1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "./mergerPair.hpp"
#include "./flowConstant.hpp"
#ifndef VS_OPENCL
#include "./spaceTransform.hpp"
#endif
#include "core/geoTransform.hpp"
#include "core1/imageMerger.hpp"
#include "core1/imageMapping.hpp"
#include "gpu/image/imgInsert.hpp"
#include "gpu/image/imageOps.hpp"
#include "gpu/image/sampling.hpp"
#include "gpu/memcpy.hpp"
#define HOST_TRANSFORM
#include "backend/cpp/core/transformStack.hpp"
#undef HOST_TRANSFORM
#ifndef VS_OPENCL
#include "util/opticalFlowUtils.hpp"
#include "util/imageProcessingGPUUtils.hpp"
#endif
#include "libvideostitch/panoDef.hpp"
#include "libvideostitch/logging.hpp"
#include "libvideostitch/inputDef.hpp"
#include "libvideostitch/output.hpp"
//#define MERGER_PAIR_DEBUG
//#define MERGER_PAIR_MAPPING_DEBUG
#if defined(MERGER_PAIR_DEBUG) || defined(MERGER_PAIR_MAPPING_DEBUG)
#include "util/debugUtils.hpp"
#include <sstream>
#endif
namespace VideoStitch {
namespace Core {
MergerPair::MergerPair(const int boundingFirstLevelSize, const int boundingLastLevelSize, const int width0,
const int height0, const int offset0X, const int offset0Y,
const GPU::Buffer<const uint32_t>& buffer0, const int width1, const int height1,
const int offset1X, const int offset1Y, const GPU::Buffer<const uint32_t>& buffer1,
GPU::Stream stream)
: id0s(1, -1),
id1(-1),
extendedRatio(0.0f),
overlappedAreaOnly(false),
boundingFirstLevelSize(boundingFirstLevelSize),
boundingLastLevelSize(boundingLastLevelSize),
wrapWidth(0),
wrapHeight(0),
input1Size(make_int2(width1, height1)),
boundingPanoRect0(Rect::fromInclusiveTopLeftBottomRight(offset0Y, offset0X, height0 - 1, width0 - 1)),
boundingPanoRect1(Rect::fromInclusiveTopLeftBottomRight(offset1Y, offset1X, height1 - 1, width1 - 1)),
useInterToPano(false) {
#ifndef VS_OPENCL
GPU::UniqueBuffer<float2> coord0Mapping;
GPU::UniqueBuffer<uint32_t> weight0;
Rect boundingRect0 =
Rect::fromInclusiveTopLeftBottomRight(offset0Y, offset0X, offset0Y + height0 - 1, offset0X + width0 - 1);
GPU::UniqueBuffer<float2> coord1Mapping;
GPU::UniqueBuffer<uint32_t> weight1;
Rect boundingRect1 =
Rect::fromInclusiveTopLeftBottomRight(offset1Y, offset1X, offset1Y + height1 - 1, offset1X + width1 - 1);
wrapWidth = std::max(boundingRect0.right(), boundingRect1.right()) + 1;
wrapHeight = std::max(boundingRect0.bottom(), boundingRect1.bottom()) + 1;
// Allocated memory for the cropped buffer
if (!coord0Mapping.alloc(boundingRect0.getWidth() * boundingRect0.getHeight(), "Tmp Merger Pair").ok()) return;
if (!weight0.alloc(boundingRect0.getWidth() * boundingRect0.getHeight(), "Tmp Merger Pair").ok()) return;
if (!coord1Mapping.alloc(boundingRect1.getWidth() * boundingRect1.getHeight(), "Tmp Merger Pair").ok()) return;
if (!weight1.alloc(boundingRect1.getWidth() * boundingRect1.getHeight(), "Tmp Merger Pair").ok()) return;
Util::OpticalFlow::generateIdentityFlow(make_int2(width0, height0), coord0Mapping.borrow(), stream);
Util::OpticalFlow::setAlphaToFlowBuffer(make_int2(width0, height0), buffer0, coord0Mapping.borrow(), stream);
Util::ImageProcessingGPU::setConstantBuffer<uint32_t>(make_int2(width0, height0), weight0.borrow(), 1, stream);
Util::OpticalFlow::generateIdentityFlow(input1Size, coord1Mapping.borrow(), stream);
Util::OpticalFlow::setAlphaToFlowBuffer(input1Size, buffer1, coord1Mapping.borrow(), stream);
Util::ImageProcessingGPU::setConstantBuffer<uint32_t>(input1Size, weight1.borrow(), 1, stream);
if (!panoToInputSpaceCoordMapping0.alloc(width0 * height0, "Tmp Merger Pair").ok()) {
return;
}
if (!panoToInputSpaceCoordMapping1.alloc(width1 * height1, "Tmp Merger Pair").ok()) {
return;
}
Util::OpticalFlow::generateIdentityFlow(make_int2(width0, height0), panoToInputSpaceCoordMapping0.borrow(), stream);
Util::OpticalFlow::setAlphaToFlowBuffer(make_int2(width0, height0), buffer0, panoToInputSpaceCoordMapping0.borrow(),
stream);
Util::OpticalFlow::generateIdentityFlow(make_int2(width1, height1), panoToInputSpaceCoordMapping1.borrow(), stream);
Util::OpticalFlow::setAlphaToFlowBuffer(make_int2(width1, height1), buffer1, panoToInputSpaceCoordMapping1.borrow(),
stream);
if (!panoToInterSpaceCoordMapping0.alloc(width0 * height0, "Tmp Merger Pair").ok()) {
return;
}
if (!panoToInterSpaceCoordMapping1.alloc(width1 * height1, "Tmp Merger Pair").ok()) {
return;
}
Util::OpticalFlow::generateIdentityFlow(make_int2(width0, height0), panoToInterSpaceCoordMapping0.borrow(), stream);
Util::OpticalFlow::setAlphaToFlowBuffer(make_int2(width0, height0), buffer0, panoToInterSpaceCoordMapping0.borrow(),
stream);
Util::OpticalFlow::generateIdentityFlow(make_int2(width1, height1), panoToInterSpaceCoordMapping1.borrow(), stream);
Util::OpticalFlow::setAlphaToFlowBuffer(make_int2(width1, height1), buffer1, panoToInputSpaceCoordMapping1.borrow(),
stream);
float downRatio;
buildLaplacianPyramids(PanoDefinition(), downRatio, coord0Mapping, weight0, boundingRect0, coord1Mapping, weight1,
boundingRect1, stream);
#else
(void)buffer0;
(void)buffer1;
#endif
}
MergerPair::MergerPair(const int boundingFirstLevelSize, const int boundingLastLevelSize,
const std::vector<videoreaderid_t>& id0s, const videoreaderid_t id1)
: id0s(id0s),
id1(id1),
extendedRatio(0.25f),
overlappedAreaOnly(true),
boundingFirstLevelSize(boundingFirstLevelSize),
boundingLastLevelSize(boundingLastLevelSize),
boundingPanoRect0(Rect::fromInclusiveTopLeftBottomRight(0, 0, 0, 0)),
boundingPanoRect1(Rect::fromInclusiveTopLeftBottomRight(0, 0, 0, 0)),
useInterToPano(true) {}
Potential<MergerPair> MergerPair::create(
#ifndef VS_OPENCL
const PanoDefinition& panoDef, const StereoRigDefinition* rigDef,
#else
const PanoDefinition&, const StereoRigDefinition*,
#endif
const int boundingFirstLevelSize, const int boundingLastLevelSize, const std::vector<videoreaderid_t>& id0s,
const videoreaderid_t id1,
#ifndef VS_OPENCL
const Rect& inBoundingPanoRect0, const Rect& inBoundingPanoRect1,
#else
const Rect&, const Rect&,
#endif
GPU::Stream stream) {
