1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm
#include "pyramid.hpp"
#include "gpu/memcpy.hpp"
#include "gpu/image/blur.hpp"
#include "gpu/image/imageOps.hpp"
#include "gpu/image/sampling.hpp"
#include "gpu/buffer.hpp"
#include "libvideostitch/status.hpp"
#include <memory>
//#define PYRAMID_DEBUG
//#define PYRAMID_BLUR
//#define PYRAMID_MULTIBAND
//#define PYRAMID_COLLAPSE
//#define PYRAMID_UP
//#define PYRAMID_ALPHA
#ifdef PYRAMID_DEBUG
#define PYRAMID_BLUR
#define PYRAMID_MULTIBAND
#define PYRAMID_COLLAPSE
#define PYRAMID_UP
#define PYRAMID_ALPHA
#endif
#if defined PYRAMID_BLUR || defined PYRAMID_COLLAPSE || defined PYRAMID_MULTIBAND || defined PYRAMID_ALPHA
#include "util/debugUtils.hpp"
#include <sstream>
#endif
namespace VideoStitch {
namespace Core {
template <typename T>
Potential<LaplacianPyramid<T>> LaplacianPyramid<T>::create(std::string name, int64_t width, int64_t height,
int numLevels, LevelLocation levelLocation,
Reconstruction reconstruction, int gaussianRadius,
int filterPasses, bool wrap) {
std::unique_ptr<LaplacianPyramid<T>> pyr(new LaplacianPyramid<T>(name, computeBufferSize(width, height, numLevels),
levelLocation, reconstruction, gaussianRadius,
filterPasses, wrap));
FAIL_RETURN(pyr->init(width, height, numLevels));
return Potential<LaplacianPyramid<T>>(pyr.release());
}
template <typename T>
Status LaplacianPyramid<T>::init(int64_t width, int64_t height, int numLevels) {
const int64_t alignment = 256; // XXX TODO FIXME
// Compute the total needed buffer size:
switch (levelLocation) {
case ExternalFirstLevel: {
int64_t levelSize = width * height;
if (levelSize * sizeof(T) % alignment != 0) {
levelSize = ((levelSize * sizeof(T) / alignment + 1) * alignment) / sizeof(T);
}
devBufferSizeInPixels = bufferSizeInPixels - levelSize;
break;
}
case InternalFirstLevel:
devBufferSizeInPixels = bufferSizeInPixels;
break;
default:
return {Origin::Stitcher, ErrType::ImplementationError, "Invalid pyramid level"};
}
// Allocate temp memory
FAIL_RETURN(devTmp.alloc((size_t)(width * height), std::string("LaplacianPyramid-" + name).c_str()));
FAIL_RETURN(devTmp2.alloc((size_t)(width * height), std::string("LaplacianPyramid-" + name).c_str()));
// Allocate internal pyramid memory "only" when needed
if (devBufferSizeInPixels > 0) {
FAIL_RETURN(pyramid.alloc(devBufferSizeInPixels, std::string("LaplacianPyramid-" + name).c_str()));
}
// Allocate reconstruction pyramid memory only when not in place
if (reconstruction == Multiple) {
FAIL_RETURN(reconstructedPyramid.alloc(devBufferSizeInPixels, std::string("LaplacianPyramid-" + name).c_str()));
}
// Fetch memory into the appropriate LevelSpec
int64_t levelSize;
int64_t pyramidOffset = 0, reconstructedPyramidOffset = 0;
levelSize = width * height;
if (levelSize * sizeof(T) % alignment != 0) {
levelSize = ((levelSize * sizeof(T) / alignment + 1) * alignment) / sizeof(T);
}
switch (levelLocation) {
case ExternalFirstLevel: {
levels.push_back(LevelSpec<T>(width, height, GPU::Buffer<T>()));
reconstructedLevels.push_back(LevelSpec<T>(width, height, GPU::Buffer<T>()));
} break;
case InternalFirstLevel: {
switch (reconstruction) {
case SingleShot:
levels.push_back(LevelSpec<T>(width, height, pyramid.borrow()));
reconstructedLevels.push_back(LevelSpec<T>(width, height, pyramid.borrow()));
pyramidOffset += levelSize;
break;
case Multiple:
levels.push_back(LevelSpec<T>(width, height, pyramid.borrow()));
pyramidOffset += levelSize;
reconstructedLevels.push_back(LevelSpec<T>(width, height, reconstructedPyramid.borrow()));
reconstructedPyramidOffset += levelSize;
break;
default:
return {Origin::Stitcher, ErrType::ImplementationError, "Invalid pyramid reconstruction mode"};
}
} break;
default:
return {Origin::Stitcher, ErrType::ImplementationError, "Invalid pyramid level"};
}
// Compute buffer offsets.
