1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
//
// Audio unit test for the following test cases:
// - wavReader and wavWriter to read and write wave files
// - resampler
// - conversion Audio::Samples to AudioBlock
// - conversion Audio::Block to Audio::Samples
#include "gpu/testing.hpp"
#include "common/audioUtils.hpp"
#include "libvideostitch/ambisonic.hpp"
#include "libvideostitch/audio.hpp"
#include "libvideostitch/audioObject.hpp"
#include "libvideostitch/audioWav.hpp"
#include "audio/envelopeDetector.hpp"
#include "audio/sigGen.hpp"
#include "audio/resampler.hpp"
#include "audio/summer.hpp"
namespace VideoStitch {
namespace Testing {
using namespace Audio;
void cosineTest() {
double freq = 440., rate = 48000., amp = 0.8, duration = 5.5 / freq;
SigGenSine::SigGenSine1Dim sigCos(freq, rate, amp);
// Generate signal
size_t nSamples = static_cast<size_t>(rate * duration);
size_t nchannels = 1;
AudioTrack track(SPEAKER_FRONT_LEFT);
AudioTrack track2(SPEAKER_FRONT_LEFT);
for (size_t s = 0; s < nSamples / 2; s++) {
track.push_back(0);
track2.push_back(0);
}
// Generate 1 sec of 440 Hz cosine
sigCos.step(track);
// generate 1 sec of 880 Hz cosine
sigCos.setFrequency(freq * 2.0);
sigCos.step(track2);
for (size_t s = 0; s < nSamples / 2; s++) {
track.push_back(track2[s]);
}
// compare signal generated to the reference signal
WavReader refFile("data/snd/cos48k_mono.wav");
AudioBlock refbuf(MONO);
refFile.step(refbuf);
size_t nRefChannels = refbuf.size();
size_t nbRefSamples = refbuf[SPEAKER_FRONT_LEFT].size();
ENSURE_EQ(nRefChannels, nchannels, "Unexpected number of channels");
ENSURE_EQ(nbRefSamples, nSamples, "Unexpected number of samples");
double eps = 1. / 32267.;
for (auto &refTrack : refbuf) {
for (size_t j = 0; j < nbRefSamples; j++) {
ENSURE_APPROX_EQ(refTrack[j], track[j], eps);
}
}
}
static const size_t nSamples = 3;
void testSamplesToAudioBlock() {
AudioBlock block;
float *raw[MAX_AUDIO_CHANNELS];
raw[0] = new float[nSamples * sizeof(float)];
raw[1] = new float[nSamples * sizeof(float)];
float left[nSamples] = {-1, 0, 1};
float right[nSamples] = {-0.5, 0, 0.5};
for (size_t i = 0; i < nSamples; i++) {
raw[0][i] = left[i];
raw[1][i] = right[i];
}
Samples samples(SamplingRate::SR_48000, SamplingDepth::FLT_P, ChannelLayout::STEREO, 1234., (uint8_t **)raw,
nSamples);
samples2AudioBlock(block, samples);
double eps = 0.000001;
ENSURE_EQ(block.getLayout(), samples.getChannelLayout());
ENSURE_EQ(block.getTimestamp(), samples.getTimestamp());
for (size_t s = 0; s < nSamples; s++) {
ENSURE_APPROX_EQ(block[SPEAKER_FRONT_LEFT][s], (double)left[s], eps);
ENSURE_APPROX_EQ(block[SPEAKER_FRONT_RIGHT][s], (double)right[s], eps);
}
}
void testAudioBlkToSamples() {
AudioBlock block(STEREO, 1234.);
audioSample_t left[nSamples] = {-1, 0, 1};
audioSample_t right[nSamples] = {-0.5, 0, 0.5};
for (size_t s = 0; s < nSamples; s++) {
block[SPEAKER_FRONT_LEFT].push_back(left[s]);
