simpleFlow.cu 27.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm

#include "parallax/simpleFlow.hpp"

#include "./kernels/patchDifferenceFunction.cu"

#include "backend/common/vectorOps.hpp"

#include "backend/cuda/deviceBuffer.hpp"
#include "backend/cuda/deviceStream.hpp"
#include "backend/cuda/core1/kernels/samplingKernel.cu"
#include "gpu/image/sampling.hpp"
#include "gpu/image/imageOps.hpp"
#include "gpu/image/blur.hpp"
#include "gpu/stream.hpp"
#include "cuda/error.hpp"
#include "cuda/util.hpp"
#include "util/imageProcessingGPUUtils.hpp"

namespace VideoStitch {
namespace Core {

#define TILE_WIDTH 16
#define CUDABLOCKSIZE 512
#define SIMPLEFLOW_KERNEL_BLOCK_SIZE_X 16
#define SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y 8

__global__ void forwardFlowKernel(const int flowSize, const int windowSize, const float flowMagnitudeWeight,
                                  const float gradientWeight, const int2 size0, const int2 offset0,
                                  const uint32_t* input0, const float* gradient0, const int2 size1, const int2 offset1,
                                  const uint32_t* input1, const float* gradient1, const float2* inputFlowOffset,
                                  float2* flow, float* confidence) {
  // Check whether we need to calculate the flow
  uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
  uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
  if (x >= size0.x || y >= size0.y) return;

  uint32_t v0 = input0[y * size0.x + x];
  if (Image::RGBA::a(v0) == 0) {  // If current alpha is 0, do nothing
    if (inputFlowOffset) {
      flow[y * size0.x + x] = inputFlowOffset[y * size0.x + x];
      if (confidence) {
        confidence[y * size0.x + x] = 1;
      }
      return;
    }
    flow[y * size0.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
    if (confidence) {
      confidence[y * size0.x + x] = 0;
    }
    return;
  }
  int2 coord1 = make_int2(x + offset0.x - offset1.x, y + offset0.y - offset1.y);
  if (!inRange(coord1, size1)) {
    flow[y * size0.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
    if (confidence) {
      confidence[y * size0.x + x] = 0;
    }
    return;
  }
  uint32_t v1 = input1[coord1.y * size1.x + coord1.x];
  if (Image::RGBA::a(v1) == 0) {
    flow[y * size0.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
    if (confidence) {
      confidence[y * size0.x + x] = 0;
    }
    return;
  }

  float2 flowOffset = make_float2(0, 0);
  if (inputFlowOffset) {
    flowOffset = inputFlowOffset[y * size0.x + x];
  }
  // Try to find the best forward flow here
  int2 sampleCoord = make_int2(x, y);
  float bestCost = MAX_INVALID_COST;
  float2 minFlow = make_float2(flowOffset.x, flowOffset.y);
  float totalCost = 0;
  float totalCount = 0;
  for (int i = -flowSize; i <= flowSize; i++)
    for (int j = -flowSize; j <= flowSize; j++) {
      int2 mapCoord =
          make_int2(flowOffset.x + x + i + offset0.x - offset1.x, flowOffset.y + y + j + offset0.y - offset1.y);
      if (inRange(mapCoord, size1)) {
        float cost = getCost(windowSize, gradientWeight, size0, input0, gradient0, sampleCoord, size1, input1,
                             gradient1, mapCoord) +
                     flowMagnitudeWeight * sqrtf(i * i + j * j) / sqrtf(2 * flowSize * flowSize);
        if (cost < MAX_INVALID_COST) {
          totalCost += cost;
          totalCount++;
        }
        if (cost < bestCost) {
          bestCost = cost;
          minFlow = make_float2(flowOffset.x + i, flowOffset.y + j);
        }
      }
    }

  flow[y * size0.x + x] = minFlow;

  if (confidence) {
    if (bestCost != MAX_INVALID_COST) {
      int2 mapCoord = make_int2(sampleCoord.x + minFlow.x + offset0.x - offset1.x,
                                sampleCoord.y + minFlow.y + offset0.y - offset1.y);
      confidence[y * size0.x + x] = (getCUR(windowSize, gradientWeight, size0, input0, gradient0, sampleCoord, size1,
                                            input1, gradient1, mapCoord));
      // confidence[y * size0.x + x] = totalCost / totalCount - bestCost;
    } else {
      confidence[y * size0.x + x] = 0;
    }
  }
}