std::unique_ptr<MergerPair> mergerPair(new MergerPair(boundingFirstLevelSize, boundingLastLevelSize, id0s, id1));
#ifndef VS_OPENCL
FAIL_RETURN(mergerPair->init(panoDef, rigDef, inBoundingPanoRect0, inBoundingPanoRect1, stream));
#endif
return Potential<MergerPair>(mergerPair.release());
}
std::vector<Rect> MergerPair::getBoundingInterRect1s() const { return boundingInterRect1s; }
int MergerPair::getWrapWidth() const { return (int)wrapWidth; }
int MergerPair::getWrapHeight() const { return (int)wrapHeight; }
int2 MergerPair::getInput1Size() const { return input1Size; }
const Rect MergerPair::getBoundingInterRect(const int index, const int level) const {
if (index == 0 && level < (int)boundingInterRect0s.size()) {
return boundingInterRect0s[level];
} else if (index == 1 && level < (int)boundingInterRect1s.size()) {
return boundingInterRect1s[level];
}
return Rect::fromInclusiveTopLeftBottomRight(0, 0, 0, 0);
}
GPU::Buffer<float2> MergerPair::getInterToLookupSpaceCoordMappingBufferLevel(const int index, const int level) const {
if (index == 0) {
if (!useInterToPano) {
if (level < 0 || level > interToInputSpaceCoordMappingLaplacianPyramid0->numLevels()) {
return GPU::Buffer<float2>();
} else {
return interToInputSpaceCoordMappingLaplacianPyramid0->getLevel(level).data();
}
} else {
if (level < 0 || level > interToPanoSpaceCoordMappingLaplacianPyramid0->numLevels()) {
return GPU::Buffer<float2>();
} else {
return interToPanoSpaceCoordMappingLaplacianPyramid0->getLevel(level).data();
}
}
} else if (index == 1) {
if (level < 0 || level > interToInputSpaceCoordMappingLaplacianPyramid1->numLevels()) {
return GPU::Buffer<float2>();
} else {
return interToInputSpaceCoordMappingLaplacianPyramid1->getLevel(level).data();
}
}
return GPU::Buffer<float2>();
}
GPU::Buffer<float2> MergerPair::getPanoToInputSpaceCoordMapping(const int index) const {
if (index == 0) {
return panoToInputSpaceCoordMapping0.borrow();
} else if (index == 1) {
return panoToInputSpaceCoordMapping1.borrow();
}
return GPU::Buffer<float2>();
}
GPU::Buffer<float2> MergerPair::getPanoToInterSpaceCoordMapping(const int index) const {
if (index == 0) {
return panoToInterSpaceCoordMapping0.borrow();
} else if (index == 1) {
return panoToInterSpaceCoordMapping1.borrow();
}
return GPU::Buffer<float2>();
}
bool MergerPair::doesOverlap() const { return boundingInterRect0s.size() > 0 && boundingInterRect1s.size() > 0; }
const LaplacianPyramid<float2>* MergerPair::getInterToInputSpaceCoordMappingLaplacianPyramid(const int index) const {
if (index == 0) {
if (!useInterToPano) {
return interToInputSpaceCoordMappingLaplacianPyramid0.get();
} else {
return interToPanoSpaceCoordMappingLaplacianPyramid0.get();
}
} else if (index == 1) {
return interToInputSpaceCoordMappingLaplacianPyramid1.get();
}
return nullptr;
}
#ifndef VS_OPENCL
Vector3<double> MergerPair::getAverageSphericalCoord(
const PanoDefinition& panoDef, const std::vector<videoreaderid_t>& id0s, const std::vector<videoreaderid_t>& id1s,
const Rect& boundingPanoRect0, const GPU::Buffer<const float2>& panoToInputSpaceCoordMapping0,
const GPU::Buffer<const uint32_t>& maskBuffer0, const Rect& boundingPanoRect1,
const GPU::Buffer<const float2>& panoToInputSpaceCoordMapping1, const GPU::Buffer<const uint32_t>& maskBuffer1) {
const int wrapWidth = (int)panoDef.getWidth();
// Download both buffer to cpu
std::vector<float2> panoToInput0(boundingPanoRect0.getArea());
std::vector<uint32_t> mask0(boundingPanoRect0.getArea());
std::vector<float2> panoToInput1(boundingPanoRect1.getArea());
std::vector<uint32_t> mask1(boundingPanoRect1.getArea());
GPU::memcpyBlocking<float2>(&panoToInput0[0], panoToInputSpaceCoordMapping0);
GPU::memcpyBlocking<float2>(&panoToInput1[0], panoToInputSpaceCoordMapping1);
GPU::memcpyBlocking<uint32_t>(&mask0[0], maskBuffer0);
GPU::memcpyBlocking<uint32_t>(&mask1[0], maskBuffer1);
videoreaderid_t maxId = 0;
for (size_t i = 0; i < id0s.size(); i++) {
if (id0s[i] > maxId) {
maxId = id0s[i];
}
}
for (size_t i = 0; i < id1s.size(); i++) {
if (id1s[i] > maxId) {
maxId = id1s[i];
}
}
maxId++;
std::vector<std::unique_ptr<TransformStack::GeoTransform>> geoTransforms;
for (int i = 0; i < maxId; i++) {
geoTransforms.push_back(std::unique_ptr<TransformStack::GeoTransform>(nullptr));
}
std::vector<int> inWidth_div2, inHeight_div2;
inWidth_div2.assign(maxId, 0);
inHeight_div2.assign(maxId, 0);
for (size_t i = 0; i < id0s.size(); i++) {
if (geoTransforms[id0s[i]].get() == nullptr) {
geoTransforms[id0s[i]].reset(TransformStack::GeoTransform::create(panoDef, panoDef.getInput(id0s[i])));
inWidth_div2[id0s[i]] = (int)panoDef.getInput(id0s[i]).getWidth() / 2;
inHeight_div2[id0s[i]] = (int)panoDef.getInput(id0s[i]).getHeight() / 2;
}
}
for (size_t i = 0; i < id1s.size(); i++) {
if (geoTransforms[id1s[i]].get() == nullptr) {
geoTransforms[id1s[i]].reset(TransformStack::GeoTransform::create(panoDef, panoDef.getInput(id1s[i])));
inWidth_div2[id1s[i]] = (int)panoDef.getInput(id1s[i]).getWidth() / 2;
inHeight_div2[id1s[i]] = (int)panoDef.getInput(id1s[i]).getHeight() / 2;
}
}
const int width0 = (int)boundingPanoRect0.getWidth();
const int height0 = (int)boundingPanoRect0.getHeight();
const int width1 = (int)boundingPanoRect1.getWidth();
const int height1 = (int)boundingPanoRect1.getHeight();
float3 avgCoord = make_float3(0, 0, 0);
int sampleCount = 0;
for (int x0 = 0; x0 < width0; x0++)
for (int y0 = 0; y0 < height0; y0++) {
const int index0 = (y0 * width0 + x0);
const int x1 = (int)((x0 + boundingPanoRect0.left() - boundingPanoRect1.left()) % wrapWidth);
const int y1 = (int)(y0 + boundingPanoRect0.top() - boundingPanoRect1.top());
if (mask0[index0] > 0 && x1 >= 0 && y1 >= 0 && x1 < width1 && y1 < height1) {
const int index1 = y1 * width1 + x1;
if (mask1[index1] > 0) {
// Only consider the overlapping area into the cost function
// This will ensure after transforming to intermediate space,
// the overlapping areas will be in the middle of the output projection
