
size_t CSBufSize = costBufSize * (fullDP ? height : 1);
const size_t minLrSize = (width + LrBorder * 2) * NR2, LrSize = minLrSize * D2;
const size_t totalBufSize = (LrSize + minLrSize) * NLR * sizeof(CostType) + // minLr[] and Lr[]
CSBufSize * sizeof(CostType) + // S
+16; // for later pointer alignment
if (buffer.empty() || !buffer.isContinuous() || buffer.cols * buffer.rows * buffer.elemSize() < totalBufSize)
buffer.create(1, (int)totalBufSize, CV_8U);
// summary cost over different (nDirs) directions
CostType* Cbuf = (CostType*)costVolume.ptr();
CV_Assert(costVolume.isContinuous());
CostType* Sbuf = (CostType*)cv::alignPtr(buffer.ptr(), ALIGN);
// add P2 to every C(x,y). it saves a few operations in the inner loops
for (k = 0; k < (int)costBufSize * height; k++) {
Cbuf[k] += (CostType)P2;
}
for (int pass = 1; pass <= npasses; pass++) {
int x1, y1, x2, y2, dx, dy;
if (pass == 1) {
y1 = (int)rect.top();
y2 = (int)rect.bottom() + 1;
dy = 1;
x1 = (int)rect.left();
x2 = (int)rect.right() + 1;
dx = 1;
} else {
y1 = (int)rect.bottom();
y2 = (int)rect.top() - 1;
dy = -1;
x1 = (int)rect.right();
x2 = (int)rect.left() - 1;
dx = -1;
}
CostType *Lr[NLR] = {0}, *minLr[NLR] = {0};
for (k = 0; k < NLR; k++) {
// shift Lr[k] and minLr[k] pointers, because we allocated them with the borders,
// and will occasionally use negative indices with the arrays
// we need to shift Lr[k] pointers by 1, to give the space for d=-1.
// however, then the alignment will be imperfect, i.e. bad for SSE,
// thus we shift the pointers by 8 (8*sizeof(int16_t) == 16 - ideal alignment)
Lr[k] = Sbuf + CSBufSize + LrSize * k + NRD2 * LrBorder + 8;
memset(Lr[k] - LrBorder * NRD2 - 8, 0, LrSize * sizeof(CostType));
minLr[k] = Sbuf + CSBufSize + LrSize * NLR + minLrSize * k + NR2 * LrBorder;
memset(minLr[k] - LrBorder * NR2, 0, minLrSize * sizeof(CostType));
}
for (int y = y1; y != y2; y += dy) {
int x, d;
DispType* disparityPtr = disparity.ptr<DispType>(y);
CostType* C = Cbuf + y * costBufSize;
CostType* S = Sbuf + (!fullDP ? 0 : y * costBufSize);
if (pass == 1) {
// clear the S buffer
memset(S, 0, width * D * sizeof(S[0]));
}
// clear the left and the right borders
memset(Lr[0] - NRD2 * LrBorder - 8, 0, NRD2 * LrBorder * sizeof(CostType));
memset(Lr[0] + width * NRD2 - 8, 0, NRD2 * LrBorder * sizeof(CostType));
memset(minLr[0] - NR2 * LrBorder, 0, NR2 * LrBorder * sizeof(CostType));
memset(minLr[0] + width * NR2, 0, NR2 * LrBorder * sizeof(CostType));
/*
[formula 13 in the paper]
compute L_r(p, d) = C(p, d) +
min(L_r(p-r, d),
L_r(p-r, d-1) + P1,
L_r(p-r, d+1) + P1,
min_k L_r(p-r, k) + P2) - min_k L_r(p-r, k)
where p = (x,y), r is one of the directions.