__global__ void flowAgreementConfidenceKernel(const int flowSize, const int2 size0, const int2 offset0,
                                              const float2* flow0, const float* confidence0, const int2 size1,
                                              const int2 offset1, const float2* flow1, const float* confidence1,
                                              float* flowAgreementConfidence0) {
  // Check whether we need to calculate the agreement confidence
  uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
  uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
  if (x >= size0.x || y >= size0.y) return;
  const float2 forwardFlow = flow0[y * size0.x + x];
  const float forwardConfidence = confidence0[y * size0.x + x];
  const int2 lookupCoord =
      make_int2(x + forwardFlow.x + offset0.x - offset1.x, y + forwardFlow.y + offset0.y - offset1.y);
  if (!inRange(lookupCoord, size1)) {
    flowAgreementConfidence0[y * size0.x + x] = 0;
    return;
  }
  const float2 backwardFlow = flow1[lookupCoord.y * size1.x + lookupCoord.x];
  const float backwardConfidence = confidence1[lookupCoord.y * size1.x + lookupCoord.x];

  // Check if forward and backward flow agree
  float normalizedAgreementLength =
      length(forwardFlow + backwardFlow) / (length(make_float2(2 * flowSize + 1, 2 * flowSize + 1)));
  flowAgreementConfidence0[y * size0.x + x] =
      powf(fmaxf(1 - normalizedAgreementLength, 0.0), 3)  // * forwardConfidence;
      * sqrtf(backwardConfidence * forwardConfidence);
}

__global__ void confidenceTransformKernel(const int width, const int height, const float threshold, const float gamma,
                                          const float clampedValue, const float* inputConfidence,
                                          float* outputConfidence) {
  uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
  uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
  if (x >= width || y >= height) return;
  float inputValue = inputConfidence[y * width + x];
  if (inputValue < threshold) {
    outputConfidence[y * width + x] = 0;
  } else {
    outputConfidence[y * width + x] = powf(inputValue, gamma);
  }
}

__device__ float getSpacialWeight(const float sigmaSpace, const float x) { return exp(-abs(sigmaSpace) * x * x); }

__global__ void confidenceAwareFlowBlurKernel(const bool extrapolation, const int2 size, const int kernelSize,
                                              const float sigmaSpace, const float sigmaImage,
                                              const float sigmaConfidence, const uint32_t* const inputImage,
                                              const float2* const inputFlow, const float* const inputConfidence,
                                              float2* const outputFlow) {
  uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
  uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
  if (x >= size.x || y >= size.y) return;
  if (extrapolation) {
    float2 inFlow = inputFlow[y * size.x + x];
    if (inFlow.x != INVALID_FLOW_VALUE) {
      outputFlow[y * size.x + x] = inFlow;
      return;
    }
  }
  // check if the current flow is not valid, then just do nothing
  float maxDist = kernelSize * 1.4142;
  uint32_t imageColor;
  if (sigmaImage) {
    imageColor = inputImage[y * size.x + x];
  }
  if (!extrapolation) {
    if (sigmaImage > 0) {
      if (!Image::RGBA::a(imageColor)) {
        outputFlow[y * size.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
        return;
      }
    }
  }
  float sumWeight = 0;
  float2 sumContribution = make_float2(0, 0);

  if (maxDist == 0) maxDist = 1;
  for (int dx = -kernelSize; dx <= kernelSize; dx++) {
    for (int dy = -kernelSize; dy <= kernelSize; dy++) {
      // Here i came across a neighbor, what he is look like
      int2 neighborCoord = make_int2(x + dx, y + dy);
      if (!inRange(neighborCoord, size)) {
        continue;
      }
      float neighborConfidence = 1;
      if (inputConfidence) {
        neighborConfidence = inputConfidence[neighborCoord.y * size.x + neighborCoord.x];
      }
      if (neighborConfidence == 0) {
        continue;
      }