const videoreaderid_t id0 = (int)log2f((float)mask0[index0]);
const videoreaderid_t id1 = (int)log2f((float)mask1[index1]);
const Core::CenterCoords2 uv0(panoToInput0[index0].x - inWidth_div2[id0],
panoToInput0[index0].y - inHeight_div2[id0]);
const Core::CenterCoords2 uv1(panoToInput1[index1].x - inWidth_div2[id1],
panoToInput1[index1].y - inHeight_div2[id1]);
avgCoord +=
geoTransforms[id0]->mapInputToScaledCameraSphereInRigBase(panoDef.getInput(id0), uv0, 0).toFloat3();
avgCoord +=
geoTransforms[id1]->mapInputToScaledCameraSphereInRigBase(panoDef.getInput(id1), uv1, 0).toFloat3();
sampleCount += 2;
}
}
}
if (sampleCount > 0) {
avgCoord /= (float)sampleCount;
}
return Vector3<double>(avgCoord.x, avgCoord.y, avgCoord.z);
}
Status MergerPair::init(const PanoDefinition& panoDef, const StereoRigDefinition* rigDef,
const Rect& inBoundingPanoRect0, const Rect& inBoundingPanoRect1, GPU::Stream stream) {
wrapWidth = panoDef.getWidth();
wrapHeight = panoDef.getHeight();
// bool usePassedPanoRect0 = !inBoundingPanoRect0.empty();
boundingPanoRect0 = inBoundingPanoRect0;
bool usePassedPanoRect1 = !inBoundingPanoRect1.empty();
boundingPanoRect1 = inBoundingPanoRect1;
// Find mapping from pano to input space
GPU::UniqueBuffer<uint32_t> panoToInputSpaceMask0;
GPU::UniqueBuffer<uint32_t> panoToInputSpaceMask1;
FAIL_RETURN(findMappingToInputSpace(panoDef, rigDef, id0s, Vector3<double>(0, 0, 1), Vector3<double>(0, 0, 1),
panoToInputSpaceCoordMapping0, panoToInputSpaceMask0, boundingPanoRect0, stream,
false));
FAIL_RETURN(findMappingToInputSpace(panoDef, rigDef, std::vector<videoreaderid_t>{id1}, Vector3<double>(0, 0, 1),
Vector3<double>(0, 0, 1), panoToInputSpaceCoordMapping1, panoToInputSpaceMask1,
boundingPanoRect1, stream, usePassedPanoRect1));
Rect boundingPanoTightIRect;
FAIL_RETURN(Util::ImageProcessingGPU::computeTightOverlappingRect(
EQUIRECTANGULAR, getWrapWidth(), boundingPanoRect0, panoToInputSpaceMask0.borrow_const(), boundingPanoRect1,
panoToInputSpaceMask1.borrow_const(), boundingPanoTightIRect, stream));
// Check if the two rectangles are overlapping, if not, nothing need to be done
if (boundingPanoTightIRect.empty()) {
return Status::OK();
}
GPU::UniqueBuffer<float2> interToInputCoordMapping0;
GPU::UniqueBuffer<uint32_t> interToInputMask0;
Rect interBoundingRect0 = Rect::fromInclusiveTopLeftBottomRight(0, 0, 0, 0);
GPU::UniqueBuffer<float2> interToInputCoordMapping1;
GPU::UniqueBuffer<uint32_t> interToInputMask1;
Rect interBoundingRect1 = Rect::fromInclusiveTopLeftBottomRight(0, 0, 0, 0);
Vector3<double> avgCoord = getAverageSphericalCoord(
panoDef, id0s, std::vector<videoreaderid_t>{id1}, boundingPanoRect0, panoToInputSpaceCoordMapping0.borrow_const(),
panoToInputSpaceMask0.borrow_const(), boundingPanoRect1, panoToInputSpaceCoordMapping1.borrow_const(),
panoToInputSpaceMask1.borrow_const());
Vector3<double> newCoord = Vector3<double>(-4, -1, 4);
if (panoDef.getProjection() == PanoProjection::Stereographic) {
newCoord = Vector3<double>(0, 0, 1);
}
FAIL_RETURN(findMappingToInputSpace(panoDef, rigDef, id0s, avgCoord, newCoord, interToInputCoordMapping0,
interToInputMask0, interBoundingRect0, stream));
FAIL_RETURN(findMappingToInputSpace(panoDef, rigDef, std::vector<videoreaderid_t>{id1}, avgCoord, newCoord,
interToInputCoordMapping1, interToInputMask1, interBoundingRect1, stream));
input1Size = make_int2((int)panoDef.getInput(id1).getWidth(), (int)panoDef.getInput(id1).getHeight());
float downRatio = 1;
FAIL_RETURN(buildLaplacianPyramids(panoDef, downRatio, interToInputCoordMapping0, interToInputMask0,
interBoundingRect0, interToInputCoordMapping1, interToInputMask1,
interBoundingRect1, stream));
if (doesOverlap()) {
FAIL_RETURN(findMappingFromPanoToInterSpace(
panoDef, downRatio, id0s, avgCoord, newCoord, panoToInputSpaceCoordMapping0.borrow_const(),
panoToInputSpaceMask0.borrow_const(), boundingPanoRect0, panoToInterSpaceCoordMapping0, stream));
FAIL_RETURN(findMappingFromPanoToInterSpace(panoDef, downRatio, std::vector<videoreaderid_t>{id1}, avgCoord,
newCoord, panoToInputSpaceCoordMapping1.borrow_const(),
panoToInputSpaceMask1.borrow_const(), boundingPanoRect1,
panoToInterSpaceCoordMapping1, stream));
}
#ifdef MERGER_PAIR_DEBUG
const int input0Width = (int)panoDef.getInput(id0s[0]).getWidth();
const int input0Height = (int)panoDef.getInput(id0s[0]).getHeight();
GPU::UniqueBuffer<float2> inputFlowBuffer;
GPU::UniqueBuffer<uint32_t> inputMaskBuffer;
GPU::UniqueBuffer<uint32_t> panoToInputWeight;
FAIL_RETURN(inputFlowBuffer.alloc(input0Width * input0Height, "Merger Pair"));
FAIL_RETURN(inputMaskBuffer.alloc(input0Width * input0Height, "Merger Pair"));
FAIL_RETURN(panoToInputCoordMapping0.alloc(panoDef.getWidth() * panoDef.getHeight(), "Merger Pair"));
FAIL_RETURN(panoToInputWeight.alloc(panoDef.getWidth() * panoDef.getHeight(), "Merger Pair"));
FAIL_RETURN(
Util::OpticalFlow::generateIdentityFlow(make_int2(input0Width, input0Height), inputFlowBuffer.borrow(), stream));
FAIL_RETURN(Util::ImageProcessingGPU::setConstantBuffer<uint32_t>(make_int2(input0Width, input0Height),
inputMaskBuffer.borrow(), 1 << id0s[0], stream));
FAIL_RETURN(inputToPanoCoordMapping0.alloc(input0Width * input0Height, "Merger Pair"));
std::unique_ptr<VideoStitch::Core::SpaceTransform> inputToPanoTransform(VideoStitch::Core::SpaceTransform::create(
panoDef.getInput(id0s[0]), Vector3<double>(0, 0, 1), Vector3<double>(0, 0, 1)));
FAIL_RETURN(inputToPanoTransform->mapCoordInputToOutput(0, inputToPanoCoordMapping0.borrow(), input0Width,
input0Height, inputFlowBuffer.borrow(),
inputMaskBuffer.borrow(), panoDef, id0s[0], stream));
FAIL_RETURN(inputToPanoTransform->mapCoordOutputToInput(0, 0, 0, (int)panoDef.getWidth(), (int)panoDef.getHeight(),
panoToInputCoordMapping0.borrow(), panoToInputWeight.borrow(),
panoDef, id0s[0], stream));
#endif
return Status::OK();
}
Status MergerPair::packCoordBuffer(const int wrapWidth, const Core::Rect& inputRect,