we process all the directions at once:
0: r=(-dx, 0)
1: r=(-1, -dy)
2: r=(0, -dy)
3: r=(1, -dy)
4: r=(-2, -dy)
5: r=(-1, -dy*2)
6: r=(1, -dy*2)
7: r=(2, -dy)
*/
for (x = x1; x != x2; x += dx) {
int xm = x * NR2, xd = xm * D2;
int delta0 = minLr[0][xm - dx * NR2] + P2, delta1 = minLr[1][xm - NR2 + 1] + P2;
int delta2 = minLr[1][xm + 2] + P2, delta3 = minLr[1][xm + NR2 + 3] + P2;
CostType* Lr_p0 = Lr[0] + xd - dx * NRD2;
CostType* Lr_p1 = Lr[1] + xd - NRD2 + D2;
CostType* Lr_p2 = Lr[1] + xd + D2 * 2;
CostType* Lr_p3 = Lr[1] + xd + NRD2 + D2 * 3;
Lr_p0[-1] = Lr_p0[D] = Lr_p1[-1] = Lr_p1[D] = Lr_p2[-1] = Lr_p2[D] = Lr_p3[-1] = Lr_p3[D] = MAX_COST;
CostType* Lr_p = Lr[0] + xd;
const CostType* Cp = C + x * D;
CostType* Sp = S + x * D;
#if CV_SIMD128
if (useSIMD) {
cv::v_int16x8 _P1 = cv::v_setall_s16((int16_t)P1);
cv::v_int16x8 _delta0 = cv::v_setall_s16((int16_t)delta0);
cv::v_int16x8 _delta1 = cv::v_setall_s16((int16_t)delta1);
cv::v_int16x8 _delta2 = cv::v_setall_s16((int16_t)delta2);
cv::v_int16x8 _delta3 = cv::v_setall_s16((int16_t)delta3);
cv::v_int16x8 _minL0 = cv::v_setall_s16((int16_t)MAX_COST);
for (d = 0; d < D; d += 8) {
cv::v_int16x8 Cpd = cv::v_load(Cp + d);
cv::v_int16x8 L0, L1, L2, L3;
L0 = cv::v_load(Lr_p0 + d);
L1 = cv::v_load(Lr_p1 + d);
L2 = cv::v_load(Lr_p2 + d);
L3 = cv::v_load(Lr_p3 + d);
L0 = cv::v_min(L0, (cv::v_load(Lr_p0 + d - 1) + _P1));
L0 = cv::v_min(L0, (cv::v_load(Lr_p0 + d + 1) + _P1));
L1 = cv::v_min(L1, (cv::v_load(Lr_p1 + d - 1) + _P1));
L1 = cv::v_min(L1, (cv::v_load(Lr_p1 + d + 1) + _P1));
L2 = cv::v_min(L2, (cv::v_load(Lr_p2 + d - 1) + _P1));
L2 = cv::v_min(L2, (cv::v_load(Lr_p2 + d + 1) + _P1));
L3 = cv::v_min(L3, (cv::v_load(Lr_p3 + d - 1) + _P1));
L3 = cv::v_min(L3, (cv::v_load(Lr_p3 + d + 1) + _P1));
L0 = cv::v_min(L0, _delta0);
L0 = ((L0 - _delta0) + Cpd);
L1 = cv::v_min(L1, _delta1);
L1 = ((L1 - _delta1) + Cpd);
L2 = cv::v_min(L2, _delta2);
L2 = ((L2 - _delta2) + Cpd);
L3 = cv::v_min(L3, _delta3);
L3 = ((L3 - _delta3) + Cpd);
cv::v_store(Lr_p + d, L0);
cv::v_store(Lr_p + d + D2, L1);
cv::v_store(Lr_p + d + D2 * 2, L2);
cv::v_store(Lr_p + d + D2 * 3, L3);
// Get minimum from in L0-L3
cv::v_int16x8 t02L, t02H, t13L, t13H, t0123L, t0123H;
cv::v_zip(L0, L2, t02L, t02H); // L0[0] L2[0] L0[1] L2[1]...
cv::v_zip(L1, L3, t13L, t13H); // L1[0] L3[0] L1[1] L3[1]...
cv::v_int16x8 t02 = cv::v_min(t02L, t02H); // L0[i] L2[i] L0[i] L2[i]...
cv::v_int16x8 t13 = cv::v_min(t13L, t13H); // L1[i] L3[i] L1[i] L3[i]...
cv::v_zip(t02, t13, t0123L, t0123H); // L0[i] L1[i] L2[i] L3[i]...
cv::v_int16x8 t0 = cv::v_min(t0123L, t0123H);
_minL0 = cv::v_min(_minL0, t0);
cv::v_int16x8 Sval = cv::v_load(Sp + d);
L0 = L0 + L1;
L2 = L2 + L3;
Sval = Sval + L0;
Sval = Sval + L2;
cv::v_store(Sp + d, Sval);
}
cv::v_int32x4 minL, minH;
cv::v_expand(_minL0, minL, minH);
cv::v_pack_store(&minLr[0][xm], cv::v_min(minL, minH));
} else
#endif
{
int minL0 = MAX_COST, minL1 = MAX_COST, minL2 = MAX_COST, minL3 = MAX_COST;
for (d = 0; d < D; d++) {
int Cpd = Cp[d], L0, L1, L2, L3;
L0 = Cpd + std::min((int)Lr_p0[d], std::min(Lr_p0[d - 1] + P1, std::min(Lr_p0[d + 1] + P1, delta0))) -
delta0;
L1 = Cpd + std::min((int)Lr_p1[d], std::min(Lr_p1[d - 1] + P1, std::min(Lr_p1[d + 1] + P1, delta1))) -
delta1;
L2 = Cpd + std::min((int)Lr_p2[d], std::min(Lr_p2[d - 1] + P1, std::min(Lr_p2[d + 1] + P1, delta2))) -
delta2;
L3 = Cpd + std::min((int)Lr_p3[d], std::min(Lr_p3[d - 1] + P1, std::min(Lr_p3[d + 1] + P1, delta3))) -
delta3;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
Lr_p[d + D2] = (CostType)L1;
minL1 = std::min(minL1, L1);
Lr_p[d + D2 * 2] = (CostType)L2;
minL2 = std::min(minL2, L2);
Lr_p[d + D2 * 3] = (CostType)L3;
minL3 = std::min(minL3, L3);
Sp[d] = cv::saturate_cast<CostType>(Sp[d] + L0 + L1 + L2 + L3);