      float2 neighborflowOffset = inputFlow[neighborCoord.y * size.x + neighborCoord.x];
      if (neighborflowOffset.x == INVALID_FLOW_VALUE) {
        continue;
      }
      float weightImage = 1.0f;
      if (sigmaImage) {
        uint32_t imageColorNeighbor = inputImage[neighborCoord.y * size.x + neighborCoord.x];
        if (Image::RGBA::a(imageColorNeighbor) > 0 && Image::RGBA::a(imageColor) > 0) {
          const float sad = abs((float(Image::RGBA::r(imageColorNeighbor)) - Image::RGBA::r(imageColor)) / 255.0) +
                            abs((float(Image::RGBA::g(imageColorNeighbor)) - Image::RGBA::g(imageColor)) / 255.0) +
                            abs((float(Image::RGBA::b(imageColorNeighbor)) - Image::RGBA::b(imageColor)) / 255.0);
          weightImage = exp(-abs(sad * sad * sigmaImage));
        }
      }

      // Now calculate the distance between source and target
      float distSpace = length(make_float2(dx, dy)) / maxDist;
      float weightSpace = exp(-abs(distSpace * distSpace * sigmaSpace));
      // Now i do really look at the neighbor on the other side to see  how think is going on there
      float weight = weightSpace * weightImage * neighborConfidence;
      sumWeight += weight;
      sumContribution += weight * neighborflowOffset;
    }
  }

  // If my confidence is high, i would tend to keep mine, don't care about the neighbor's confidence
  // Here is where to set the weight
  if (sumWeight == 0) {
    outputFlow[y * size.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
  } else {
    outputFlow[y * size.x + x] = sumContribution / sumWeight;
  }
}

__global__ void flowConfidenceKernel(const int windowSize, const float gradientWeight, const int2 size0,
                                     const uint32_t* input0, const float* gradient0, const float2* inputFlow,
                                     const int2 size1, const uint32_t* input1, const float* gradient1,
                                     float* confidence) {
  uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
  uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
  if (x >= size0.x || y >= size0.y) return;
  float2 flow = inputFlow[y * size0.x + x];
  if (flow.x == INVALID_FLOW_VALUE) {
    confidence[y * size0.x + x] = 0;
  } else {
    int2 mapCoord = make_int2(x + flow.x, y + flow.y);
    int2 sampleCoord = make_int2(x, y);
    confidence[y * size0.x + x] =
        getCUR(windowSize, gradientWeight, size0, input0, gradient0, sampleCoord, size1, input1, gradient1, mapCoord);
  }
}

Status SimpleFlow::findForwardFlow(const int flowSize, const int windowSize, const float flowMagnitudeWeight,
                                   const float gradientWeight, const int2 size0, const int2 offset0,
                                   const GPU::Buffer<const uint32_t> inputBuffer0,
                                   const GPU::Buffer<const float> inputGradientBuffer0, const int2 size1,
                                   const int2 offset1, const GPU::Buffer<const uint32_t> inputBuffer1,
                                   const GPU::Buffer<const float> inputGradientBuffer1, GPU::Buffer<float2> flow,
                                   GPU::Buffer<float> confidence, GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(size0.x, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(size0.y, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);
  forwardFlowKernel<<<dimGrid, dimBlock, 0, stream>>>(flowSize, windowSize, flowMagnitudeWeight, gradientWeight, size0,
                                                      offset0, inputBuffer0.get(), inputGradientBuffer0.get(), size1,
                                                      offset1, inputBuffer1.get(), inputGradientBuffer1.get(), 0,
                                                      flow.get(), confidence.get());

  return CUDA_STATUS;
}

__global__ void offsetCostKernel(const int2 flowOffset, const int flowSize, const float flowMagnitudeWeight,
                                 const float gradientWeight, const int2 size0, const int2 offset0,
                                 const uint32_t* input0, const float* gradient0, const int2 size1, const int2 offset1,
                                 const uint32_t* input1, const float* gradient1, float2* cost) {
  // Check whether we need to calculate the flow
  uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
  uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
  if (x >= size0.x || y >= size0.y) return;

  uint32_t v0 = input0[y * size0.x + x];
  if (Image::RGBA::a(v0) == 0) {  // If current alpha is 0, do nothing
    cost[y * size0.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
    return;
  }
  // Try to find the best forward flow here
  int2 sampleCoord = make_int2(x, y);
  int2 mapCoord = make_int2(flowOffset.x + x + offset0.x - offset1.x, flowOffset.y + y + offset0.y - offset1.y);
  cost[y * size0.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
  if (inRange(mapCoord, size1)) {
    float difCost =
        getCost(0, gradientWeight, size0, input0, gradient0, sampleCoord, size1, input1, gradient1, mapCoord) +
        flowMagnitudeWeight * sqrtf(flowOffset.x * flowOffset.x + flowOffset.y * flowOffset.y) /
            sqrtf(2 * flowSize * flowSize);
    cost[y * size0.x + x] = make_float2(difCost, difCost);
  }
}

