1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "libvideostitch/emor.hpp"
#include "emor_coefs.hpp"
#include "emor_inv_coefs.hpp"
#include <algorithm>
#include <cassert>
namespace VideoStitch {
namespace Core {
ResponseCurve::ResponseCurve() : responseCurve(new float[totalLutSize()]), monotonyError(-1) {
for (int i = 0; i < totalLutSize(); ++i) {
responseCurve[i] = 0.0f;
}
}
ResponseCurve::~ResponseCurve() { delete[] responseCurve; }
const float* ResponseCurve::getResponseCurve() const { return responseCurve; }
const float* ResponseCurve::getInverseResponseCurve() const { return responseCurve + lutSize(); }
int ResponseCurve::getMonotonyError() const { return monotonyError; }
void ResponseCurve::invert() {
for (int i = 0; i < lutSize(); ++i) {
std::swap(*(responseCurve + i), *(responseCurve + i + lutSize()));
}
}
void ResponseCurve::calculateMonotonyError() {
monotonyError = 0;
int lastVal = 0;
for (int i = 1; i < lutSize() - 1; ++i) {
if (i % 4 == 0) {
int val = (int)(responseCurve[i] * 1024);
if (val <= lastVal) {
monotonyError++;
}
lastVal = std::max(val, lastVal);
}
}
}
void ResponseCurve::makeMonotonous() {
calculateMonotonyError();
float maxVal = responseCurve[lutSize() - 1];
for (int i = 0; i < lutSize() - 1; ++i) {
if (responseCurve[i + 1] > maxVal) {
responseCurve[i + 1] = maxVal;
} else if (responseCurve[i + 1] < responseCurve[i]) {
responseCurve[i + 1] = responseCurve[i];
}
}
}
void ResponseCurve::computeInverseResponse() {
makeMonotonous();
float* inverseResponseCurve = responseCurve + lutSize();
for (int i = 0; i < lutSize() - 1; ++i) {
const float y0 = lutSize() * responseCurve[i];
const float y1 = lutSize() * responseCurve[i + 1];
for (int j = (int)y0; j <= (int)y1 && j < lutSize(); ++j) {
if (y1 == y0) {
inverseResponseCurve[j] = y0;
} else {
const float x = ((float)j - y0) / (y1 - y0);
inverseResponseCurve[j] = ((float)i + x) / lutSize();
}
}
}
}
ValueResponseCurve::ValueResponseCurve(const std::array<uint16_t, 256>& values) {
#if (!_MSC_VER || _MSC_VER >= 1900)
static_assert(4 * std::remove_reference<decltype(values)>::type().size() == lutSize(),
"Expecting to fill curve by interpolating from 256 to 1024 values");
#endif
for (size_t index10 = 0; index10 < lutSize(); index10++) {
const float index8f = (float)index10 / 1023.f * 255.f;
assert(index8f >= 0.f && index8f < (float)values.size());
const int lowerIndex8i = std::max(0, std::min((int)index8f, (int)values.size() - 1));
const int upperIndex8i = std::min(lowerIndex8i + 1, (int)values.size() - 1);
const float x = index8f - (float)lowerIndex8i;
float val = (1.0f - x) * values[lowerIndex8i] + x * values[upperIndex8i];
responseCurve[index10] = val / 1023.f;
}
computeInverseResponse();
}
EmorResponseCurve::EmorResponseCurve(double emor1, double emor2, double emor3, double emor4, double emor5)
: ResponseCurve() {
for (int i = 0; i < lutSize(); ++i) {
responseCurve[i] = f0[i];
responseCurve[i] += (float)emor1 * h1[i];
responseCurve[i] += (float)emor2 * h2[i];
responseCurve[i] += (float)emor3 * h3[i];
responseCurve[i] += (float)emor4 * h4[i];
responseCurve[i] += (float)emor5 * h5[i];
if (responseCurve[i] < 0.0f) {
responseCurve[i] = 0.0f;
} else if (responseCurve[i] > 1.0f) {
responseCurve[i] = 1.0f;
}
}
computeInverseResponse();
}
InvEmorResponseCurve::InvEmorResponseCurve(double emor1, double emor2, double emor3, double emor4, double emor5)
: ResponseCurve() {
for (int i = 0; i < lutSize(); ++i) {
responseCurve[i] = fInv0[i];
responseCurve[i] += (float)emor1 * hInv1[i];
responseCurve[i] += (float)emor2 * hInv2[i];
responseCurve[i] += (float)emor3 * hInv3[i];
responseCurve[i] += (float)emor4 * hInv4[i];
responseCurve[i] += (float)emor5 * hInv5[i];
if (responseCurve[i] < 0.0f) {
responseCurve[i] = 0.0f;
} else if (responseCurve[i] > 1.0f) {
responseCurve[i] = 1.0f;
}
}
computeInverseResponse();
}
} // namespace Core
} // namespace VideoStitch