}
minLr[0][xm] = (CostType)minL0;
minLr[0][xm + 1] = (CostType)minL1;
minLr[0][xm + 2] = (CostType)minL2;
minLr[0][xm + 3] = (CostType)minL3;
}
}
if (pass == npasses) {
for (x = 0; x < width; x++) {
disparityPtr[x] = (DispType)INVALID_DISP_SCALED;
}
for (x = (int)rect.right(); x >= (int)rect.left(); x--) {
CostType* Sp = S + x * D;
int minS = MAX_COST, bestDisp = -1;
if (npasses == 1) {
int xm = x * NR2, xd = xm * D2;
int minL0 = MAX_COST;
int delta0 = minLr[0][xm + NR2] + P2;
CostType* Lr_p0 = Lr[0] + xd + NRD2;
Lr_p0[-1] = Lr_p0[D] = MAX_COST;
CostType* Lr_p = Lr[0] + xd;
const CostType* Cp = C + x * D;
#if CV_SIMD128
if (useSIMD) {
cv::v_int16x8 _P1 = cv::v_setall_s16((int16_t)P1);
cv::v_int16x8 _delta0 = cv::v_setall_s16((int16_t)delta0);
cv::v_int16x8 _minL0 = cv::v_setall_s16((int16_t)minL0);
cv::v_int16x8 _minS = cv::v_setall_s16(MAX_COST), _bestDisp = cv::v_setall_s16(-1);
cv::v_int16x8 _d8 = cv::v_int16x8(0, 1, 2, 3, 4, 5, 6, 7), _8 = cv::v_setall_s16(8);
for (d = 0; d < D; d += 8) {
cv::v_int16x8 Cpd = cv::v_load(Cp + d);
cv::v_int16x8 L0 = cv::v_load(Lr_p0 + d);
L0 = cv::v_min(L0, cv::v_load(Lr_p0 + d - 1) + _P1);
L0 = cv::v_min(L0, cv::v_load(Lr_p0 + d + 1) + _P1);
L0 = cv::v_min(L0, _delta0);
L0 = L0 - _delta0 + Cpd;
cv::v_store(Lr_p + d, L0);
_minL0 = cv::v_min(_minL0, L0);
L0 = L0 + cv::v_load(Sp + d);
cv::v_store(Sp + d, L0);
cv::v_int16x8 mask = _minS > L0;
_minS = cv::v_min(_minS, L0);
_bestDisp = _bestDisp ^ ((_bestDisp ^ _d8) & mask);
_d8 += _8;
}
int16_t bestDispBuf[8];
cv::v_store(bestDispBuf, _bestDisp);
cv::v_int32x4 min32L, min32H;
cv::v_expand(_minL0, min32L, min32H);
minLr[0][xm] = (CostType)std::min(cv::v_reduce_min(min32L), cv::v_reduce_min(min32H));
cv::v_expand(_minS, min32L, min32H);
minS = std::min(cv::v_reduce_min(min32L), cv::v_reduce_min(min32H));
cv::v_int16x8 ss = cv::v_setall_s16((int16_t)minS);
cv::v_uint16x8 minMask = cv::v_reinterpret_as_u16(ss == _minS);
cv::v_uint16x8 minBit = minMask & v_LSB;
cv::v_uint32x4 minBitL, minBitH;
cv::v_expand(minBit, minBitL, minBitH);
int idx = cv::v_reduce_sum(minBitL) + cv::v_reduce_sum(minBitH);
bestDisp = bestDispBuf[LSBTab[idx]];
} else
#endif
{
for (d = 0; d < D; d++) {
int L0 = Cp[d] +
std::min((int)Lr_p0[d], std::min(Lr_p0[d - 1] + P1, std::min(Lr_p0[d + 1] + P1, delta0))) -
delta0;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
int Sval = Sp[d] = cv::saturate_cast<CostType>(Sp[d] + L0);
if (Sval < minS) {
minS = Sval;
bestDisp = d;
}
}
minLr[0][xm] = (CostType)minL0;
}
} else {
#if CV_SIMD128
if (useSIMD) {
cv::v_int16x8 _minS = cv::v_setall_s16(MAX_COST), _bestDisp = cv::v_setall_s16(-1);
cv::v_int16x8 _d8 = cv::v_int16x8(0, 1, 2, 3, 4, 5, 6, 7), _8 = cv::v_setall_s16(8);
for (d = 0; d < D; d += 8) {
cv::v_int16x8 L0 = cv::v_load(Sp + d);
cv::v_int16x8 mask = L0 < _minS;
_minS = cv::v_min(L0, _minS);
_bestDisp = _bestDisp ^ ((_bestDisp ^ _d8) & mask);
_d8 = _d8 + _8;
}
cv::v_int32x4 _d0, _d1;
cv::v_expand(_minS, _d0, _d1);
minS = (int)std::min(cv::v_reduce_min(_d0), cv::v_reduce_min(_d1));
cv::v_int16x8 v_mask = cv::v_setall_s16((int16_t)minS) == _minS;
_bestDisp = (_bestDisp & v_mask) | (cv::v_setall_s16(SHRT_MAX) & ~v_mask);
cv::v_expand(_bestDisp, _d0, _d1);
bestDisp = (int)std::min(cv::v_reduce_min(_d0), cv::v_reduce_min(_d1));
} else
#endif
{
for (d = 0; d < D; d++) {
int Sval = Sp[d];
if (Sval < minS) {
minS = Sval;
bestDisp = d;
}
}
}
}
for (d = 0; d < D; d++) {
if (Sp[d] * (100 - uniquenessRatio) < minS * 100 && std::abs(bestDisp - d) > 1) break;
}
if (d < D) continue;
d = bestDisp;
if (0 < d && d < D - 1) {
// do subpixel quadratic interpolation:
// fit parabola into (x1=d-1, y1=Sp[d-1]), (x2=d, y2=Sp[d]), (x3=d+1, y3=Sp[d+1])
// then find minimum of the parabola.
