1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "autoCrop.hpp"
#include "gpu/memcpy.hpp"
#include "util/pngutil.hpp"
#include "util/geometryProcessingUtils.hpp"
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <random>
#include <stack>
#include <vector>
#ifndef CERESLIB_UNSUPPORTED
#if _MSC_VER
// To disable warnings on the external ceres library
#pragma warning(push)
#pragma warning(disable : 4127)
#include <ceres/ceres.h>
#pragma warning(pop)
#else
#include <ceres/ceres.h>
#endif
#endif
//#define AUTOCROP_DEBUG
#ifdef AUTOCROP_DEBUG
#ifdef NDEBUG
#error "This is not supposed to be included in non-debug mode."
#endif
#include "util/pnm.hpp"
#include "util/debugUtils.hpp"
#endif
namespace VideoStitch {
namespace AutoCrop {
static const int rows[4] = {-1, 0, 0, 1};
static const int cols[4] = {0, -1, 1, 0};
template <typename T>
bool AutoCrop::DistanceFromCircleCost::operator()(const T* const x, const T* const y,
const T* const m, // r = m^2
T* residual) const {
// Since the radius is parameterized as m^2, unpack m to get r.
T r = *m * *m;
// Get the position of the sample in the circle's coordinate system.
T xp = xx_ - *x;
T yp = yy_ - *y;
// I use the following cost:
//
residual[0] = ww_ * (r - sqrt(xp * xp + yp * yp));
// which is the distance of the sample from the circle. This works
// reasonably well, but the sqrt() adds strong nonlinearities to the cost function.
// A different cost, residual[0] = r*r - xp*xp - yp*yp;
// which while not strictly a distance in the metric sense
// (it has units distance^2) it can produce more robust fits when there
// are outliers. This is because the cost surface is more convex.
// I tested both functions and the first one seems to give better results
return true;
}
AutoCrop::AutoCrop(const AutoCropConfig& config) : autoCropConfig(config) {}
AutoCrop::~AutoCrop() {}
Status AutoCrop::setupImage(const cv::Mat& inputImage) {
if (inputImage.rows == 0 || inputImage.cols == 0) {
return {Origin::CropAlgorithm, ErrType::InvalidConfiguration, "Input image dimensions are zero"};
}
inputCvImage = inputImage.clone();
cv::Mat blurredImage;
// First, perform gaussian filter on the input image
cv::GaussianBlur(
inputCvImage, blurredImage,
cv::Size((int)autoCropConfig.getGaussianBlurKernelSize(), (int)autoCropConfig.getGaussianBlurKernelSize()),
autoCropConfig.getGaussianBlurSigma(), 0);
cv::cvtColor(blurredImage, inputLabImage, CV_BGR2Lab);
cv::Size downSize = cv::Size(inputLabImage.cols, inputLabImage.rows);
while (downSize.width > 512 && downSize.height > 512) {
downSize /= 2;
}
cv::resize(inputLabImage, downLabImage, downSize);
ratio = cv::Size2f(float(inputImage.cols) / downLabImage.cols, float(inputImage.rows) / downLabImage.rows);
inputSize = cv::Size(downLabImage.cols, downLabImage.rows);
inputColors.resize(inputSize.width * inputSize.height, cv::Vec3b(0, 0, 0));
for (int j = 0; j < downLabImage.cols; j++) {
for (int i = 0; i < downLabImage.rows; i++) {
inputColors[i * inputSize.width + j] = downLabImage.at<cv::Vec3b>(cv::Point(j, i));
}
}
#ifdef AUTOCROP_DEBUG
std::vector<unsigned char> dumpVector(inputColors.size() * 4);
for (int i = 0; i < inputColors.size(); i++) {