Status SimpleFlow::findOffsetCost(const int2 flowOffset, const int flowSize, const float flowMagnitudeWeight,
                                  const float gradientWeight, const int2 size0, const int2 offset0,
                                  const GPU::Buffer<const uint32_t> inputBuffer0,
                                  const GPU::Buffer<const float> inputGradientBuffer0, const int2 size1,
                                  const int2 offset1, const GPU::Buffer<const uint32_t> inputBuffer1,
                                  const GPU::Buffer<const float> inputGradientBuffer1, GPU::Buffer<float2> cost,
                                  GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(size0.x, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(size0.y, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);
  offsetCostKernel<<<dimGrid, dimBlock, 0, stream>>>(
      flowOffset, flowSize, flowMagnitudeWeight, gradientWeight, size0, offset0, inputBuffer0.get(),
      inputGradientBuffer0.get(), size1, offset1, inputBuffer1.get(), inputGradientBuffer1.get(), cost.get());

  return CUDA_STATUS;
}

__global__ void updateBestCostKernel(const int2 flowOffset, const int2 size0, const float2* cost, float* bestCost,
                                     float2* bestOffset) {
  // Check whether we need to calculate the flow
  uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
  uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
  if (x >= size0.x || y >= size0.y) return;
  if (flowOffset.x == 123456) {
    bestCost[y * size0.x + x] = MAX_INVALID_COST;
    bestOffset[y * size0.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
  }
  if (cost[y * size0.x + x].x >= 0 && cost[y * size0.x + x].x < bestCost[y * size0.x + x]) {
    bestCost[y * size0.x + x] = cost[y * size0.x + x].x;
    bestOffset[y * size0.x + x] = make_float2(flowOffset.x, flowOffset.y);
  }
}

Status SimpleFlow::updateBestCost(const int2 flowOffset, const int2 size0, const GPU::Buffer<const float2> cost,
                                  GPU::Buffer<float> bestCost, GPU::Buffer<float2> bestOffset, GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(size0.x, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(size0.y, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);
  updateBestCostKernel<<<dimGrid, dimBlock, 0, stream>>>(flowOffset, size0, cost.get(), bestCost.get(),
                                                         bestOffset.get());
  return CUDA_STATUS;
}

Status SimpleFlow::findBackwardAndForwardFlowAgreementConfidence(
    const int flowSize, const int2 size0, const int2 offset0, const GPU::Buffer<const float2> flow0,
    const GPU::Buffer<const float> confidence0, const int2 size1, const int2 offset1,
    const GPU::Buffer<const float2> flow1, const GPU::Buffer<const float> confidence1,
    GPU::Buffer<float> flowAgreementConfidence0, GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(size0.x, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(size0.y, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);

  flowAgreementConfidenceKernel<<<dimGrid, dimBlock, 0, stream>>>(flowSize, size0, offset0, flow0.get(),
                                                                  confidence0.get(), size1, offset1, flow1.get(),
                                                                  confidence1.get(), flowAgreementConfidence0.get());

  return CUDA_STATUS;
}

Status SimpleFlow::performConfidenceTransform(const int width, const int height, const float threshold,
                                              const float gamma, const float clampedValue,
                                              const GPU::Buffer<const float> inputConfidence,
                                              GPU::Buffer<float> outputConfidence, GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(width, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(height, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);
  confidenceTransformKernel<<<dimGrid, dimBlock, 0, stream>>>(width, height, threshold, gamma, clampedValue,
                                                              inputConfidence.get(), outputConfidence.get());