int denom2 = std::max(Sp[d - 1] + Sp[d + 1] - 2 * Sp[d], 1);
d = d * DISP_SCALE + ((Sp[d - 1] - Sp[d + 1]) * DISP_SCALE + denom2) / (denom2 * 2);
} else
d *= DISP_SCALE;
disparityPtr[x] = (DispType)(d + minD * DISP_SCALE);
}
}
// now shift the cyclic buffers
std::swap(Lr[0], Lr[1]);
std::swap(minLr[0], minLr[1]);
}
}
}
template <class saliencyType>
void aggregateDisparityVolumeWithAdaptiveP2SGM(const cv::Mat& saliency, const cv::Mat& costVolume,
const VideoStitch::Core::Rect& rect, cv::Mat& disparity, cv::Mat& buffer,
int minDisparity, int numDisparities, int P1, float P2Alpha, int P2Gamma,
int P2Min, int uniquenessRatio, bool subPixelRefinement,
const SGMmode mode) {
#if CV_SIMD128
// maxDisparity is supposed to multiple of 16, so we can forget doing else
static const uchar LSBTab[] = {
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2,
0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0,
1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1,
0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0,
2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3,
0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0,
1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};
static const cv::v_uint16x8 v_LSB(0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80);
const bool useSIMD = cv::hasSIMD128() &&
(minDisparity + numDisparities) % 16 == 0 /* maxDisparity multiple of 16 */ &&
((size_t)costVolume.ptr()) % 16 == 0 /* costVolume is aligned on 16 */;
if (useSIMD) {
Logger::get(Logger::Info) << "useSIMD is true" << std::endl;
}
#endif
// CV_Assert(saliency.type() == cv::DataType<saliencyType>::type);
// CV_Assert(costVolume.type() == cv::DataType<CostType>::type);
// CV_Assert(disparity.type() == cv::DataType<DispType>::type);
// CV_Assert(saliency.rows == rect.getHeight() && saliency.cols == rect.getWidth());
const int ALIGN = 16;
const CostType MAX_COST = std::numeric_limits<CostType>::max();
int minD = minDisparity, maxD = minD + numDisparities;
// default values if 0s are passed
uniquenessRatio = uniquenessRatio >= 0 ? uniquenessRatio : 0;
P1 = P1 > 0 ? P1 : 2;
int k, width = disparity.cols, height = disparity.rows;
int D = maxD - minD;
int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP * DISP_SCALE;
bool fullDP = mode == SGMmode::SGM_8DIRS;
int npasses = fullDP ? 2 : 1;
// NR - the number of directions. the loop on x below that computes Lr assumes that NR == 8.
// if you change NR, please, modify the loop as well.
int D2 = D + 16, NRD2 = NR2 * D2;
// the number of L_r(.,.) and min_k L_r(.,.) lines in the buffer:
// for 8-way dynamic programming we need the current row and
// the previous row, i.e. 2 rows in total
const int NLR = 2;
const int LrBorder = NLR - 1;
// for each possible stereo match (img1(x,y) <=> img2(x-d,y))
// we keep pixel difference cost (C) and the summary cost over NR directions (S).