dumpVector[4 * i] = inputColors[i][0];
dumpVector[4 * i + 1] = inputColors[i][1];
dumpVector[4 * i + 2] = inputColors[i][2];
dumpVector[4 * i + 3] = 255;
}
Util::PngReader writer;
writer.writeRGBAToFile("inputImage.png", inputSize.width, inputSize.height, &dumpVector.front());
#endif
return Status::OK();
}
Status AutoCrop::findCropCircle(const cv::Mat& inputImage, cv::Point3i& circle) {
circle = cv::Point3i(0, 0, 0);
// Prepare image: downscale, turn to LAB
FAIL_RETURN(setupImage(inputImage));
// Image binarization
binaryLabels.clear();
findValidPixel((int)autoCropConfig.getNeighborThreshold(), (int)autoCropConfig.getDifferenceThreshold());
// Remove all small connected components
removeSmallDisconnectedComponent();
// Find all border pixels
std::vector<cv::Point> points;
FAIL_RETURN(findBorderPixels(points));
// Find the convex hull and perform sampling
std::vector<cv::Point> convexHullPoints;
std::vector<float> convexHullPointWeights;
FAIL_RETURN(findConvexHullBorder(downLabImage, points, convexHullPoints, convexHullPointWeights));
// Find the inscribed circle
cv::Point3d c(0, 0, 0);
FAIL_RETURN(findInscribedCircleCeres(convexHullPoints, convexHullPointWeights, c));
cv::Point3d coarseCircle =
cv::Point3d(c.x * ratio.width, c.y * ratio.height, c.z * (ratio.width + ratio.height) / 2.0f);
#ifdef AUTOCROP_DEBUG
{ dumpCircleFile(coarseCircle, "initCoarse"); }
#endif
// Use the coarse circle as initialization for the refined circle
cv::Point3d refinedCircle;
FAIL_RETURN(findRefinedCircle(coarseCircle, refinedCircle));
circle = cv::Point3i((int)std::round(refinedCircle.x), (int)std::round(refinedCircle.y),
(int)std::round(refinedCircle.z * autoCropConfig.getScaleRadius()));
// Based on the assumption that the four corners are not covered by the circle,
// have a test to reject a lens if the circle is out of bounds.
const int radiusSqr = circle.z * circle.z;
std::vector<cv::Point> corners = {cv::Point(0, 0), cv::Point(inputImage.cols - 1, 0),
cv::Point(inputImage.cols - 1, inputImage.rows - 1),
cv::Point(0, inputImage.rows - 1)};
cv::Point circleCenter(circle.x, circle.y);
for (auto corner : corners) {
if (Util::GeometryProcessing::norm2(corner, circleCenter) < radiusSqr) {
return {Origin::CropAlgorithm, ErrType::InvalidConfiguration, "Invalid circle detected"};
}
}
return Status::OK();
}
void AutoCrop::findFineScalePoints(const std::vector<cv::Point>& circlePoints,
std::vector<cv::Point>& fineTuneCirclePoints, const cv::Vec2f& direction) const {
// From the coarse circle found in the first step, need to find a fine scale point set
// For every point p in coarse circle, draw a random line in the direction "direction" ranging from
// -autoCropConfig.getFineTuneMarginSize() to autoCropConfig.getFineTuneMarginSize()
// (with p stays at position 0)
// The fine scale point of the input p is the point with the minimum gradient in the direction "direction"
const int fineTuneSize = (int)autoCropConfig.getFineTuneMarginSize();
cv::Vec3b black(0, 0, 0);
const float normalizedValue = 255.0f;
for (size_t i = 0; i < circlePoints.size(); i++) {
bool first = true;
cv::Vec3b color0(0, 0, 0), color1(0, 0, 0);