block[SPEAKER_FRONT_RIGHT].push_back(right[s]);
}
Samples outSamples;
audioBlock2Samples(outSamples, block);
audioSample_t **outData = (audioSample_t **)outSamples.getSamples().data();
audioSample_t eps = 0.000001;
for (size_t s = 0; s < nSamples; s++) {
ENSURE_APPROX_EQ(outData[0][s], left[s], eps);
ENSURE_APPROX_EQ(outData[1][s], right[s], eps);
}
}
void testDrop() {
float *raw[MAX_AUDIO_CHANNELS];
raw[0] = new float[nSamples * sizeof(float)];
raw[1] = new float[nSamples * sizeof(float)];
float left[nSamples] = {0.1f, 0.2f, 0.3f};
float right[nSamples] = {-0.1f, -0.2f, -0.3f};
for (size_t i = 0; i < nSamples; i++) {
raw[0][i] = left[i];
raw[1][i] = right[i];
}
Samples samples(SamplingRate::SR_48000, SamplingDepth::FLT_P, ChannelLayout::STEREO, 1234., (uint8_t **)raw,
nSamples);
// test fail case
if (samples.drop(4).ok()) {
std::stringstream ss;
ss << "TEST FAILED: drop more samples than available shouldn't pass without error" << std::endl;
std::cerr << ss.str();
std::raise(SIGABRT);
}
samples.drop(2);
ENSURE_EQ(samples.getNbOfSamples(), nSamples - 2, "unexpected number of samples resulted");
float **afterDrop = (float **)samples.getSamples().data();
ENSURE_EQ((float)0.3, afterDrop[0][0], "sample left not expected");
ENSURE_EQ((float)-0.3, afterDrop[1][0], "sample left not expected");
samples.drop(1);
ENSURE_EQ((int)samples.getNbOfSamples(), 0, "check number of samples left");
}
void testAppend() {
float *raw[MAX_AUDIO_CHANNELS];
raw[0] = new float[1 * sizeof(float)];
raw[1] = new float[1 * sizeof(float)];
float left[1] = {0.1f};
float right[1] = {-0.1f};
raw[0][0] = left[0];
raw[1][0] = right[0];
Samples samples(SamplingRate::SR_48000, SamplingDepth::FLT_P, ChannelLayout::STEREO, 1234., (uint8_t **)raw, 1);
int nSamplesToAppend = 2;
float *rawAppend[MAX_AUDIO_CHANNELS];
rawAppend[0] = new float[nSamplesToAppend * sizeof(float)];
rawAppend[1] = new float[nSamplesToAppend * sizeof(float)];
float leftAppend[nSamples] = {0.2f, 0.3f};
float rightAppend[nSamples] = {-0.2f, -0.3f};
for (size_t i = 0; i < nSamples; i++) {
rawAppend[0][i] = leftAppend[i];
rawAppend[1][i] = rightAppend[i];
}
Samples samplesToAppend(SamplingRate::SR_48000, SamplingDepth::FLT_P, ChannelLayout::STEREO, 1234.,
(uint8_t **)rawAppend, nSamplesToAppend);
samples.append(samplesToAppend);
ENSURE_EQ(3, (int)samples.getNbOfSamples(), "unexpected number of samples resulted");
float **afterAppend = (float **)samples.getSamples().data();
ENSURE_EQ((float)0.1, afterAppend[0][0], "sample value not expected");
ENSURE_EQ((float)-0.1, afterAppend[1][0], "sample value not expected");
ENSURE_EQ((float)0.2, afterAppend[0][1], "sample value not expected");
ENSURE_EQ((float)-0.2, afterAppend[1][1], "sample value not expected");
ENSURE_EQ((float)0.3, afterAppend[0][2], "sample value not expected");
ENSURE_EQ((float)-0.3, afterAppend[1][2], "sample value not expected");