// we also keep all the partial costs for the previous line L_r(x,d) and also min_k L_r(x, k)
const size_t costBufSize = width * D;
size_t CSBufSize = costBufSize * (fullDP ? height : 1);
const size_t minLrSize = (width + LrBorder * 2) * NR2, LrSize = minLrSize * D2;
const size_t totalBufSize = (LrSize + minLrSize) * NLR * sizeof(CostType) + // minLr[] and Lr[]
CSBufSize * sizeof(CostType) + // S
+16; // for later pointer alignment
if (buffer.empty() || !buffer.isContinuous() || buffer.cols * buffer.rows * buffer.elemSize() < totalBufSize)
buffer.create(1, (int)totalBufSize, CV_8U);
// summary cost over different (nDirs) directions
CostType* Cbuf = (CostType*)costVolume.ptr();
CV_Assert(costVolume.isContinuous());
CostType* Sbuf = (CostType*)cv::alignPtr(buffer.ptr(), ALIGN);
for (int pass = 1; pass <= npasses; pass++) {
int x1, y1, x2, y2, dx, dy;
if (pass == 1) {
y1 = (int)rect.top();
y2 = (int)rect.bottom() + 1;
dy = 1;
x1 = (int)rect.left();
x2 = (int)rect.right() + 1;
dx = 1;
} else {
y1 = (int)rect.bottom();
y2 = (int)rect.top() - 1;
dy = -1;
x1 = (int)rect.right();
x2 = (int)rect.left() - 1;
dx = -1;
}
CostType *Lr[NLR] = {0}, *minLr[NLR] = {0};
for (k = 0; k < NLR; k++) {
// shift Lr[k] and minLr[k] pointers, because we allocated them with the borders,
// and will occasionally use negative indices with the arrays
// we need to shift Lr[k] pointers by 1, to give the space for d=-1.
// however, then the alignment will be imperfect, i.e. bad for SSE,
// thus we shift the pointers by 8 (8*sizeof(int16_t) == 16 - ideal alignment)
Lr[k] = Sbuf + CSBufSize + LrSize * k + NRD2 * LrBorder + 8;
memset(Lr[k] - LrBorder * NRD2 - 8, 0, LrSize * sizeof(CostType));
minLr[k] = Sbuf + CSBufSize + LrSize * NLR + minLrSize * k + NR2 * LrBorder;
memset(minLr[k] - LrBorder * NR2, 0, minLrSize * sizeof(CostType));
}
// saliency for current volume position
saliencyType saliencyCurrent;
auto adaptP2 = [&](int x, int y) -> int {
saliencyType saliencyAtXY = rect.contains(x, y)
? saliency.at<saliencyType>((int)(y - rect.top()), (int)(x - rect.left()))
: saliencyCurrent;
return std::max(P2Min, int(-P2Alpha * cv::norm(cv::Vec<short, saliencyType::channels>(saliencyAtXY) -
cv::Vec<short, saliencyType::channels>(saliencyCurrent),
cv::NORM_L1) +
P2Gamma));
};
for (int y = y1; y != y2; y += dy) {
int x, d;
DispType* const disparityPtr = disparity.ptr<DispType>(y);
const CostType* const C = Cbuf + y * costBufSize;
CostType* const S = Sbuf + (!fullDP ? 0 : y * costBufSize);
if (pass == 1) {
// clear the S buffer
memset(S, 0, width * D * sizeof(S[0]));
}
// clear the left and the right borders
memset(Lr[0] - NRD2 * LrBorder - 8, 0, NRD2 * LrBorder * sizeof(CostType));
memset(Lr[0] + width * NRD2 - 8, 0, NRD2 * LrBorder * sizeof(CostType));
memset(minLr[0] - NR2 * LrBorder, 0, NR2 * LrBorder * sizeof(CostType));
memset(minLr[0] + width * NR2, 0, NR2 * LrBorder * sizeof(CostType));
/*
[formula 13 in the paper]
compute L_r(p, d) = C(p, d) +
min(L_r(p-r, d),
L_r(p-r, d-1) + P1,
L_r(p-r, d+1) + P1,
min_k L_r(p-r, k) + P2) - min_k L_r(p-r, k)
where p = (x,y), r is one of the directions.