float bestCost = 0.0f;
cv::Point bestPoint(0, 0);
for (int j = -fineTuneSize; j <= fineTuneSize; j++) {
const cv::Point point =
cv::Point((int)(circlePoints[i].x + direction[0] * j), (int)(circlePoints[i].y + direction[1] * j));
// If the point stays inside the image
if (Util::GeometryProcessing::insideImage(point, inputCvImage)) {
color1 = inputLabImage.at<cv::Vec3b>(point);
if (!first) {
cv::Vec3b intensity = inputCvImage.at<cv::Vec3b>(point);
const float cost =
1.0f * ((float)std::sqrt(Util::GeometryProcessing::norm2(color0, color1))) / normalizedValue +
0.01f * ((float)std::sqrt(Util::GeometryProcessing::norm2(black, intensity))) / normalizedValue;
if (cost > bestCost) {
bestCost = cost;
bestPoint = point;
}
}
color0 = color1;
first = false;
}
}
// Make sure a point is only picked if it is good enough
if (bestCost > 0.01) {
fineTuneCirclePoints.push_back(bestPoint);
}
}
}
Status AutoCrop::findRefinedCircle(const cv::Point3d& inputCircle, cv::Point3d& refinedCircle) {
std::vector<cv::Point> circlePoints;
Util::GeometryProcessing::getUniformSampleOnCircle(autoCropConfig.getConvexHullSampledCount(),
cv::Size(inputCvImage.cols, inputCvImage.rows), inputCircle,
circlePoints);
#ifdef AUTOCROP_DEBUG
{
std::vector<unsigned char> dumpVector(inputLabImage.cols * inputLabImage.rows, 0);
for (int i = 0; i < circlePoints.size(); i++)
if (Util::GeometryProcessing::insideImage(circlePoints[i], inputCvImage)) {
const int index = circlePoints[i].y * inputLabImage.cols + circlePoints[i].x;
dumpVector[index] = 255;
}
Debug::dumpMonochromeDeviceBuffer<Debug::linear>("border_fineSampledPoint.png", dumpVector, inputLabImage.cols,
inputLabImage.rows);
}
#endif
std::vector<cv::Point> fineTuneCirclePoints;
// Find the fine scale points in the horizontal and vertical direction
// Theorectically, adding more directions should improve the final result
findFineScalePoints(circlePoints, fineTuneCirclePoints, cv::Vec2f(1, 0));
findFineScalePoints(circlePoints, fineTuneCirclePoints, cv::Vec2f(0, 1));
FAIL_RETURN(removeOutliers(fineTuneCirclePoints));
#ifdef AUTOCROP_DEBUG
{
std::vector<unsigned char> dumpVector(inputLabImage.cols * inputLabImage.rows, 0);
for (int i = 0; i < fineTuneCirclePoints.size(); i++) {
const int index = fineTuneCirclePoints[i].y * inputLabImage.cols + fineTuneCirclePoints[i].x;
dumpVector[index] = 255;
}
Debug::dumpMonochromeDeviceBuffer<Debug::linear>("border_finePointVector.png", dumpVector, inputLabImage.cols,
inputLabImage.rows);
}
#endif
refinedCircle = inputCircle;
// Add 4 synthetic points at the border
std::vector<cv::Point> borderPoints = {
cv::Point(inputLabImage.cols / 2, 0), cv::Point(inputLabImage.cols / 2, inputLabImage.rows - 1),
cv::Point(0, inputLabImage.rows / 2), cv::Point(inputLabImage.cols - 1, inputLabImage.rows / 2)};
for (auto point : borderPoints) {
if (Util::GeometryProcessing::pointInsideCircle(point, inputCircle)) {
fineTuneCirclePoints.push_back(point);
}
}
// Find the convex hull and perform sampling
std::vector<cv::Point> convexHullPoints;
std::vector<float> convexHullPointWeights;
FAIL_RETURN(findConvexHullBorder(inputLabImage, fineTuneCirclePoints, convexHullPoints, convexHullPointWeights,