samplesToAppend.drop(samplesToAppend.getNbOfSamples());
samples.append(samplesToAppend);
ENSURE_EQ(3, (int)samples.getNbOfSamples(), "unexpected number of samples resulted");
}
void testSimpleEnvDetector() {
ChannelLayout l = MONO;
AudioBlock in(l);
in.resize(10);
for (int i = 0; i < 10; ++i) {
in[SPEAKER_FRONT_LEFT][i] = i + 1;
}
VuMeter vm((int)getDefaultSamplingRate());
vm.setSmoothing(3);
for (int i = 0; i < 1; i++) {
vm.step(in);
std::vector<double> peaks = vm.getPeakValues();
std::vector<double> rms = vm.getRmsValues();
std::cout << "Peak = " << peaks[0] << std::endl;
std::cout << "Rms = " << rms[0] << std::endl;
}
}
void checkTimeConstants(const AudioBlock &env, double attack, double release) {
double fs = getDefaultSamplingRate();
// Check attack time constant : https://en.wikipedia.org/wiki/Time_constant
int i = 0;
for (audioSample_t s : *env.begin()) {
if (s > 0.632) {
break;
}
i++;
}
double effectiveActtackTime = static_cast<double>(i) / fs - 0.5;
ENSURE_APPROX_EQ(attack, effectiveActtackTime, 0.02);
// Check peak release time constant : https://en.wikipedia.org/wiki/Time_constant
int j;
for (j = static_cast<int>(fs); j < static_cast<int>(env.begin()->size()); j++) {
if (env.begin()->at(j) < 0.368) {
break;
}
}
double effectiveReleaseTime = static_cast<double>(j) / fs - 1.0;
ENSURE_APPROX_EQ(release, effectiveReleaseTime, 0.02);
}
void testEnvDetector() {
ChannelLayout l = STEREO;
AudioBlock in(l);
double fs = getDefaultSamplingRate();
SigGenSquare squareGen(fs, 1., 1., l);
in.resize((size_t)fs * 2);
squareGen.step(in);
VuMeter vm(static_cast<int>(getDefaultSamplingRate()));
vm.setDebug(true);
vm.setPeakAttack(0.1);
vm.setPeakRelease(0.2);
vm.setRmsAttack(0.2);
vm.setRmsRelease(0.3);
vm.step(in);
std::vector<double> peaks = vm.getPeakValues();
std::vector<double> rms = vm.getRmsValues();
ENSURE_EQ(2, (int)peaks.size(), "Check output peaks data size");
ENSURE_EQ(2, (int)rms.size(), "Check output rms data size");
checkTimeConstants(vm.getPeakEnvelope(), vm.getPeakAttack(), vm.getPeakRelease());
checkTimeConstants(vm.getRmsEnvelope(), vm.getRmsAttack(), vm.getRmsRelease());
}
void testAudioSum() {
// Check normal case
std::vector<AudioBlock> blocks;
AudioBlock output;
blocks.emplace_back(STEREO, 0);
blocks.emplace_back(STEREO, 0);
std::vector<audioSample_t> values = {0, 1, 2};
for (AudioBlock &block : blocks) {
block.resize(3);
for (AudioTrack &track : block) {
int i = 0;
for (audioSample_t &x : track) {
x = values[i];
i++;
}
}
}
ENSURE(sum(blocks, output).ok());
ENSURE(output.getLayout() == STEREO);
for (const AudioTrack &otr : output) {
ENSURE_EQ(0., otr[0], "Check += first value.");
ENSURE_EQ(2., otr[1], "Check += second value.");
ENSURE_EQ(4., otr[2], "Check += third value.");
}
// Check + operator
output.assign(3, 0.);
output.setChannelLayout(STEREO);
output = blocks[0] + blocks[1];
for (const AudioTrack &otr : output) {