we process all the directions at once:
0: r=(-dx, 0)
1: r=(-1, -dy)
2: r=(0, -dy)
3: r=(1, -dy)
4: r=(-2, -dy)
5: r=(-1, -dy*2)
6: r=(1, -dy*2)
7: r=(2, -dy)
Note: the code below uses only the first four paths, but enough memory was allocated to use the 8 paths
*/
for (x = x1; x != x2; x += dx) {
const int xm = x * NR2, xd = xm * D2;
int delta0 = minLr[0][xm - dx * NR2]; // minLr[0][(x - dx) * NR2]
int delta1 = minLr[1][xm - NR2 + 1]; // minLr[1][(x - 1) * NR2 + 1]
int delta2 = minLr[1][xm + 2]; // minLr[1][(x ) * NR2 + 2]
int delta3 = minLr[1][xm + NR2 + 3]; // minLr[1][(x + 1) * NR2 + 3]
// get saliency for current position
saliencyCurrent = saliency.at<saliencyType>((int)(y - rect.top()), (int)(x - rect.left()));
const int L0_P2 = adaptP2(x - dx, y);
const int L1_P2 = adaptP2(x - dx, y - dy);
const int L2_P2 = adaptP2(x, y - dy);
const int L3_P2 = adaptP2(x + dx, y - dy);
CostType* const Lr_p0 = Lr[0] + xd - dx * NRD2; // Lr[0] + (x - dx) * NRD2
CostType* const Lr_p1 = Lr[1] + xd - NRD2 + D2; // Lr[1] + (x - 1) * NRD2 + D2
CostType* const Lr_p2 = Lr[1] + xd + D2 * 2; // Lr[1] + (x ) * NRD2 + D2 * 2
CostType* const Lr_p3 = Lr[1] + xd + NRD2 + D2 * 3; // Lr[1] + (x + 1) * NRD2 + D2 * 3
Lr_p0[-1] = Lr_p0[D] = Lr_p1[-1] = Lr_p1[D] = Lr_p2[-1] = Lr_p2[D] = Lr_p3[-1] = Lr_p3[D] = MAX_COST;
CostType* const Lr_p = Lr[0] + xd; // Lr[0] + x * NRD2
const CostType* const Cp = C + x * D;
CostType* const Sp = S + x * D;
#if CV_SIMD128
if (useSIMD) {
cv::v_int16x8 _P1 = cv::v_setall_s16((int16_t)P1);
cv::v_int16x8 _L0_P2 = cv::v_setall_s16((int16_t)L0_P2);
cv::v_int16x8 _L1_P2 = cv::v_setall_s16((int16_t)L1_P2);
cv::v_int16x8 _L2_P2 = cv::v_setall_s16((int16_t)L2_P2);
cv::v_int16x8 _L3_P2 = cv::v_setall_s16((int16_t)L3_P2);
cv::v_int16x8 _delta0 = cv::v_setall_s16((int16_t)delta0);
cv::v_int16x8 _delta1 = cv::v_setall_s16((int16_t)delta1);
cv::v_int16x8 _delta2 = cv::v_setall_s16((int16_t)delta2);
cv::v_int16x8 _delta3 = cv::v_setall_s16((int16_t)delta3);
cv::v_int16x8 _minL0 = cv::v_setall_s16((int16_t)MAX_COST);
for (d = 0; d < D; d += 8) {
cv::v_int16x8 Cpd = cv::v_load(Cp + d);
cv::v_int16x8 L0, L1, L2, L3;
L0 = cv::v_load(Lr_p0 + d);
L1 = cv::v_load(Lr_p1 + d);
L2 = cv::v_load(Lr_p2 + d);
L3 = cv::v_load(Lr_p3 + d);
L0 = cv::v_min(L0, (cv::v_load(Lr_p0 + d - 1) + _P1));
L0 = cv::v_min(L0, (cv::v_load(Lr_p0 + d + 1) + _P1));
L1 = cv::v_min(L1, (cv::v_load(Lr_p1 + d - 1) + _P1));
L1 = cv::v_min(L1, (cv::v_load(Lr_p1 + d + 1) + _P1));
L2 = cv::v_min(L2, (cv::v_load(Lr_p2 + d - 1) + _P1));
L2 = cv::v_min(L2, (cv::v_load(Lr_p2 + d + 1) + _P1));
L3 = cv::v_min(L3, (cv::v_load(Lr_p3 + d - 1) + _P1));
L3 = cv::v_min(L3, (cv::v_load(Lr_p3 + d + 1) + _P1));
L0 = cv::v_min(L0, _delta0 + _L0_P2);
L0 = ((L0 - _delta0) + Cpd);
L1 = cv::v_min(L1, _delta1 + _L1_P2);
L1 = ((L1 - _delta1) + Cpd);
L2 = cv::v_min(L2, _delta2 + _L2_P2);
L2 = ((L2 - _delta2) + Cpd);
L3 = cv::v_min(L3, _delta3 + _L3_P2);
L3 = ((L3 - _delta3) + Cpd);
cv::v_store(Lr_p + d, L0);
cv::v_store(Lr_p + d + D2, L1);
cv::v_store(Lr_p + d + D2 * 2, L2);
cv::v_store(Lr_p + d + D2 * 3, L3);
// Get minimum from in L0-L3
cv::v_int16x8 t02L, t02H, t13L, t13H, t0123L, t0123H;
cv::v_zip(L0, L2, t02L, t02H); // L0[0] L2[0] L0[1] L2[1]...
cv::v_zip(L1, L3, t13L, t13H); // L1[0] L3[0] L1[1] L3[1]...
cv::v_int16x8 t02 = cv::v_min(t02L, t02H); // L0[i] L2[i] L0[i] L2[i]...
cv::v_int16x8 t13 = cv::v_min(t13L, t13H); // L1[i] L3[i] L1[i] L3[i]...
cv::v_zip(t02, t13, t0123L, t0123H); // L0[i] L1[i] L2[i] L3[i]...