const GPU::Buffer<const float2>& inputBuffer,
const GPU::Buffer<const uint32_t>& inputWeight, const Core::Rect& outputRect,
GPU::Buffer<float2> outputBuffer, GPU::Buffer<uint32_t> outputWeight,
GPU::Stream gpuStream) {
FAIL_RETURN(
Util::ImageProcessingGPU::packBuffer<float2>(wrapWidth, make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE),
inputRect, inputBuffer, outputRect, outputBuffer, gpuStream));
return Util::ImageProcessingGPU::packBuffer<uint32_t>(wrapWidth, 0, inputRect, inputWeight, outputRect, outputWeight,
gpuStream);
}
Status MergerPair::calculateLaplacianPyramidsInfo(float& downRatio, GPU::UniqueBuffer<float2>& coord0Mapping,
GPU::UniqueBuffer<uint32_t>& weight0, Rect& boundingRect0,
GPU::UniqueBuffer<float2>& coord1Mapping,
GPU::UniqueBuffer<uint32_t>& weight1, Rect& boundingRect1,
GPU::Stream stream) {
// Find the tight overlapping area of the two rects
Rect iRect;
FAIL_RETURN(Util::ImageProcessingGPU::computeTightOverlappingRect(EQUIRECTANGULAR, getWrapWidth(), boundingRect0,
weight0.borrow_const(), boundingRect1,
weight1.borrow_const(), iRect, stream));
if (iRect.left() >= iRect.right() || iRect.top() >= iRect.bottom()) {
// Image pair has no overlapped area, return as OK() but need to treat it differently later
boundingRect0 = Rect{};
boundingRect1 = Rect{};
boundingInterRect0s.clear();
boundingInterRect1s.clear();
return Status::OK();
}
// If the 2 are not intersecting then
if (overlappedAreaOnly) {
// Extend Rect1 a bit to make sure the sure go to wider area
const int extendedSize = (int)(extendedRatio * iRect.getWidth());
// Shift the overlapped area so that the center would stay in the middle
Rect shiftedRect0 = iRect;
iRect.setBottom(iRect.bottom() + extendedSize);
iRect.setTop(std::max(int(iRect.top()) - extendedSize, 0));
iRect.setLeft(std::max(int(iRect.left()) - extendedSize, 0));
iRect.setRight(std::min(int(iRect.right()) + extendedSize, getWrapWidth() - 1));
Rect shiftedRect1 = iRect;
GPU::UniqueBuffer<float2> coord0OverlappedMapping;
FAIL_RETURN(coord0OverlappedMapping.alloc(shiftedRect0.getWidth() * shiftedRect0.getHeight(), "Merger Pair"));
GPU::UniqueBuffer<uint32_t> overlappedWeight0;
FAIL_RETURN(overlappedWeight0.alloc(shiftedRect0.getWidth() * shiftedRect0.getHeight(), "Merger Pair"));
GPU::UniqueBuffer<float2> coord1OverlappedMapping;
FAIL_RETURN(coord1OverlappedMapping.alloc(shiftedRect1.getWidth() * shiftedRect1.getHeight(), "Merger Pair"));
GPU::UniqueBuffer<uint32_t> overlappedWeight1;
FAIL_RETURN(overlappedWeight1.alloc(shiftedRect1.getWidth() * shiftedRect1.getHeight(), "Merger Pair"));
FAIL_RETURN(packCoordBuffer((int)wrapWidth, boundingRect0, coord0Mapping.borrow_const(), weight0.borrow_const(),
shiftedRect0, coord0OverlappedMapping.borrow(), overlappedWeight0.borrow(), stream));
FAIL_RETURN(packCoordBuffer((int)wrapWidth, boundingRect1, coord1Mapping.borrow_const(), weight1.borrow_const(),
shiftedRect1, coord1OverlappedMapping.borrow(), overlappedWeight1.borrow(), stream));
FAIL_RETURN(coord0Mapping.releaseOwnership().release());
FAIL_RETURN(coord0Mapping.alloc(shiftedRect0.getWidth() * shiftedRect0.getHeight(), "Merger Pair"));
FAIL_RETURN(weight0.releaseOwnership().release());
FAIL_RETURN(weight0.alloc(shiftedRect0.getWidth() * shiftedRect0.getHeight(), "Merger Pair"));
FAIL_RETURN(GPU::memcpyBlocking<float2>(coord0Mapping.borrow(), coord0OverlappedMapping.borrow_const(),
shiftedRect0.getWidth() * shiftedRect0.getHeight() * sizeof(float2)));
FAIL_RETURN(GPU::memcpyBlocking<uint32_t>(weight0.borrow(), overlappedWeight0.borrow_const(),
shiftedRect0.getWidth() * shiftedRect0.getHeight() * sizeof(uint32_t)));
FAIL_RETURN(coord1Mapping.releaseOwnership().release());
FAIL_RETURN(coord1Mapping.alloc(shiftedRect1.getWidth() * shiftedRect1.getHeight(), "Merger Pair"));
FAIL_RETURN(weight1.releaseOwnership().release());
FAIL_RETURN(weight1.alloc(shiftedRect1.getWidth() * shiftedRect1.getHeight(), "Merger Pair"));
FAIL_RETURN(GPU::memcpyBlocking<float2>(coord1Mapping.borrow(), coord1OverlappedMapping.borrow_const(),
shiftedRect1.getWidth() * shiftedRect1.getHeight() * sizeof(float2)));
FAIL_RETURN(GPU::memcpyBlocking<uint32_t>(weight1.borrow(), overlappedWeight1.borrow_const(),
shiftedRect1.getWidth() * shiftedRect1.getHeight() * sizeof(uint32_t)));
// Re-calculate boundingRect0 and boundingRect1
boundingRect0 = shiftedRect0;
boundingRect1 = shiftedRect1;
}
// Resize image so that the first level is smaller than a boundingFirstLevelSize
downRatio = 1;
if (boundingFirstLevelSize > 0) {
int width0 = (int)boundingRect0.getWidth();
int height0 = (int)boundingRect0.getHeight();
float l0 = (float)boundingRect0.left();
float t0 = (float)boundingRect0.top();
int width1 = (int)boundingRect1.getWidth();
int height1 = (int)boundingRect1.getHeight();
float l1 = (float)boundingRect1.left();
float t1 = (float)boundingRect1.top();
assert(boundingFirstLevelSize >= boundingLastLevelSize);
int levelCount = 0;
while (width0 > boundingFirstLevelSize || height0 > boundingFirstLevelSize) {
const int dstWidth0 = (width0 + 1) / 2;
const int dstHeight0 = (height0 + 1) / 2;
const int dstWidth1 = (width1 + 1) / 2;
const int dstHeight1 = (height1 + 1) / 2;
downRatio *= float(width0) / dstWidth0;
width0 = dstWidth0;
height0 = dstHeight0;
width1 = dstWidth1;
height1 = dstHeight1;
l0 = (l0 + 1) / 2;
t0 = (t0 + 1) / 2;
l1 = (l1 + 1) / 2;
t1 = (t1 + 1) / 2;
levelCount++;
}
FAIL_RETURN(Util::ImageProcessingGPU::downSampleCoordImage(
(int)boundingRect0.getWidth(), (int)boundingRect0.getHeight(), levelCount, coord0Mapping, weight0, stream));
FAIL_RETURN(Util::ImageProcessingGPU::downSampleCoordImage(
(int)boundingRect1.getWidth(), (int)boundingRect1.getHeight(), levelCount, coord1Mapping, weight1, stream));
boundingRect0 = Rect::fromInclusiveTopLeftBottomRight((int64_t)t0, (int64_t)l0, (int64_t)(t0 + height0 - 1),
(int64_t)(l0 + width0 - 1));
boundingRect1 = Rect::fromInclusiveTopLeftBottomRight((int64_t)t1, (int64_t)l1, (int64_t)(t1 + height1 - 1),