int64_t lWidth = (width + 1) / 2;
int64_t lHeight = (height + 1) / 2;
for (int level = 1; level < numLevels; ++level) {
levels.push_back(LevelSpec<T>(lWidth, lHeight, pyramid.borrow().createSubBuffer(pyramidOffset)));
switch (reconstruction) {
case SingleShot:
reconstructedLevels.push_back(LevelSpec<T>(lWidth, lHeight, pyramid.borrow().createSubBuffer(pyramidOffset)));
break;
case Multiple:
reconstructedLevels.push_back(
LevelSpec<T>(lWidth, lHeight, reconstructedPyramid.borrow().createSubBuffer(reconstructedPyramidOffset)));
break;
default:
return {Origin::Stitcher, ErrType::ImplementationError, "Invalid pyramid reconstruction mode"};
}
levelSize = lWidth * lHeight;
if (levelSize * sizeof(T) % alignment != 0) {
levelSize = ((levelSize * sizeof(T) / alignment + 1) * alignment) / sizeof(T);
}
pyramidOffset += levelSize;
reconstructedPyramidOffset += levelSize;
lWidth = (lWidth + 1) / 2;
lHeight = (lHeight + 1) / 2;
}
// Base level:
if (numLevels > 0) {
levels.push_back(LevelSpec<T>(lWidth, lHeight, pyramid.borrow().createSubBuffer(pyramidOffset)));
switch (reconstruction) {
case SingleShot:
reconstructedLevels.push_back(LevelSpec<T>(lWidth, lHeight, pyramid.borrow().createSubBuffer(pyramidOffset)));
break;
case Multiple:
reconstructedLevels.push_back(
LevelSpec<T>(lWidth, lHeight, reconstructedPyramid.borrow().createSubBuffer(reconstructedPyramidOffset)));
break;
default:
return {Origin::Stitcher, ErrType::ImplementationError, "Invalid pyramid reconstruction mode"};
}
}
return Status::OK();
}
template <typename T>
LaplacianPyramid<T>::LaplacianPyramid(std::string name, int64_t bufferSizeInPixels, LevelLocation levelLocation,
Reconstruction reconstruction, int gaussianRadius, int filterPasses, bool wrap)
: name(name),
wrap(wrap),
bufferSizeInPixels(bufferSizeInPixels),
levelLocation(levelLocation),
reconstruction(reconstruction),
devBufferSizeInPixels(0),
gaussianRadius(gaussianRadius),
filterPasses(filterPasses) {}
template <typename T>
int64_t LaplacianPyramid<T>::computeBufferSize(int64_t width, int64_t height, int numLevels) {
int64_t result = 0;
const int64_t alignment = 256; // XXX TODO FIXME
for (int level = 0; level <= numLevels; ++level) {
int64_t levelSize = width * height;
if (levelSize * sizeof(T) % alignment != 0) {
levelSize = ((levelSize * sizeof(T) / alignment + 1) * alignment) / sizeof(T);
}
result += levelSize;
width = (width + 1) / 2;
height = (height + 1) / 2;
}
return result;
}
template <>
Status LaplacianPyramid<uint32_t>::computeGaussian(GPU::Stream stream) {
assert(levels[0].data().wasAllocated());
// Gaussian pyramid
for (int level = 0; level < numLevels(); ++level) {
const LevelSpec<uint32_t>& curLevel = levels[level];
// Blur, store in devTmp
FAIL_RETURN(Image::gaussianBlur2DRGBA(devTmp.borrow(), curLevel.data(), devTmp2.borrow(), curLevel.width(),
curLevel.height(), gaussianRadius, filterPasses, wrap, stream));
// Subsample, store in next level.