cv::v_int16x8 t0 = cv::v_min(t0123L, t0123H);
_minL0 = cv::v_min(_minL0, t0);
cv::v_int16x8 Sval = cv::v_load(Sp + d);
L0 = L0 + L1;
L2 = L2 + L3;
Sval = Sval + L0;
Sval = Sval + L2;
cv::v_store(Sp + d, Sval);
}
cv::v_int32x4 minL, minH;
cv::v_expand(_minL0, minL, minH);
cv::v_pack_store(&minLr[0][xm], cv::v_min(minL, minH));
} else
#endif
{
int minL0 = MAX_COST, minL1 = MAX_COST, minL2 = MAX_COST, minL3 = MAX_COST;
for (d = 0; d < D; d++) {
int Cpd = Cp[d], L0, L1, L2, L3;
L0 = Cpd +
std::min((int)Lr_p0[d], std::min(Lr_p0[d - 1] + P1, std::min(Lr_p0[d + 1] + P1, delta0 + L0_P2))) -
delta0;
L1 = Cpd +
std::min((int)Lr_p1[d], std::min(Lr_p1[d - 1] + P1, std::min(Lr_p1[d + 1] + P1, delta1 + L1_P2))) -
delta1;
L2 = Cpd +
std::min((int)Lr_p2[d], std::min(Lr_p2[d - 1] + P1, std::min(Lr_p2[d + 1] + P1, delta2 + L2_P2))) -
delta2;
L3 = Cpd +
std::min((int)Lr_p3[d], std::min(Lr_p3[d - 1] + P1, std::min(Lr_p3[d + 1] + P1, delta3 + L3_P2))) -
delta3;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
Lr_p[d + D2] = (CostType)L1;
minL1 = std::min(minL1, L1);
Lr_p[d + D2 * 2] = (CostType)L2;
minL2 = std::min(minL2, L2);
Lr_p[d + D2 * 3] = (CostType)L3;
minL3 = std::min(minL3, L3);
Sp[d] = cv::saturate_cast<CostType>(Sp[d] + L0 + L1 + L2 + L3);
}
minLr[0][xm] = (CostType)minL0;
minLr[0][xm + 1] = (CostType)minL1;
minLr[0][xm + 2] = (CostType)minL2;
minLr[0][xm + 3] = (CostType)minL3;
}
}
if (pass == npasses) {
for (x = 0; x < width; x++) {
disparityPtr[x] = (DispType)INVALID_DISP_SCALED;
}
for (x = (int)rect.right(); x >= (int)rect.left(); x--) {
CostType* Sp = S + x * D;
int minS = MAX_COST, bestDisp = -1;
if (npasses == 1) {
int xm = x * NR2, xd = xm * D2;
int minL0 = MAX_COST;
const int delta0 = minLr[0][xm + NR2];
CostType* const Lr_p0 = Lr[0] + xd + NRD2;
Lr_p0[-1] = Lr_p0[D] = MAX_COST;
CostType* const Lr_p = Lr[0] + xd;
const CostType* const Cp = C + x * D;
saliencyCurrent = saliency.at<saliencyType>((int)(y - rect.top()), (int)(x - rect.left()));
const int L0_P2 = adaptP2(x + dx, y);
#if CV_SIMD128
if (useSIMD) {
cv::v_int16x8 _P2 = cv::v_setall_s16((int16_t)L0_P2);
cv::v_int16x8 _P1 = cv::v_setall_s16((int16_t)P1);
cv::v_int16x8 _delta0 = cv::v_setall_s16((int16_t)delta0);
cv::v_int16x8 _minL0 = cv::v_setall_s16((int16_t)minL0);
cv::v_int16x8 _minS = cv::v_setall_s16(MAX_COST), _bestDisp = cv::v_setall_s16(-1);
cv::v_int16x8 _d8 = cv::v_int16x8(0, 1, 2, 3, 4, 5, 6, 7), _8 = cv::v_setall_s16(8);
for (d = 0; d < D; d += 8) {
cv::v_int16x8 Cpd = cv::v_load(Cp + d);
cv::v_int16x8 L0 = cv::v_load(Lr_p0 + d);
L0 = cv::v_min(L0, cv::v_load(Lr_p0 + d - 1) + _P1);
L0 = cv::v_min(L0, cv::v_load(Lr_p0 + d + 1) + _P1);
L0 = cv::v_min(L0, _delta0 + _P2);
L0 = L0 - _delta0 + Cpd;
cv::v_store(Lr_p + d, L0);
_minL0 = cv::v_min(_minL0, L0);
L0 = L0 + cv::v_load(Sp + d);
cv::v_store(Sp + d, L0);
cv::v_int16x8 mask = _minS > L0;
_minS = cv::v_min(_minS, L0);
_bestDisp = _bestDisp ^ ((_bestDisp ^ _d8) & mask);
_d8 += _8;
}
int16_t bestDispBuf[8];
cv::v_store(bestDispBuf, _bestDisp);
cv::v_int32x4 min32L, min32H;
cv::v_expand(_minL0, min32L, min32H);
minLr[0][xm] = (CostType)std::min(cv::v_reduce_min(min32L), cv::v_reduce_min(min32H));
cv::v_expand(_minS, min32L, min32H);