ENSURE_EQ(0., otr[0], "Check + first value.");
ENSURE_EQ(2., otr[1], "Check + second value.");
ENSURE_EQ(4., otr[2], "Check + third value.");
}
// Check failure cases if one block has not the same length
blocks[0].resize(4);
ENSURE(!sum(blocks, output).ok());
// put back to normal
blocks[0].resize(3);
ENSURE(sum(blocks, output).ok());
// if one block has a different layout
blocks[1].setChannelLayout(_2_1);
ENSURE(!sum(blocks, output).ok());
}
void checkAmbisonicTrack(const AudioTrack &in, const AudioTrack &out, const double mul) {
ENSURE(((in.channel() | AMBISONICS_3RD) != 0), "channel map should be ambisonic");
ENSURE_EQ(in.size(), out.size(), "Check output size");
for (size_t i = 0; i < in.size(); ++i) {
std::stringstream ss;
ss << "Check samples of audio track " << getStringFromChannelType(out.channel()) << " sample " << i;
ENSURE_APPROX_EQ(mul * in[i], out[i], 0.000001, ss.str().c_str());
}
}
int getAmbChannelIndexFromChannelMap(ChannelMap m) {
return getChannelIndexFromChannelMap(m) - getChannelIndexFromChannelMap(SPEAKER_AMB_W);
}
void checkAmbisonicOutput(const AudioBlock &inputMono, const AudioBlock &output,
const std::map<ChannelMap, double> &res, AmbisonicOrder order) {
ENSURE_EQ(MONO, inputMono.getLayout(), "Channel input map should be mono.");
ChannelLayout expectedLayout;
switch (order) {
case (AmbisonicOrder::FIRST_ORDER):
expectedLayout = AMBISONICS_WXYZ;
break;
case (AmbisonicOrder::SECOND_ORDER):
expectedLayout = AMBISONICS_2ND;
break;
case (AmbisonicOrder::THIRD_ORDER):
expectedLayout = AMBISONICS_3RD;
break;
default:
std::stringstream ss;
ss << "Order " << getStringFromAmbisonicOrder(order) << " cannot be tested";
ENSURE(false, ss.str().c_str());
return;
}
ENSURE(expectedLayout == output.getLayout(), "Check expected layout");
for (auto &track : output) {
checkAmbisonicTrack(inputMono[SPEAKER_FRONT_LEFT], track, res.at(track.channel()));
}
}
void setExpectedAmbCoef(std::map<ChannelMap, double> &expectedRes, double w, double x, double y, double z,
double v = 0., double t = 0., double r = 0., double s = 0., double u = 0.) {
expectedRes[SPEAKER_AMB_W] = w;
expectedRes[SPEAKER_AMB_X] = x;
expectedRes[SPEAKER_AMB_Y] = y;
expectedRes[SPEAKER_AMB_Z] = z;
expectedRes[SPEAKER_AMB_V] = v;
expectedRes[SPEAKER_AMB_T] = t;
expectedRes[SPEAKER_AMB_R] = r;
expectedRes[SPEAKER_AMB_S] = s;
expectedRes[SPEAKER_AMB_U] = u;
}
void testAmbisonicEncoderFirstOrder() {
std::vector<double> freqs = {440.};
SigGenSine sineGen(freqs, getDefaultSamplingRate(), 1.0);
AudioBlock input(MONO);
AudioBlock output;
AmbEncoder ambEncoder(AmbisonicOrder::FIRST_ORDER, AmbisonicNorm::SN3D);
input.resize(512);
sineGen.step(input);
ambEncoder.step(output, input);
ENSURE_EQ(output.numSamples(), input.numSamples(), "Check number of samples");
// Default position (0,0) -> (W,X,Y,Z) = (S,0,0,S)
std::map<ChannelMap, double> expectedRes;
setExpectedAmbCoef(expectedRes, 1., 1., 0., 0.);