&borderPoints));
FAIL_RETURN(findInscribedCircleCeres(convexHullPoints, convexHullPointWeights, refinedCircle, 500));
return Status::OK();
}
cv::Point3d AutoCrop::getInitialCircle(const std::vector<cv::Point>& points) const {
// Take the first point as the one that are not on the borders
int firstPointIndex = -1;
for (size_t i = 0; i < points.size(); i++) {
if (!Util::GeometryProcessing::onBorder(points[i], inputSize)) {
firstPointIndex = (int)i;
break;
}
}
// Take the second point as the furthest from the first point
int furthestDistance = 0;
int secondPointIndex = -1;
for (size_t i = 0; i < points.size(); i++) {
int dist = Util::GeometryProcessing::norm2(points[firstPointIndex], points[i]);
if (dist > furthestDistance) {
furthestDistance = dist;
secondPointIndex = (int)i;
}
}
if (firstPointIndex >= 0 && secondPointIndex >= 0) {
const cv::Point center = (points[firstPointIndex] + points[secondPointIndex]) / 2;
double x = (double)center.x;
double y = (double)center.y;
double r = (sqrt(double((center.x - points[firstPointIndex].x) * (center.x - points[firstPointIndex].x) +
(center.y - points[firstPointIndex].y) * (center.y - points[firstPointIndex].y))));
return cv::Point3d(x, y, r);
} else {
return cv::Point3d(inputSize.width / 2, inputSize.height / 2, inputSize.width / 2);
}
}
// https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/circle_fit.cc
Status AutoCrop::findInscribedCircleCeres(const std::vector<cv::Point>& convexHullPoints,
const std::vector<float>& convexHullPointWeights, cv::Point3d& circle,
const int num_iterations) const {
if (circle.z <= 0) {
circle = getInitialCircle(convexHullPoints);
}
double x = (double)circle.x;
double y = (double)circle.y;
double r = (double)circle.z;
// Parameterize r as m^2 so that it can't be negative.
double m = sqrt(r);
#ifndef CERESLIB_UNSUPPORTED
ceres::Problem problem;
// Configure the loss function.
ceres::LossFunction* loss = new ceres::CauchyLoss(0.15);
// Add the residuals.
for (size_t i = 0; i < convexHullPoints.size(); i++) {
if (Util::GeometryProcessing::onBorder(convexHullPoints[i], inputSize)) {
continue;
}
const double xx = convexHullPoints[i].x;
const double yy = convexHullPoints[i].y;
const double ww = convexHullPointWeights[i];
ceres::CostFunction* cost =
new ceres::AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>(new DistanceFromCircleCost(xx, yy, ww));
problem.AddResidualBlock(cost, loss, &x, &y, &m);
}
// Build and solve the problem.
ceres::Solver::Options options;
options.max_num_iterations = num_iterations;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = false;
options.logging_type = ceres::SILENT;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
if (summary.termination_type != ceres::CONVERGENCE && summary.termination_type != ceres::NO_CONVERGENCE) {
return {Origin::CropAlgorithm, ErrType::AlgorithmFailure,
"Unable to find a matching circle. The solver did not converge."};
}
if (!summary.IsSolutionUsable()) {
return {Origin::CropAlgorithm, ErrType::AlgorithmFailure,
"Unable to find a matching circle. The solver did not find a usable solution."};
}
// Recover r from m.