  return CUDA_STATUS;
}

Status SimpleFlow::findConfidence(const int windowSize, const float gradientWeight, const int2 size0,
                                  const GPU::Buffer<const uint32_t> input0, const GPU::Buffer<const float> gradient0,
                                  GPU::Buffer<const float2> forwardFlow0, const int2 size1,
                                  const GPU::Buffer<const uint32_t> input1, const GPU::Buffer<const float> gradient1,
                                  GPU::Buffer<float> confidence, GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(size0.x, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(size0.y, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);
  flowConfidenceKernel<<<dimGrid, dimBlock, 0, stream>>>(windowSize, gradientWeight, size0, input0.get(),
                                                         gradient0.get(), forwardFlow0.get(), size1, input1.get(),
                                                         gradient1.get(), confidence.get());

  return CUDA_STATUS;
}

Status SimpleFlow::performConfidenceAwareFlowInterpolation(const bool extrapolation, const int2 size,
                                                           const int kernelSize, const float sigmaSpace,
                                                           const float sigmaImage, const float sigmaConfidence,
                                                           const GPU::Buffer<const uint32_t> inputImage,
                                                           const GPU::Buffer<const float2> inputFlow,
                                                           const GPU::Buffer<const float> inputConfidence,
                                                           GPU::Buffer<float2> outputFlow, GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(size.x, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(size.y, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);
  if (inputConfidence.wasAllocated()) {
    confidenceAwareFlowBlurKernel<<<dimGrid, dimBlock, 0, stream>>>(
        extrapolation, size, kernelSize, sigmaSpace, sigmaImage, sigmaConfidence, inputImage.get(), inputFlow.get(),
        inputConfidence.get(), outputFlow.get());
  } else {
    confidenceAwareFlowBlurKernel<<<dimGrid, dimBlock, 0, stream>>>(extrapolation, size, kernelSize, sigmaSpace,
                                                                    sigmaImage, sigmaConfidence, inputImage.get(),
                                                                    inputFlow.get(), nullptr, outputFlow.get());
  }
  return CUDA_STATUS;
}

__global__ void temporalAwareFlowBlurKernel(const bool extrapolation, const int frameId, const int frameCount,
                                            const int2 size, const int kernelSize, const float sigmaSpace,
                                            const float sigmaImage, const float sigmaTime, const float* const frames,
                                            const uint32_t* const inputImages, const float2* const inputFlows,
                                            const float* const inputConfidences, float2* const outputFlow) {
  uint32_t x = blockIdx.x * blockDim.x + threadIdx.x;
  uint32_t y = blockIdx.y * blockDim.y + threadIdx.y;
  if (x >= size.x || y >= size.y) return;
  int baseOffset = frameId * size.x * size.y;
  if (extrapolation) {
    float2 inFlow = inputFlows[baseOffset + y * size.x + x];
    if (inFlow.x != INVALID_FLOW_VALUE) {
      outputFlow[y * size.x + x] = inFlow;
      return;
    }
  }
  // check if the current flow is not valid, then just do nothing
  float maxDist = kernelSize * 1.4142;
  uint32_t imageColor;
  if (sigmaImage) {
    imageColor = inputImages[baseOffset + y * size.x + x];
  }
  if (!extrapolation) {
    if (sigmaImage > 0) {
      if (!Image::RGBA::a(imageColor)) {
        outputFlow[y * size.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
        return;
      }
    }
  }
  float sumWeight = 0;
  float2 sumContribution = make_float2(0, 0);