checkAmbisonicOutput(input, output, expectedRes, AmbisonicOrder::FIRST_ORDER);
output.clear();
// position (pi,0) -> (W,Y,Z,X) = (S,0,0,-S)
ambEncoder.setMonoSourcePosition({M_PI, 0.});
ambEncoder.step(output, input);
setExpectedAmbCoef(expectedRes, 1., -1., 0., 0.);
checkAmbisonicOutput(input, output, expectedRes, AmbisonicOrder::FIRST_ORDER);
output.clear();
// position (pi/2,0) -> (W,Y,Z,X) = (S,S,0,0)
ambEncoder.setMonoSourcePosition({M_PI / 2., 0.});
ambEncoder.step(output, input);
setExpectedAmbCoef(expectedRes, 1., 0., 1., 0.);
checkAmbisonicOutput(input, output, expectedRes, AmbisonicOrder::FIRST_ORDER);
output.clear();
// position (-pi/2,0) -> (W,Y,Z,X) = (S,-S,0,0)
ambEncoder.setMonoSourcePosition({-M_PI / 2., 0.});
ambEncoder.step(output, input);
setExpectedAmbCoef(expectedRes, 1., 0., -1., 0.);
checkAmbisonicOutput(input, output, expectedRes, AmbisonicOrder::FIRST_ORDER);
output.clear();
// position (x,pi/2) -> (W,Y,Z,X) = (S,0,S,0)
ambEncoder.setMonoSourcePosition({M_PI / 4., M_PI / 2.});
ambEncoder.step(output, input);
setExpectedAmbCoef(expectedRes, 1., 0., 0., 1.);
checkAmbisonicOutput(input, output, expectedRes, AmbisonicOrder::FIRST_ORDER);
output.clear();
// position (x,-pi/2) -> (W,Y,Z,X) = (S,0,-S,0)
ambEncoder.setMonoSourcePosition({M_PI / 4., -M_PI / 2.});
ambEncoder.step(output, input);
setExpectedAmbCoef(expectedRes, 1., 0., 0., -1.);
checkAmbisonicOutput(input, output, expectedRes, AmbisonicOrder::FIRST_ORDER);
output.clear();
}
void testAmbisonicEncoderSecondOrder() {
std::vector<double> freqs = {440.};
SigGenSine sineGen(freqs, getDefaultSamplingRate(), 1.0);
AudioBlock input(MONO);
AudioBlock output;
AmbEncoder ambEncoder(AmbisonicOrder::SECOND_ORDER, AmbisonicNorm::SN3D);
input.resize(512);
sineGen.step(input);
ambEncoder.step(output, input);
ENSURE_EQ(output.numSamples(), input.numSamples(), "Check number of samples");
// Default position (0,0) -> (W,Y,Z,X,V,T,R,S,U) = (S,0,0,S,0,0,-1/2,0,sqrt(3)/2)
std::map<ChannelMap, double> expectedCoef;
setExpectedAmbCoef(expectedCoef, 1., 1., 0., 0., 0., 0., -1. / 2., 0., sqrt(3.) / 2.);
checkAmbisonicOutput(input, output, expectedCoef, AmbisonicOrder::SECOND_ORDER);
output.clear();
// position (pi,0) -> (W,Y,Z,X,V,T,R,S,U)
ambEncoder.setMonoSourcePosition({M_PI, 0.});
ambEncoder.step(output, input);
setExpectedAmbCoef(expectedCoef, 1., -1., 0., 0., 0., 0., -1. / 2., 0., sqrt(3.) / 2.);
checkAmbisonicOutput(input, output, expectedCoef, AmbisonicOrder::SECOND_ORDER);
output.clear();
// position (pi/2,0) -> (W,Y,Z,X,V,T,R,S,U)
ambEncoder.setMonoSourcePosition({M_PI / 2., 0.});
ambEncoder.step(output, input);
setExpectedAmbCoef(expectedCoef, 1., 0., 1., 0., 0., 0., -1. / 2., 0., -sqrt(3.) / 2.);
checkAmbisonicOutput(input, output, expectedCoef, AmbisonicOrder::SECOND_ORDER);
output.clear();
// TODO: extend the test to other positions such as (0, pi/4), (0,-pi/4), (pi/4, 0), (-pi/4/0) etc...