minS = std::min(cv::v_reduce_min(min32L), cv::v_reduce_min(min32H));
cv::v_int16x8 ss = cv::v_setall_s16((int16_t)minS);
cv::v_uint16x8 minMask = cv::v_reinterpret_as_u16(ss == _minS);
cv::v_uint16x8 minBit = minMask & v_LSB;
cv::v_uint32x4 minBitL, minBitH;
cv::v_expand(minBit, minBitL, minBitH);
int idx = cv::v_reduce_sum(minBitL) + cv::v_reduce_sum(minBitH);
bestDisp = bestDispBuf[LSBTab[idx]];
} else
#endif
{
for (d = 0; d < D; d++) {
const int L0 =
Cp[d] +
std::min((int)Lr_p0[d], std::min(Lr_p0[d - 1] + P1, std::min(Lr_p0[d + 1] + P1, delta0 + L0_P2))) -
delta0;
Lr_p[d] = (CostType)L0;
minL0 = std::min(minL0, L0);
int Sval = Sp[d] = cv::saturate_cast<CostType>(Sp[d] + L0);
if (Sval < minS) {
minS = Sval;
bestDisp = d;
}
}
minLr[0][xm] = (CostType)minL0;
}
} else {
#if CV_SIMD128
if (useSIMD) {
cv::v_int16x8 _minS = cv::v_setall_s16(MAX_COST), _bestDisp = cv::v_setall_s16(-1);
cv::v_int16x8 _d8 = cv::v_int16x8(0, 1, 2, 3, 4, 5, 6, 7), _8 = cv::v_setall_s16(8);
for (d = 0; d < D; d += 8) {
cv::v_int16x8 L0 = cv::v_load(Sp + d);
cv::v_int16x8 mask = L0 < _minS;
_minS = cv::v_min(L0, _minS);
_bestDisp = _bestDisp ^ ((_bestDisp ^ _d8) & mask);
_d8 = _d8 + _8;
}
cv::v_int32x4 _d0, _d1;
cv::v_expand(_minS, _d0, _d1);
minS = (int)std::min(cv::v_reduce_min(_d0), cv::v_reduce_min(_d1));
cv::v_int16x8 v_mask = cv::v_setall_s16((int16_t)minS) == _minS;
_bestDisp = (_bestDisp & v_mask) | (cv::v_setall_s16(SHRT_MAX) & ~v_mask);
cv::v_expand(_bestDisp, _d0, _d1);
bestDisp = (int)std::min(cv::v_reduce_min(_d0), cv::v_reduce_min(_d1));
} else
#endif
{
for (d = 0; d < D; d++) {
int Sval = Sp[d];
if (Sval < minS) {
minS = Sval;
bestDisp = d;
}
}
}
}
for (d = 0; d < D; d++) {
if (Sp[d] * (100 - uniquenessRatio) < minS * 100 && std::abs(bestDisp - d) > 1) break;
}
if (d < D) {
continue;
}
d = bestDisp;
if (subPixelRefinement) {
if (0 < d && d < D - 1) {
// do subpixel quadratic interpolation:
// fit parabola into (x1=d-1, y1=Sp[d-1]), (x2=d, y2=Sp[d]), (x3=d+1, y3=Sp[d+1])
// then find minimum of the parabola.
int denom2 = std::max(Sp[d - 1] + Sp[d + 1] - 2 * Sp[d], 1);
d = d * DISP_SCALE + ((Sp[d - 1] - Sp[d + 1]) * DISP_SCALE + denom2) / (denom2 * 2);
} else {
d *= DISP_SCALE;
}
disparityPtr[x] = (DispType)(d + minD * DISP_SCALE);
} else {
disparityPtr[x] = (DispType)(d + minD);
}
}
}
// now shift the cyclic buffers
std::swap(Lr[0], Lr[1]);
std::swap(minLr[0], minLr[1]);
}
}
}
template void aggregateDisparityVolumeWithAdaptiveP2SGM<cv::Vec<uchar, 4>>(
const cv::Mat& saliency, const cv::Mat& costVolume, const VideoStitch::Core::Rect& rect, cv::Mat& disparity,
cv::Mat& buffer, int minDisparity, int numDisparities, int P1, float P2Alpha, int P2Gamma, int P2Min,
int uniquenessRatio, bool subPixelRefinement, const SGMmode mode);
template void aggregateDisparityVolumeWithAdaptiveP2SGM<cv::Vec<uchar, 1>>(
const cv::Mat& saliency, const cv::Mat& costVolume, const VideoStitch::Core::Rect& rect, cv::Mat& disparity,
cv::Mat& buffer, int minDisparity, int numDisparities, int P1, float P2Alpha, int P2Gamma, int P2Min,
int uniquenessRatio, bool subPixelRefinement, const SGMmode mode);
} // namespace SGM
} // namespace Core
} // namespace VideoStitch