(int64_t)(l1 + width1 - 1));
}
// Calculate level so the final level is bounded by a the boundingLastLevelSize
if (boundingLastLevelSize > 0) {
int width0 = (int)boundingRect0.getWidth();
int height0 = (int)boundingRect0.getHeight();
float l0 = (float)boundingRect0.left();
float t0 = (float)boundingRect0.top();
int width1 = (int)boundingRect1.getWidth();
int height1 = (int)boundingRect1.getHeight();
float l1 = (float)boundingRect1.left();
float t1 = (float)boundingRect1.top();
boundingInterRect0s.push_back(boundingRect0);
boundingInterRect1s.push_back(boundingRect1);
while (width0 > boundingLastLevelSize && height0 > boundingLastLevelSize) {
const int dstWidth0 = (width0 + 1) / 2;
const int dstHeight0 = (height0 + 1) / 2;
const int dstWidth1 = (width1 + 1) / 2;
const int dstHeight1 = (height1 + 1) / 2;
width0 = dstWidth0;
height0 = dstHeight0;
width1 = dstWidth1;
height1 = dstHeight1;
l0 = (l0 + 1) / 2;
t0 = (t0 + 1) / 2;
l1 = (l1 + 1) / 2;
t1 = (t1 + 1) / 2;
boundingInterRect0s.push_back(Rect::fromInclusiveTopLeftBottomRight(
(int64_t)t0, (int64_t)l0, (int64_t)(t0 + dstHeight0 - 1), (int64_t)(l0 + dstWidth0 - 1)));
boundingInterRect1s.push_back(Rect::fromInclusiveTopLeftBottomRight(
(int64_t)t1, (int64_t)l1, (int64_t)(t1 + dstHeight1 - 1), (int64_t)(l1 + dstWidth1 - 1)));
}
}
FAIL_RETURN(stream.synchronize());
return Status::OK();
}
Status MergerPair::findMappingFromInterToPanoSpace(const PanoDefinition& panoDef,
const std::vector<videoreaderid_t>& ids,
const GPU::Buffer<const float2>& interToInputSpaceCoordMapping,
const GPU::Buffer<const uint32_t>& interToInputSpaceMask,
const Rect& boundingInterRect,
GPU::UniqueBuffer<float2>& interToPanoSpaceCoordMapping,
GPU::Stream stream) {
FAIL_RETURN(interToPanoSpaceCoordMapping.alloc(boundingInterRect.getArea(), "Merger Pair"));
FAIL_RETURN(Util::ImageProcessingGPU::setConstantBuffer<float2>(
make_int2((int)boundingInterRect.getWidth(), (int)boundingInterRect.getHeight()),
interToPanoSpaceCoordMapping.borrow(), make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE), stream));
for (size_t i = 0; i < ids.size(); i++) {
const videoreaderid_t id = ids[i];
// Find mapping from pano to intermediate space
std::unique_ptr<VideoStitch::Core::SpaceTransform> inputToPanoTransform(VideoStitch::Core::SpaceTransform::create(
panoDef.getInput(id), Vector3<double>(0, 0, 1), Vector3<double>(0, 0, 1)));
FAIL_RETURN(inputToPanoTransform->mapCoordInputToOutput(
0, interToPanoSpaceCoordMapping.borrow(), (int)boundingInterRect.getWidth(), (int)boundingInterRect.getHeight(),
interToInputSpaceCoordMapping, interToInputSpaceMask, panoDef, id, stream));
}
return Status::OK();
}
Status MergerPair::findMappingFromPanoToInterSpace(const PanoDefinition& panoDef, const float downRatio,
const std::vector<videoreaderid_t>& ids,
const Vector3<double>& oldCoord, const Vector3<double>& newCoord,
const GPU::Buffer<const float2>& panoToInputSpaceCoordMapping,
const GPU::Buffer<const uint32_t>& panoToInputSpaceMask,
const Rect& boundingPanoRect,
GPU::UniqueBuffer<float2>& panoToInterSpaceCoordMapping,
GPU::Stream stream) {
FAIL_RETURN(
panoToInterSpaceCoordMapping.alloc(boundingPanoRect.getWidth() * boundingPanoRect.getHeight(), "Merger Pair"));
for (size_t i = 0; i < ids.size(); i++) {
const videoreaderid_t id = ids[i];
// Find mapping from pano to intermediate space
std::unique_ptr<VideoStitch::Core::SpaceTransform> inputToInterTransform(
VideoStitch::Core::SpaceTransform::create(panoDef.getInput(id), oldCoord, newCoord));
FAIL_RETURN(inputToInterTransform->mapCoordInputToOutput(
0, panoToInterSpaceCoordMapping.borrow(), (int)boundingPanoRect.getWidth(), (int)boundingPanoRect.getHeight(),
panoToInputSpaceCoordMapping, panoToInputSpaceMask, panoDef, id, stream));
FAIL_RETURN(Util::OpticalFlow::mulFlowOperator(panoToInterSpaceCoordMapping.borrow(),
make_float2(1.0f / downRatio, 1.0f / downRatio),
boundingPanoRect.getArea(), stream));
}
FAIL_RETURN(stream.synchronize());
return Status::OK();
}
std::string MergerPair::getImIdString(const int index) const {
std::stringstream ss;
if (index == 0) {
ss.str("");
for (size_t i = 0; i < id0s.size(); i++) {
ss << id0s[i];
if (i != id0s.size() - 1) {
ss << "-";
}
}
} else if (index == 1) {
ss.str("");
ss << id1;
}
return ss.str();
}
const Rect MergerPair::getBoundingPanoRect(const int index) const {
if (index == 0) {
return boundingPanoRect0;
} else if (index == 1) {
return boundingPanoRect1;
}
return Rect::fromInclusiveTopLeftBottomRight(0, 0, 0, 0);
}
Status MergerPair::buildLaplacianPyramids(const PanoDefinition& panoDef, float& downRatio,
GPU::UniqueBuffer<float2>& interToInputSpaceCoordMapping0,
GPU::UniqueBuffer<uint32_t>& interToInputSpaceMask0, Rect& boundingRect0,
GPU::UniqueBuffer<float2>& interToInputSpaceCoordMapping1,
GPU::UniqueBuffer<uint32_t>& interToInputSpaceMask1, Rect& boundingRect1,
GPU::Stream stream) {
#ifdef MERGER_PAIR_MAPPING_DEBUG
std::stringstream ss;
ss.str("");
ss << "interToInputMaskInit-";
ss << getImIdString(0) << " - " << getImIdString(1) << "image index" << 0 << ".png";
FAIL_RETURN(Debug::dumpRGBAIndexDeviceBuffer<uint32_t>(ss.str().c_str(), interToInputSpaceMask0.borrow_const(),
boundingRect0.getWidth(), boundingRect0.getHeight()));
#endif
// Compute all levels' image size
FAIL_RETURN(calculateLaplacianPyramidsInfo(downRatio, interToInputSpaceCoordMapping0, interToInputSpaceMask0,
boundingRect0, interToInputSpaceCoordMapping1, interToInputSpaceMask1,
boundingRect1, stream));
#ifdef MERGER_PAIR_MAPPING_DEBUG
ss.str("");
ss << "interToInputMask-";
ss << getImIdString(0) << " - " << getImIdString(1) << "image index" << 0 << ".png";
FAIL_RETURN(Debug::dumpRGBAIndexDeviceBuffer<uint32_t>(ss.str().c_str(), interToInputSpaceMask0.borrow_const(),
boundingRect0.getWidth(), boundingRect0.getHeight()));
#endif
// Do not need to build the pyramid if the images does not overlapping
if (!doesOverlap()) {
return Status::OK();
}
if (!useInterToPano) {