}
void compareTracks(const AudioTrack &refTrack, const AudioTrack &outTrack, audioSample_t coef = 1.0) {
ENSURE_EQ(refTrack.size(), outTrack.size(), "Check track size");
for (size_t i = 0; i < outTrack.size(); ++i) {
std::string str("Check out signal of track " + std::string(getStringFromChannelType(outTrack.channel())));
ENSURE_APPROX_EQ(coef * refTrack[i], outTrack[i], 1e-5, str.c_str());
}
}
void testAmbisonicRotator() {
AmbRotator ambRotator(AmbisonicOrder::FIRST_ORDER);
AudioBlock in(AMBISONICS_WXYZ), out;
in.assign(3, 0.);
audioSample_t iTrack = 1.;
for (auto &track : in) {
for (size_t s = 0; s < in.numSamples(); s++) {
track[s] = (iTrack + audioSample_t(s)) * 1e-2;
}
iTrack++;
}
// Check default orientation
ambRotator.setRotation(0., 0., 0.);
ambRotator.step(out, in);
ENSURE_EQ(in.getLayout(), out.getLayout(), "check layout");
ENSURE_EQ(in.numSamples(), out.numSamples(), "check num samples");
compareTracks(in[SPEAKER_AMB_W], out[SPEAKER_AMB_W]);
compareTracks(in[SPEAKER_AMB_X], out[SPEAKER_AMB_X]);
compareTracks(in[SPEAKER_AMB_Y], out[SPEAKER_AMB_Y]);
compareTracks(in[SPEAKER_AMB_Z], out[SPEAKER_AMB_Z]);
// Check yaw rotation of PI/2
ambRotator.setRotation(M_PI_2, 0., 0.);
ambRotator.step(out, in);
compareTracks(in[SPEAKER_AMB_W], out[SPEAKER_AMB_W]);
compareTracks(in[SPEAKER_AMB_X], out[SPEAKER_AMB_Y]); // X -> Y
compareTracks(in[SPEAKER_AMB_Y], out[SPEAKER_AMB_X], -1.0); // Y -> -X
compareTracks(in[SPEAKER_AMB_Z], out[SPEAKER_AMB_Z]); // Z -> Z
out.clear();
// Check pitch rotation of PI/2
// X -> Z
// Y -> Y
// Z -> -X
ambRotator.setRotation(0., M_PI_2, 0.);
ambRotator.step(out, in);
compareTracks(in[SPEAKER_AMB_W], out[SPEAKER_AMB_W]);
compareTracks(in[SPEAKER_AMB_X], out[SPEAKER_AMB_Z]);
compareTracks(in[SPEAKER_AMB_Y], out[SPEAKER_AMB_Y]);
compareTracks(in[SPEAKER_AMB_Z], out[SPEAKER_AMB_X], -1.0);
out.clear();
// Check roll rotation of PI/2
// X -> X
// Y -> -Z
// Z -> Y
ambRotator.setRotation(0., 0., M_PI_2);
ambRotator.step(out, in);
compareTracks(in[SPEAKER_AMB_W], out[SPEAKER_AMB_W]);
compareTracks(in[SPEAKER_AMB_X], out[SPEAKER_AMB_X]);
compareTracks(in[SPEAKER_AMB_Y], out[SPEAKER_AMB_Z]);
compareTracks(in[SPEAKER_AMB_Z], out[SPEAKER_AMB_Y], -1.0);
out.clear();
// Check offset on roll
// back to the origin
ambRotator.setRotationOffset(0., 0., -M_PI_2);
ambRotator.step(out, in);
compareTracks(in[SPEAKER_AMB_W], out[SPEAKER_AMB_W]);
compareTracks(in[SPEAKER_AMB_X], out[SPEAKER_AMB_X]);
compareTracks(in[SPEAKER_AMB_Y], out[SPEAKER_AMB_Y]);
compareTracks(in[SPEAKER_AMB_Z], out[SPEAKER_AMB_Z]);
out.clear();
// Check offset on pitch
ambRotator.setRotationOffset(0., M_PI_2, -M_PI_2);
ambRotator.step(out, in);
compareTracks(in[SPEAKER_AMB_W], out[SPEAKER_AMB_W]);
compareTracks(in[SPEAKER_AMB_X], out[SPEAKER_AMB_Z]);
compareTracks(in[SPEAKER_AMB_Y], out[SPEAKER_AMB_Y]);
compareTracks(in[SPEAKER_AMB_Z], out[SPEAKER_AMB_X], -1.0);
out.clear();
// Check offset on yaw