r = m * m;
circle = cv::Point3d(x, y, r);
return Status::OK();
#else
return {Origin::CropAlgorithm, ErrType::UnsupportedAction,
"Unable to find a matching circle. The ceres::Solver is not available."};
#endif
}
Status AutoCrop::findConvexHullBorder(const cv::Mat& image, const std::vector<cv::Point>& points,
std::vector<cv::Point>& convexHullPoints,
std::vector<float>& convexHullPointWeights,
const std::vector<cv::Point>* borderPoints) const {
const cv::Size size(image.cols, image.rows);
std::vector<int> hull;
cv::convexHull(cv::Mat(points), hull, true);
if (hull.size() <= 3) {
return {Origin::CropAlgorithm, ErrType::AlgorithmFailure,
"Unable to find a valid convex hull. Hull size: " + std::to_string(hull.size())};
}
// Draw the convex hull
cv::Mat convexHullMat(size.height, size.width, CV_8U);
convexHullMat.setTo(0);
cv::Point pt0 = points[hull.back()];
for (size_t i = 0; i < hull.size(); i++) {
cv::Point pt = points[hull[i]];
if ((!Util::GeometryProcessing::pointInVector(pt, borderPoints) &&
!Util::GeometryProcessing::pointInVector(pt0, borderPoints)) ||
(!borderPoints)) {
cv::line(convexHullMat, pt0, pt, cv::Scalar(255), 1, cv::LINE_4);
}
pt0 = pt;
}
// Find the non zero pixel
std::vector<cv::Point> tracedConvexHullPoints;
for (int j = 1; j < convexHullMat.cols - 1; j++)
for (int i = 1; i < convexHullMat.rows - 1; i++)
if (convexHullMat.at<unsigned char>(cv::Point(j, i)) > 0) {
tracedConvexHullPoints.push_back(cv::Point(j, i));
}
if (!tracedConvexHullPoints.size()) {
return {Origin::CropAlgorithm, ErrType::AlgorithmFailure,
"Unable to find a valid convex hull. No traced convex hull points."};
}
// Sample a fixed number of points
convexHullPoints.clear();
std::default_random_engine gen(0);
std::uniform_int_distribution<int> di(0, (int)(tracedConvexHullPoints.size() - 1));
for (size_t i = 0; i < autoCropConfig.getConvexHullSampledCount(); i++) {
const int randIndex = di(gen);
convexHullPoints.push_back(tracedConvexHullPoints[randIndex]);
}
convexHullPointWeights.clear();
const std::vector<cv::Point> neighborOffsets{cv::Point(-1, 0), cv::Point(1, 0), cv::Point(0, 1), cv::Point(0, -1)};
for (size_t i = 0; i < convexHullPoints.size(); i++) {
float diff = 0.0f;
float weight = 0.0f;
cv::Vec3b color0 = image.at<cv::Vec3b>(convexHullPoints[i]);
for (size_t j = 0; j < neighborOffsets.size(); j++)
if (Util::GeometryProcessing::insideImage(convexHullPoints[i] + neighborOffsets[j], image)) {
cv::Vec3b color1 = image.at<cv::Vec3b>(convexHullPoints[i] + neighborOffsets[j]);
diff += 1.0f * ((float)std::sqrt(Util::GeometryProcessing::norm2(color0, color1))) / 255.0f;
weight += 1.0f;
}
float pointWeight = std::max(0.01f, weight > 0 ? diff / weight : 0.0f);
convexHullPointWeights.push_back(pointWeight);
}
#ifdef AUTOCROP_DEBUG
{
static int count = 0;
std::vector<unsigned char> dumpVector(size.width * size.height, 0);
for (int i = 0; i < convexHullPoints.size(); i++) {
const int index = convexHullPoints[i].y * size.width + convexHullPoints[i].x;
dumpVector[index] = 255;
}
std::string filename;
if (count == 0) {
filename = "border_convexhullVector.png";
} else {
filename = "border_convexhullRefinement.png";
}
Debug::dumpMonochromeDeviceBuffer<Debug::linear>(filename, dumpVector, size.width, size.height);
count++;
}
#endif
return Status::OK();
}
Status AutoCrop::findBorderPixels(std::vector<cv::Point>& points) const {
points.clear();
for (int i = 0; i < inputSize.width; i++)