// Create the pyramid
auto potLaplacianPyramid0 = LaplacianPyramid<float2>::create(
std::string("flow") + "-" + getImIdString(0) + " - " + getImIdString(1), boundingInterRect0s[0].getWidth(),
boundingInterRect0s[0].getHeight(), (int)(boundingInterRect0s.size() - 1),
LaplacianPyramid<float2>::InternalFirstLevel, LaplacianPyramid<float2>::SingleShot, 2, 1, false);
FAIL_RETURN(potLaplacianPyramid0.status());
interToInputSpaceCoordMappingLaplacianPyramid0.reset(potLaplacianPyramid0.release());
auto potWeightLaplacianPyramid0 = LaplacianPyramid<uint32_t>::create(
std::string("weight") + "-" + getImIdString(0) + " - " + getImIdString(1), boundingInterRect0s[0].getWidth(),
boundingInterRect0s[0].getHeight(), (int)(boundingInterRect0s.size() - 1),
LaplacianPyramid<uint32_t>::InternalFirstLevel, LaplacianPyramid<uint32_t>::SingleShot, 2, 1, false);
FAIL_RETURN(potWeightLaplacianPyramid0.status());
interToInputSpaceWeightLaplacianPyramid0.reset(potWeightLaplacianPyramid0.release());
} else {
auto potLaplacianPyramid3 = LaplacianPyramid<float2>::create(
std::string("flow") + "-" + getImIdString(0) + " - " + getImIdString(1), boundingInterRect0s[0].getWidth(),
boundingInterRect0s[0].getHeight(), (int)(boundingInterRect0s.size() - 1),
LaplacianPyramid<float2>::InternalFirstLevel, LaplacianPyramid<float2>::SingleShot, 2, 1, false);
FAIL_RETURN(potLaplacianPyramid3.status());
interToPanoSpaceCoordMappingLaplacianPyramid0.reset(potLaplacianPyramid3.release());
auto potWeightLaplacianPyramid3 = LaplacianPyramid<uint32_t>::create(
std::string("weight") + "-" + getImIdString(0) + " - " + getImIdString(1), boundingInterRect0s[0].getWidth(),
boundingInterRect0s[0].getHeight(), (int)(boundingInterRect0s.size() - 1),
LaplacianPyramid<uint32_t>::InternalFirstLevel, LaplacianPyramid<uint32_t>::SingleShot, 2, 1, false);
FAIL_RETURN(potWeightLaplacianPyramid3.status());
interToPanoSpaceWeightLaplacianPyramid0.reset(potWeightLaplacianPyramid3.release());
}
auto potLaplacianPyramid1 = LaplacianPyramid<float2>::create(
std::string("flow") + "-" + getImIdString(0) + " - " + getImIdString(1), boundingInterRect1s[0].getWidth(),
boundingInterRect1s[0].getHeight(), (int)(boundingInterRect1s.size() - 1),
LaplacianPyramid<float2>::InternalFirstLevel, LaplacianPyramid<float2>::SingleShot, 2, 1, false);
FAIL_RETURN(potLaplacianPyramid1.status());
interToInputSpaceCoordMappingLaplacianPyramid1.reset(potLaplacianPyramid1.release());
auto potWeightLaplacianPyramid1 = LaplacianPyramid<uint32_t>::create(
std::string("weight") + "-" + getImIdString(0) + " - " + getImIdString(1), boundingInterRect1s[0].getWidth(),
boundingInterRect1s[0].getHeight(), (int)(boundingInterRect1s.size() - 1),
LaplacianPyramid<uint32_t>::InternalFirstLevel, LaplacianPyramid<uint32_t>::SingleShot, 2, 1, false);
FAIL_RETURN(potWeightLaplacianPyramid1.status());
interToInputSpaceWeightLaplacianPyramid1.reset(potWeightLaplacianPyramid1.release());
GPU::UniqueBuffer<float2> interToPanoSpaceCoordMapping0;
GPU::UniqueBuffer<uint32_t> mask0;
FAIL_RETURN(mask0.alloc(boundingInterRect0s[0].getArea(), "Tmp Merger Pair"));
FAIL_RETURN(Util::ImageProcessingGPU::binarizeMask(
make_int2((int)boundingInterRect0s[0].getWidth(), (int)boundingInterRect0s[0].getHeight()),
interToInputSpaceMask0.borrow_const(), mask0.borrow(), stream));
GPU::UniqueBuffer<uint32_t> mask1;
FAIL_RETURN(mask1.alloc(boundingInterRect1s[0].getArea(), "Tmp Merger Pair"));
FAIL_RETURN(Util::ImageProcessingGPU::binarizeMask(
make_int2((int)boundingInterRect1s[0].getWidth(), (int)boundingInterRect1s[0].getHeight()),
interToInputSpaceMask1.borrow_const(), mask1.borrow(), stream));
if (useInterToPano) {
FAIL_RETURN(findMappingFromInterToPanoSpace(panoDef, id0s, interToInputSpaceCoordMapping0.borrow_const(),
interToInputSpaceMask0.borrow_const(), boundingInterRect0s[0],
interToPanoSpaceCoordMapping0, stream));
}
stream.synchronize();
#ifdef MERGER_PAIR_MAPPING_DEBUG
GPU::UniqueBuffer<uint32_t> flowOutput;
FAIL_RETURN(
flowOutput.alloc(boundingInterRect0s[0].getWidth() * boundingInterRect0s[0].getHeight(), "Tmp Merger Pair"));
if (useInterToPano) {
FAIL_RETURN(Util::OpticalFlow::convertFlowToRGBA(
make_int2(boundingInterRect0s[0].getWidth(), boundingInterRect0s[0].getHeight()),
interToPanoSpaceCoordMapping0.borrow_const(), make_int2(panoDef.getWidth(), panoDef.getHeight()),
flowOutput.borrow(), stream));
ss.str("");
ss << "interToPanoFlow-";
ss << getImIdString(0) << " - " << getImIdString(1) << "image index" << 0 << ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), flowOutput.borrow_const(), boundingInterRect0s[0].getWidth(),
boundingInterRect0s[0].getHeight());
}
FAIL_RETURN(Util::OpticalFlow::convertFlowToRGBA(
make_int2(boundingInterRect0s[0].getWidth(), boundingInterRect0s[0].getHeight()),
interToInputSpaceCoordMapping0.borrow_const(), make_int2(panoDef.getWidth(), panoDef.getHeight()),
flowOutput.borrow(), stream));
ss.str("");
ss << "interToInputFlow-";
ss << getImIdString(0) << " - " << getImIdString(1) << "image index" << 0 << ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), flowOutput.borrow_const(), boundingInterRect0s[0].getWidth(),
boundingInterRect0s[0].getHeight());
#endif
// Allocate and construct pyramid 's memory
if (!useInterToPano) {
FAIL_RETURN(GPU::memcpyBlocking(interToInputSpaceCoordMappingLaplacianPyramid0->getLevel(0).data(),
interToInputSpaceCoordMapping0.borrow(),
boundingRect0.getWidth() * boundingRect0.getHeight() * sizeof(float2)));
FAIL_RETURN(GPU::memcpyBlocking(interToInputSpaceWeightLaplacianPyramid0->getLevel(0).data(), mask0.borrow_const(),
boundingRect0.getWidth() * boundingRect0.getHeight() * sizeof(uint32_t)));
} else {
FAIL_RETURN(GPU::memcpyBlocking(interToPanoSpaceCoordMappingLaplacianPyramid0->getLevel(0).data(),
interToPanoSpaceCoordMapping0.borrow_const(),
boundingRect0.getWidth() * boundingRect0.getHeight() * sizeof(float2)));
FAIL_RETURN(GPU::memcpyBlocking(interToPanoSpaceWeightLaplacianPyramid0->getLevel(0).data(), mask0.borrow_const(),