  if (maxDist == 0) maxDist = 1;
  for (int t = 0; t < frameCount; t++)
    if (frames[t] >= 0) {
      for (int dx = -kernelSize; dx <= kernelSize; dx++)
        for (int dy = -kernelSize; dy <= kernelSize; dy++) {
          const int offset = t * size.x * size.y;
          // Here i came across a neighbor, what he is look like
          int2 neighborCoord = make_int2(x + dx, y + dy);
          if (!inRange(neighborCoord, size)) {
            continue;
          }
          float neighborConfidence = 1;
          if (inputConfidences) {
            neighborConfidence = inputConfidences[offset + neighborCoord.y * size.x + neighborCoord.x];
          }
          if (neighborConfidence == 0) {
            continue;
          }
          float2 neighborflowOffset = inputFlows[offset + neighborCoord.y * size.x + neighborCoord.x];
          if (neighborflowOffset.x == INVALID_FLOW_VALUE) {
            continue;
          }
          float weightImage = 1.0f;
          if (sigmaImage) {
            uint32_t imageColorNeighbor = inputImages[offset + neighborCoord.y * size.x + neighborCoord.x];
            if (Image::RGBA::a(imageColorNeighbor) > 0 && Image::RGBA::a(imageColor) > 0) {
              const float sad = abs((float(Image::RGBA::r(imageColorNeighbor)) - Image::RGBA::r(imageColor)) / 255.0) +
                                abs((float(Image::RGBA::g(imageColorNeighbor)) - Image::RGBA::g(imageColor)) / 255.0) +
                                abs((float(Image::RGBA::b(imageColorNeighbor)) - Image::RGBA::b(imageColor)) / 255.0);
              weightImage = exp(-abs(sad * sad * sigmaImage));
            }
          }
          // Now calculate the distance of time
          float distTime = float(frames[t] - frames[frameId]) / frameCount;
          float weightTime = exp(-abs(distTime * distTime * sigmaTime));
          // Now calculate the distance between source and target
          float distSpace = length(make_float2(dx, dy)) / maxDist;
          float weightSpace = exp(-abs(distSpace * distSpace * sigmaSpace));
          // Now i do really look at the neighbor on the other side to see  how think is going on there
          float weight = weightSpace * weightImage * weightTime * neighborConfidence;
          sumWeight += weight;
          sumContribution += weight * neighborflowOffset;
        }
    }
  // If my confidence is high, i would tend to keep mine, don't care about the neighbor's confidence
  // Here is where to set the weight
  if (sumWeight == 0) {
    outputFlow[y * size.x + x] = make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE);
  } else {
    outputFlow[y * size.x + x] = sumContribution / sumWeight;
  }
}

Status SimpleFlow::performTemporalAwareFlowInterpolation(
    const bool extrapolation, const frameid_t frameId, const int2 size, const int kernelSize, const float sigmaSpace,
    const float sigmaImage, const float sigmaTime, const GPU::Buffer<const float> frames,
    const GPU::Buffer<const uint32_t> inputImages, const GPU::Buffer<const float2> inputFlows,
    const GPU::Buffer<const float> inputConfidences, GPU::Buffer<float2> outputFlow, GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(size.x, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(size.y, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);
  const int frameCount = (int)frames.numElements();
  temporalAwareFlowBlurKernel<<<dimGrid, dimBlock, 0, stream>>>(
      extrapolation, frameId, frameCount, size, kernelSize, sigmaSpace, sigmaImage, sigmaTime, frames.get(),
      inputImages.get(), inputFlows.get(), inputConfidences.get(), outputFlow.get());
  return CUDA_STATUS;
}

Status SimpleFlow::performFlowJittering(const int jitterSize, const int windowSize, const float flowMagnitudeWeight,
                                        const float gradientWeight, const int2 size0, const int2 offset0,
                                        const GPU::Buffer<const uint32_t> inputBuffer0,
                                        const GPU::Buffer<const float> inputGradientBuffer0, const int2 size1,
                                        const int2 offset1, const GPU::Buffer<const uint32_t> inputBuffer1,
                                        const GPU::Buffer<const float> inputGradientBuffer1,
                                        const GPU::Buffer<const float2> inputFlow, GPU::Buffer<float2> outputFlow,
                                        GPU::Stream gpuStream) {
  cudaStream_t stream = gpuStream.get();
  dim3 dimBlock(SIMPLEFLOW_KERNEL_BLOCK_SIZE_X, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y, 1);
  dim3 dimGrid((unsigned)Cuda::ceilDiv(size0.x, SIMPLEFLOW_KERNEL_BLOCK_SIZE_X),
               (unsigned)Cuda::ceilDiv(size0.y, SIMPLEFLOW_KERNEL_BLOCK_SIZE_Y), 1);

  forwardFlowKernel<<<dimGrid, dimBlock, 0, stream>>>(jitterSize, windowSize, flowMagnitudeWeight, gradientWeight,
                                                      size0, offset0, inputBuffer0.get(), inputGradientBuffer0.get(),
                                                      size1, offset1, inputBuffer1.get(), inputGradientBuffer1.get(),
                                                      inputFlow.get(), outputFlow.get(), 0);
  return CUDA_STATUS;
}

}  // namespace Core
}  // namespace VideoStitch