LevelSpec<uint32_t>& nextLevel = levels[level + 1];
FAIL_RETURN(Image::subsample22RGBA(nextLevel.data(), devTmp.borrow(), (unsigned)curLevel.width(),
(unsigned)curLevel.height(), stream));
}
#ifdef PYRAMID_BLUR
stream.synchronize();
for (int level = 1; level <= numLevels(); ++level) {
std::stringstream ss;
ss << "testBlurLevel-" << name << "-" << level << ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), levels[level].data(), levels[level].width(), levels[level].height());
}
#endif
return Status::OK();
}
template <>
Status LaplacianPyramid<unsigned char>::computeGaussian(GPU::Stream stream) {
// Gaussian pyramid
for (int level = 0; level < numLevels(); ++level) {
const LevelSpec<unsigned char>& curLevel = levels[level];
// Blur, store in devTmp
FAIL_RETURN(Image::gaussianBlur2D(devTmp.borrow(), curLevel.data(), devTmp2.borrow(), curLevel.width(),
curLevel.height(), gaussianRadius, filterPasses, wrap, stream));
// Subsample, store in next level.
LevelSpec<unsigned char>& nextLevel = levels[level + 1];
FAIL_RETURN(Image::subsample22(nextLevel.data(), devTmp.borrow_const(), (unsigned)curLevel.width(),
(unsigned)curLevel.height(), stream));
}
#ifdef PYRAMID_ALPHA
stream.synchronize();
for (int level = 1; level <= numLevels(); ++level) {
std::stringstream ss;
ss << "testBlurLevel-" << name << "-" << level << ".png";
Debug::dumpMonochromeDeviceBuffer<Debug::linear>(ss.str().c_str(), levels[level].data().as<const unsigned char>(),
levels[level].width(), levels[level].height());
}
#endif
return Status::OK();
}
template <typename T>
Status LaplacianPyramid<T>::computeGaussian(GPU::Stream stream) {
// Gaussian pyramid
for (int level = 0; level < numLevels(); ++level) {
const LevelSpec<T>& curLevel = levels[level];
// Blur, store in devTmp
FAIL_RETURN(Image::gaussianBlur2D(devTmp.borrow(), curLevel.data(), devTmp2.borrow(), curLevel.width(),
curLevel.height(), gaussianRadius, filterPasses, wrap, stream));
// Subsample, store in next level.