boundingRect0.getWidth() * boundingRect0.getHeight() * sizeof(uint32_t)));
}
FAIL_RETURN(GPU::memcpyBlocking(interToInputSpaceCoordMappingLaplacianPyramid1->getLevel(0).data(),
interToInputSpaceCoordMapping1.borrow(),
boundingRect1.getWidth() * boundingRect1.getHeight() * sizeof(float2)));
FAIL_RETURN(GPU::memcpyBlocking(interToInputSpaceWeightLaplacianPyramid1->getLevel(0).data(), mask1.borrow_const(),
boundingRect1.getWidth() * boundingRect1.getHeight() * sizeof(uint32_t)));
for (size_t i = 0; i < boundingInterRect0s.size() - 1; i++) {
if (!useInterToPano) {
FAIL_RETURN(VideoStitch::Image::subsample22Mask<float2>(
interToInputSpaceCoordMappingLaplacianPyramid0->getLevel((unsigned int)i + 1).data(),
interToInputSpaceWeightLaplacianPyramid0->getLevel((unsigned int)i + 1).data(),
interToInputSpaceCoordMappingLaplacianPyramid0->getLevel((unsigned int)i).data(),
interToInputSpaceWeightLaplacianPyramid0->getLevel((unsigned int)i).data(),
(size_t)boundingInterRect0s[i].getWidth(), (size_t)boundingInterRect0s[i].getHeight(),
(unsigned int)(ImageMerger::CudaBlockSize), stream));
} else {
FAIL_RETURN(VideoStitch::Image::subsample22Mask<float2>(
interToPanoSpaceCoordMappingLaplacianPyramid0->getLevel((unsigned int)i + 1).data(),
interToPanoSpaceWeightLaplacianPyramid0->getLevel((unsigned int)i + 1).data(),
interToPanoSpaceCoordMappingLaplacianPyramid0->getLevel((unsigned int)i).data(),
interToPanoSpaceWeightLaplacianPyramid0->getLevel((unsigned int)i).data(),
(size_t)boundingInterRect0s[i].getWidth(), (size_t)boundingInterRect0s[i].getHeight(),
(unsigned int)(ImageMerger::CudaBlockSize), stream));
}
FAIL_RETURN(VideoStitch::Image::subsample22Mask<float2>(
interToInputSpaceCoordMappingLaplacianPyramid1->getLevel((unsigned int)i + 1).data(),
interToInputSpaceWeightLaplacianPyramid1->getLevel((unsigned int)i + 1).data(),
interToInputSpaceCoordMappingLaplacianPyramid1->getLevel((unsigned int)i).data(),
interToInputSpaceWeightLaplacianPyramid1->getLevel((unsigned int)i).data(),
(size_t)boundingInterRect1s[i].getWidth(), (size_t)boundingInterRect1s[i].getHeight(),
(unsigned int)(ImageMerger::CudaBlockSize), stream));
}
return stream.synchronize();
}
Vector3<double> MergerPair::getAverageSphericalCoord(const PanoDefinition& panoDef, const videoreaderid_t id0,
const videoreaderid_t id1) {
Vector3<double> avgCoord0 = Core::SpaceTransform::getAverageSphericalCoord(panoDef, panoDef.getInput(id0));
Vector3<double> avgCoord1 = Core::SpaceTransform::getAverageSphericalCoord(panoDef, panoDef.getInput(id1));
Vector3<double> avgCoord = (avgCoord0 + avgCoord1) / 2;
return avgCoord;
}
bool MergerPair::UseInterToPano() const { return useInterToPano; }
Status MergerPair::findMappingToInputSpace(const PanoDefinition& panoDef, const StereoRigDefinition* rigDef,
const std::vector<videoreaderid_t>& ids, const Vector3<double>& oldCoord,
const Vector3<double>& newCoord, GPU::UniqueBuffer<float2>& toInputMapping,
GPU::UniqueBuffer<uint32_t>& weight, Rect& boundingRect, GPU::Stream stream,
const bool usePassedBoundingRect) {
// Now find the mapping mask
if (!usePassedBoundingRect) {
const int erectWidth = (int)panoDef.getWidth();
const int erectHeight = (int)panoDef.getHeight();
// Allocate memory for coordinate mapping process
GPU::UniqueBuffer<uint32_t> maskBuffer;
FAIL_RETURN(maskBuffer.alloc(erectWidth * erectHeight, "Tmp Merger Pair"));
FAIL_RETURN(GPU::memsetToZeroBlocking(maskBuffer.borrow(), erectWidth * erectHeight * sizeof(uint32_t)));
GPU::UniqueBuffer<float2> tmpCoordBuffer;
FAIL_RETURN(tmpCoordBuffer.alloc(erectWidth * erectHeight, "Tmp Merger Pair"));
for (size_t i = 0; i < ids.size(); i++) {
const videoreaderid_t id = ids[i];
std::unique_ptr<VideoStitch::Core::SpaceTransform> toInputTransform(
VideoStitch::Core::SpaceTransform::create(panoDef.getInput(id), oldCoord, newCoord));
// Find the right ERect for mapping buffer coordinate
FAIL_RETURN(toInputTransform->mapCoordOutputToInput(0, 0, 0, erectWidth, erectHeight, tmpCoordBuffer.borrow(),
maskBuffer.borrow(), panoDef, id, stream));
}
#ifdef MERGER_PAIR_DEBUG
static videoreaderid_t id = 0;
std::stringstream ss;
ss.str("");
ss << "bitmask";
for (size_t i = 0; i < ids.size(); i++) {
ss << "-" << ids[i];
}
ss << ".png";
Debug::dumpRGBAIndexDeviceBuffer(ss.str().c_str(), maskBuffer.borrow_const(), panoDef.getWidth(),
panoDef.getHeight());
#endif
// Now find the bounding rect
FAIL_RETURN(Util::ImageProcessingGPU::findBBox(EQUIRECTANGULAR, true, rigDef, erectWidth, erectHeight,
maskBuffer.borrow_const(), boundingRect, stream));
// Make sure that the bounding rect is bounded the pano size
const int oldRight = (int)boundingRect.right();
const int oldBottom = (int)boundingRect.bottom();
boundingRect.growToMultipleSizeOf(ImageMerger::CudaBlockSize, ImageMerger::CudaBlockSize);
if (oldRight < panoDef.getWidth() && boundingRect.right() >= panoDef.getWidth()) {
boundingRect.setRight(oldRight);
}
if (boundingRect.bottom() >= panoDef.getHeight()) {
boundingRect.setBottom(oldBottom);
}
}
// Allocated memory for the cropped buffer
FAIL_RETURN(toInputMapping.alloc(boundingRect.getWidth() * boundingRect.getHeight(), "Tmp Merger Pair"));
FAIL_RETURN(weight.alloc(boundingRect.getWidth() * boundingRect.getHeight(), "Tmp Merger Pair"));
FAIL_RETURN(Util::ImageProcessingGPU::setConstantBuffer<float2>(
make_int2((int)boundingRect.getWidth(), (int)boundingRect.getHeight()), toInputMapping.borrow(),
make_float2(INVALID_FLOW_VALUE, INVALID_FLOW_VALUE), stream));
FAIL_RETURN(Util::ImageProcessingGPU::setConstantBuffer<uint32_t>(
make_int2((int)boundingRect.getWidth(), (int)boundingRect.getHeight()), weight.borrow(), 0, stream));
for (size_t i = 0; i < ids.size(); i++) {
const videoreaderid_t id = ids[i];
std::unique_ptr<VideoStitch::Core::SpaceTransform> toInputTransform(
VideoStitch::Core::SpaceTransform::create(panoDef.getInput(id), oldCoord, newCoord));
// Map values to the cropped buffer