for (int j = 0; j < inputSize.height; j++) {
if (binaryLabels[j * inputSize.width + i] > 0) {
if (i == 0 || i == inputSize.width - 1 || j == 0 || j == inputSize.height - 1) {
points.push_back(cv::Point(i, j));
} else {
for (int t = 0; t < 4; t++) {
const cv::Point nextPoint = cv::Point(i + rows[t], j + cols[t]);
if (nextPoint.x >= 0 && nextPoint.x < inputSize.width && nextPoint.y >= 0 &&
nextPoint.y < inputSize.height) {
if (binaryLabels[nextPoint.y * inputSize.width + nextPoint.x] == 0) {
points.push_back(cv::Point(i, j));
break;
}
}
}
}
}
}
#ifdef AUTOCROP_DEBUG
{
std::vector<unsigned char> dumpVector(inputSize.width * inputSize.height * 4, 0);
for (int i = 0; i < points.size(); i++) {
const int index = points[i].y * inputSize.width + points[i].x;
dumpVector[4 * index] = 255;
dumpVector[4 * index + 1] = 255;
dumpVector[4 * index + 2] = 255;
dumpVector[4 * index + 3] = 255;
}
Util::PngReader writer;
writer.writeRGBAToFile("border.png", inputSize.width, inputSize.height, &dumpVector.front());
}
#endif
if (points.size() < 3) {
return {Origin::CropAlgorithm, ErrType::AlgorithmFailure, "Unable to find the borders of the binary image"};
}
return Status::OK();
}
void AutoCrop::findValidPixel(const int moveThreshold, const int differenceThreshold) {
binaryLabels.resize(inputColors.size(), 255);
const int cornerBlockSize = 5;
for (int i = 0; i <= cornerBlockSize; i++)
for (int j = 0; j <= cornerBlockSize; j++) {
findConnectedComponent<cv::Vec3b, unsigned char>(255, 0, moveThreshold, differenceThreshold, cv::Point(i, j),
inputSize, inputColors, binaryLabels);
findConnectedComponent<cv::Vec3b, unsigned char>(255, 0, moveThreshold, differenceThreshold,
cv::Point(i, inputSize.height - 1 - j), inputSize, inputColors,
binaryLabels);
findConnectedComponent<cv::Vec3b, unsigned char>(255, 0, moveThreshold, differenceThreshold,
cv::Point(inputSize.width - 1 - i, inputSize.height - 1 - j),
inputSize, inputColors, binaryLabels);
findConnectedComponent<cv::Vec3b, unsigned char>(255, 0, moveThreshold, differenceThreshold,
cv::Point(inputSize.width - 1 - i, j), inputSize, inputColors,
binaryLabels);
}
#ifdef AUTOCROP_DEBUG
{
Debug::dumpMonochromeDeviceBuffer<Debug::linear>("binaryPixel.png", binaryLabels, inputSize.width,
inputSize.height);
}
#endif
}
Status AutoCrop::removeOutliers(std::vector<cv::Point>& points) const {
std::vector<cv::Point> refinedPoints;
const int neighborCountThreshold = 10;
const int neighborSizeThreshold = 10 * 10;
for (size_t i = 0; i < points.size(); i++) {
int neighborCount = 0;
for (size_t j = 0; j < points.size(); j++) {
if (Util::GeometryProcessing::norm2(points[i], points[j]) < neighborSizeThreshold) {
neighborCount++;
if (neighborCount >= neighborCountThreshold) {
break;
}
}
}
if (neighborCount >= neighborCountThreshold) {
refinedPoints.push_back(points[i]);
}
}
points = refinedPoints;
if (points.size() < 3) {
return {Origin::CropAlgorithm, ErrType::AlgorithmFailure, "There are too many outliers"};
} else {
return Status::OK();
}
}
void AutoCrop::removeSmallDisconnectedComponent() {
int componentLabel = 0;
std::vector<int> disconnectedComponentLabels(binaryLabels.size(), -1);
std::vector<int> componentCounts;
for (int i = 0; i < inputSize.width; i++)
for (int j = 0; j < inputSize.height; j++) {
if ((disconnectedComponentLabels[j * inputSize.width + i] < 0) && (binaryLabels[j * inputSize.width + i] > 0)) {
int componentCount = findConnectedComponent<unsigned char, int>(