ambRotator.setRotationOffset(M_PI_2, 0., -M_PI_2);
ambRotator.step(out, in);
compareTracks(in[SPEAKER_AMB_W], out[SPEAKER_AMB_W]);
compareTracks(in[SPEAKER_AMB_X], out[SPEAKER_AMB_Y]); // X -> Y
compareTracks(in[SPEAKER_AMB_Y], out[SPEAKER_AMB_X], -1.0); // Y -> -X
compareTracks(in[SPEAKER_AMB_Z], out[SPEAKER_AMB_Z]); // Z -> Z
out.clear();
}
} // namespace Testing
} // namespace VideoStitch
int main(int argc, char **argv) {
std::string testData(VideoStitch::Testing::getDataFolder());
std::string inWav("data/snd/cos48k_mono.wav"), outWav(testData + "/tmp.wav");
if (argc == 2) {
inWav = argv[1];
}
if (argc == 3) {
outWav = argv[2];
}
std::cout << "Run tests with input file " << inWav << " output file " << outWav << std::endl;
// Open a wav file
// Copy it in an other wav file
std::cout << "RUN Test to copy a wav file into an other" << std::endl;
VideoStitch::Testing::copyWavFile(inWav, outWav);
// Compare the two files
VideoStitch::Testing::compareWavFile(inWav, outWav, 1. / 32267.);
std::cout << "Test to copy a wav file into an other : PASSED" << std::endl;
// Generate a sin at 1 kHz and compare it to a signal generated
std::cout << "RUN Test sine generator" << std::endl;
VideoStitch::Testing::cosineTest();
std::cout << "Test sine generator: PASSED" << std::endl;
std::cout << "RUN Test conversion Samples to AudioBlock" << std::endl;
VideoStitch::Testing::testSamplesToAudioBlock();
std::cout << "RUN Test conversion AudioBlock to Samples" << std::endl;
VideoStitch::Testing::testAudioBlkToSamples();
// Test AudioSamples::drop
std::cout << "RUN Test AudioSamples::drop(n)" << std::endl;
VideoStitch::Testing::testDrop();
std::cout << "RUN Test AudioSamples::drop(n) PASSED" << std::endl;
// Test AudioSamples::append
std::cout << "RUN Test AudioSamples::append(samples)" << std::endl;
VideoStitch::Testing::testAppend();
std::cout << "RUN Test AudioSamples::append(samples) PASSED" << std::endl;
// Test envelope detector
std::cout << "RUN Test EnvelopeDetector" << std::endl;
VideoStitch::Testing::testSimpleEnvDetector();
VideoStitch::Testing::testEnvDetector();
std::cout << "RUN Test EnvelopeDetector PASSED" << std::endl;
// Test audio block sum
std::cout << "RUN Test Audio Block Summer" << std::endl;
VideoStitch::Testing::testAudioSum();
std::cout << "RUN Test Audio Block Summer PASSED" << std::endl;
// Test ambisonic encoder
std::cout << "RUN Test First Order Ambisonic Encoder" << std::endl;
VideoStitch::Testing::testAmbisonicEncoderFirstOrder();
std::cout << "RUN Test First Order Ambisonic Encoder PASSED" << std::endl;
std::cout << "RUN Test Second Order Ambisonic Encoder" << std::endl;
VideoStitch::Testing::testAmbisonicEncoderSecondOrder();
std::cout << "RUN Test Second Order Ambisonic Encoder PASSED" << std::endl;
std::cout << "RUN Test Ambisonic Rotator" << std::endl;
VideoStitch::Testing::testAmbisonicRotator();
std::cout << "RUN Test Ambisonic Rotator PASSED" << std::endl;
return 0;
}