FAIL_RETURN(toInputTransform->mapCoordOutputToInput(0, (int)boundingRect.left(), (int)boundingRect.top(),
(int)boundingRect.getWidth(), (int)boundingRect.getHeight(),
toInputMapping.borrow(), weight.borrow(), panoDef, id, stream));
}
return stream.synchronize();
}
Rect MergerPair::getBoundingPanosIRect() const {
if (!useInterToPano) {
// This is the case where full image overlapping were used in lib/src/tests
return getBoundingPanoRect(0);
}
const Rect rect0 = getBoundingPanoRect(0);
const Rect rect1 = getBoundingPanoRect(1);
Rect iRect;
Rect uRect = Rect::fromInclusiveTopLeftBottomRight(0, 0, 0, 0);
bool isSpecial = false;
if (std::max(rect0.right(), rect1.right()) > getWrapWidth()) {
if (std::min(rect0.left(), rect1.left()) < std::max(rect0.right(), rect1.right()) % getWrapWidth()) {
iRect.setTop(std::max(rect0.top(), rect1.top()));
iRect.setBottom(std::min(rect0.bottom(), rect1.bottom()));
iRect.setLeft(std::min(rect0.left(), rect1.left()));
iRect.setRight(std::min(rect0.right(), rect1.right()));
isSpecial = true;
}
}
if (!isSpecial) {
Rect::getInterAndUnion(rect0, rect1, iRect, uRect, (int)wrapWidth);
}
if (iRect.empty()) {
return iRect;
}
// If the 2 are not intersecting then
const int extendedSize = (int)(extendedRatio * iRect.getWidth());
iRect.setBottom(std::min<int>((int)(iRect.bottom() + extendedSize), (int)wrapHeight - 1));
iRect.setTop(std::max<int>((int)(iRect.top() - extendedSize), 0));
iRect.setLeft(std::max<int>((int)(iRect.left() - extendedSize), 0));
iRect.setRight(std::min<int>((int)(iRect.right() + extendedSize), (int)wrapWidth - 1));
int paddedWidth = ((int)(iRect.getWidth() / VideoStitch::Core::ImageMerger::CudaBlockSize) + 1) *
VideoStitch::Core::ImageMerger::CudaBlockSize;
int paddedHeight = ((int)(iRect.getHeight() / VideoStitch::Core::ImageMerger::CudaBlockSize) + 1) *
VideoStitch::Core::ImageMerger::CudaBlockSize;
iRect.setRight(iRect.left() + paddedWidth - 1);
iRect.setBottom(iRect.top() + paddedHeight - 1);
return iRect;
}
#ifdef MERGER_PAIR_DEBUG
Status MergerPair::debugMergerPair(const int2 panoSize, const GPU::Buffer<const uint32_t> panoBuffer,
const int2 bufferSize0, const GPU::Buffer<const uint32_t> buffer0,
const int2 bufferSize1, const GPU::Buffer<const uint32_t> buffer1,
GPU::Stream gpuStream) const {
GPU::UniqueBuffer<uint32_t> packedBuffer;
FAIL_RETURN(packedBuffer.alloc(panoSize.x * panoSize.y, "Merger Pair Tmp"));
for (int i = 0; i <= std::min(0, getInterToInputSpaceCoordMappingLaplacianPyramid(1)->numLevels()); i++) {
{
const LaplacianPyramid<float2>::LevelSpec<float2>& level0 =
getInterToInputSpaceCoordMappingLaplacianPyramid(0)->getLevel(i);
GPU::UniqueBuffer<uint32_t> image0;
image0.alloc(level0.width() * level0.height(), "Merger Pair Tmp");
FAIL_RETURN(Util::OpticalFlow::coordLookup(level0.width(), level0.height(), level0.data(), bufferSize0.x,
bufferSize0.y, buffer0, image0.borrow(), gpuStream));
FAIL_RETURN(Util::ImageProcessingGPU::packBuffer<uint32_t>(
panoSize.x, 0, getBoundingInterRect(0, i), image0.borrow_const(),
Core::Rect(0, 0, panoSize.y - 1, panoSize.x - 1), packedBuffer.borrow(), gpuStream));
FAIL_RETURN(gpuStream.synchronize());
std::stringstream ss;
ss.str("");
ss << "mergerPair-";
ss << getImIdString(0) << " - " << i << "_level"
<< ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), packedBuffer.borrow(), panoSize.x, panoSize.y);
}
{
const LaplacianPyramid<float2>::LevelSpec<float2>& level1 =
getInterToInputSpaceCoordMappingLaplacianPyramid(1)->getLevel(i);
GPU::UniqueBuffer<uint32_t> image1;
image1.alloc(level1.width() * level1.height(), "Merger Pair Tmp");
FAIL_RETURN(Util::OpticalFlow::coordLookup(level1.width(), level1.height(), level1.data(), bufferSize1.x,
bufferSize1.y, buffer1, image1.borrow(), gpuStream));
FAIL_RETURN(Util::ImageProcessingGPU::packBuffer<uint32_t>(
panoSize.x, 0, getBoundingInterRect(1, i), image1.borrow_const(),
Core::Rect(0, 0, panoSize.y - 1, panoSize.x - 1), packedBuffer.borrow(), gpuStream));
FAIL_RETURN(gpuStream.synchronize());
std::stringstream ss;
ss.str("");
ss << "mergerPair-";
ss << getImIdString(1) << " - " << i << "_level"
<< ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), packedBuffer.borrow(), panoSize.x, panoSize.y);
}
}
// Write remapping from pano to input, these images are used to check whether the space transformations perform
// properly
// @NOTE: turn it off now
const int input0Width = bufferSize0.x;
const int input0Height = bufferSize0.y;
GPU::UniqueBuffer<uint32_t> inputBackwardBuffer;
GPU::UniqueBuffer<uint32_t> panoBackwardBuffer;
FAIL_RETURN(inputBackwardBuffer.alloc(input0Width * input0Height, "Merger Pair"));
FAIL_RETURN(panoBackwardBuffer.alloc(panoSize.x * panoSize.y, "Merger Pair"));
FAIL_RETURN(Util::OpticalFlow::coordLookup(panoSize.x, panoSize.y, panoToInputCoordMapping0.borrow_const(),
bufferSize0.x, bufferSize0.y, buffer0, panoBackwardBuffer.borrow(),
gpuStream));
FAIL_RETURN(Util::OpticalFlow::coordLookup(input0Width, input0Height, inputToPanoCoordMapping0.borrow_const(),
panoSize.x, panoSize.y, panoBackwardBuffer.borrow_const(),
inputBackwardBuffer.borrow(), gpuStream));
std::stringstream ss;
ss.str("");
ss << "inputBackward-";
ss << getImIdString(0) << ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), inputBackwardBuffer.borrow(), input0Width, input0Height);
ss.str("");
ss << "panoBackward-";
ss << getImIdString(0) << ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), panoBackwardBuffer.borrow(), panoSize.x, panoSize.y);
ss.str("");
ss << "panoOriward-";
ss << getImIdString(0) << ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), panoBuffer, panoSize.x, panoSize.y);
return Status::OK();
}
#else
Status MergerPair::debugMergerPair(const int2, const GPU::Buffer<const uint32_t>, const int2,
const GPU::Buffer<const uint32_t>, const int2, const GPU::Buffer<const uint32_t>,
GPU::Stream) const {
return Status::OK();
}
#endif
#endif
} // namespace Core
} // namespace VideoStitch