-1, componentLabel, 0, 0, cv::Point(i, j), inputSize, binaryLabels, disconnectedComponentLabels);
componentCounts.push_back(componentCount);
componentLabel++;
}
}
const int componentThreshold = int(0.01f * inputSize.width * inputSize.height);
for (int i = 0; i < inputSize.width; i++)
for (int j = 0; j < inputSize.height; j++) {
int id = disconnectedComponentLabels[j * inputSize.width + i];
if (id >= 0 && componentCounts[id] >= componentThreshold) {
binaryLabels[j * inputSize.width + i] = 255;
} else {
binaryLabels[j * inputSize.width + i] = 0;
}
}
#ifdef AUTOCROP_DEBUG
{
Debug::dumpMonochromeDeviceBuffer<Debug::linear>("binaryPixel_no_small.png", binaryLabels, inputSize.width,
inputSize.height);
}
#endif
}
Status AutoCrop::dumpCircleFile(const cv::Point3i circle, const std::string& inputFilename) const {
cv::Mat outputImage = inputCvImage.clone();
const cv::Point center(circle.x, circle.y);
const int radius = circle.z;
cv::Scalar colorCenter;
cv::Scalar colorCircle;
if (outputImage.channels() > 1) {
colorCenter = cv::Scalar(0, 255, 255);
colorCircle = cv::Scalar(0, 0, 255);
} else {
colorCenter = cv::Scalar(128);
colorCircle = cv::Scalar(192);
}
cv::circle(outputImage, center, 3, colorCenter, -1);
cv::circle(outputImage, center, radius, colorCircle, 5);
std::string outputFilePath = inputFilename + "_circle.png";
if (!Util::PngReader::writeBGRToFile(outputFilePath.c_str(), outputImage.cols, outputImage.rows, outputImage.data)) {
return {Origin::Output, ErrType::RuntimeError, "Could not write BGR output file to path: '" + outputFilePath + "'"};
}
return Status::OK();
}
Status AutoCrop::dumpOriginalFile(const std::string& inputFilename) const {
std::string outputFilePath = inputFilename + "_original.png";
if (!Util::PngReader::writeBGRToFile(outputFilePath.c_str(), inputCvImage.cols, inputCvImage.rows,
inputCvImage.data)) {
return {Origin::Output, ErrType::RuntimeError, "Could not write BGR output file to path: '" + outputFilePath + "'"};
}
return Status::OK();
}
template <typename S, typename T>
int AutoCrop::findConnectedComponent(const T& notVisitedValue, const T& componentLabel, const int& moveThreshold,
const int& differenceThreshold, const cv::Point& pt, const cv::Size& size,
const std::vector<S>& colors, std::vector<T>& outputComponents) {
std::stack<cv::Point> pointStack;
pointStack.push(pt);
const S seedColor = colors[pt.y * size.width + pt.x];
outputComponents[pt.y * size.width + pt.x] = componentLabel;
int count = 1;
// As moving to the center, the point must be really similar to previous
// in order to take it into account
while (!pointStack.empty()) {
const cv::Point topPoint = pointStack.top();
pointStack.pop();
const S topColor = colors[topPoint.y * size.width + topPoint.x];
for (int t = 0; t < 4; t++) {
const cv::Point nextPoint = cv::Point(topPoint.x + rows[t], topPoint.y + cols[t]);
if (nextPoint.x >= 0 && nextPoint.x < size.width && nextPoint.y >= 0 && nextPoint.y < size.height) {
const S nextColor = colors[nextPoint.y * size.width + nextPoint.x];
if ((outputComponents[nextPoint.y * size.width + nextPoint.x] == notVisitedValue) &&
(Util::GeometryProcessing::norm2(nextColor, topColor) <= moveThreshold) &&
(Util::GeometryProcessing::norm2(nextColor, seedColor) <= differenceThreshold)) {
outputComponents[nextPoint.y * size.width + nextPoint.x] = componentLabel;
pointStack.push(nextPoint);
count++;
}
}
}
}
return count;
}
} // namespace AutoCrop
} // namespace VideoStitch