LevelSpec<T>& nextLevel = levels[level + 1];
FAIL_RETURN(Image::subsample22(nextLevel.data(), devTmp.borrow_const(), (unsigned)curLevel.width(),
(unsigned)curLevel.height(), stream));
}
return Status::OK();
}
template <>
Status LaplacianPyramid<uint32_t>::compute(GPU::Stream stream) {
assert(levels[0].data().wasAllocated());
computeGaussian(stream);
// Laplacian pyramid
for (int level = 0; level < numLevels(); ++level) {
// Upsample next level, store in devTmp
// Subtract with current level
LevelSpec<uint32_t>& curLevel = levels[level];
const LevelSpec<uint32_t>& nextLevel = levels[level + 1];
FAIL_RETURN(Image::upsample22RGBA(devTmp.borrow(), nextLevel.data(), (unsigned)curLevel.width(),
(unsigned)curLevel.height(), wrap, stream));
#ifdef PYRAMID_UP
stream.synchronize();
std::stringstream ss;
ss << "testUpLevel-" << name << "-" << level << ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), devTmp.borrow(), (unsigned)curLevel.width(),
(unsigned)curLevel.height());
#endif
Image::subtract(curLevel.data(), devTmp.borrow(), curLevel.width() * curLevel.height(), stream);
}
#ifdef PYRAMID_MULTIBAND
stream.synchronize();
for (int level = 0; level < numLevels(); ++level) {
std::stringstream ss;
ss << "testBandLevel-" << name << "-" << level << ".png";
Debug::dumpRGB210DeviceBuffer(ss.str().c_str(), levels[level].data(), levels[level].width(),
levels[level].height());
}
std::stringstream ss;
ss << "testBandLevel-" << name << "-" << numLevels() << ".png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), levels[numLevels()].data(), levels[numLevels()].width(),
levels[numLevels()].height());
#endif
return Status::OK();
}
template <typename T>
Status LaplacianPyramid<T>::compute(GPU::Stream stream) {
assert(levels[0].data().wasAllocated());
computeGaussian(stream);
// Laplacian pyramid
for (int level = 0; level < numLevels(); ++level) {
LevelSpec<T>& curLevel = levels[level];
// Upsample next level, store in devTmp:
const LevelSpec<T>& nextLevel = levels[level + 1];
FAIL_RETURN(Image::upsample22(devTmp.borrow(), nextLevel.data(), (unsigned)curLevel.width(),
(unsigned)curLevel.height(), wrap, stream));
// Subtract with current level:
FAIL_RETURN(
Image::subtractRaw(curLevel.data(), devTmp.borrow_const(), curLevel.width() * curLevel.height(), stream));
}
return Status::OK();
}
template <typename T>
Status LaplacianPyramid<T>::compute(GPU::Buffer<const T> src, GPU::Stream stream) {
assert(levelLocation == InternalFirstLevel);
// Copy src to first level:
PROPAGATE_FAILURE_STATUS(
GPU::memcpyAsync(levels[0].data(), src, (size_t)(levels[0].width() * levels[0].height() * sizeof(T)), stream));
return compute(stream);
}
template <>
Status LaplacianPyramid<uint32_t>::collapse(bool final, GPU::Stream stream) {
assert(levels[0].data().wasAllocated());
#ifdef PYRAMID_COLLAPSE
stream.synchronize();
for (int level = 0; level < numLevels(); ++level) {
std::stringstream ss3;
ss3 << "testCollapsePre-" << name << "-" << level << ".png";
Debug::dumpRGB210DeviceBuffer(ss3.str().c_str(), levels[level].data(), levels[level].width(),
levels[level].height());
}
std::stringstream ss4;
ss4 << "testCollapsePre-" << name << "-" << numLevels() << ".png";
Debug::dumpRGBADeviceBuffer(ss4.str().c_str(), levels[numLevels()].data(), levels[numLevels()].width(),
levels[numLevels()].height());
#endif
std::vector<LevelSpec<uint32_t>>& lvls = final ? levels : reconstructedLevels;
if (reconstruction == Multiple && !final) {
for (int level = 0; level <= numLevels(); ++level) {
GPU::memcpyAsync(
reconstructedLevels[level].data(), levels[level].data().as_const(),
(size_t)(reconstructedLevels[level].width() * reconstructedLevels[level].height() * sizeof(uint32_t)),
stream);
}
}
for (int level = numLevels() - 1; level >= 0; --level) {
LevelSpec<uint32_t>& curLevel = lvls[level];
const LevelSpec<uint32_t>& nextLevel = lvls[level + 1];
// Upsample lower level, store in devTmp
// Add with current level
if (level == numLevels() - 1) {
// coarsest level is RGBA
Image::upsample22RGBA(devTmp.borrow(), nextLevel.data(), curLevel.width(), curLevel.height(), wrap, stream);
} else {
Image::upsample22RGBA210(devTmp.borrow(), nextLevel.data(), curLevel.width(), curLevel.height(), wrap, stream);
}
if (level == numLevels() - 1) {
// coarsest level is RGBA
if (level == 0) {
// finest level to RGBA
Image::add10n8Clamp(curLevel.data(), devTmp.borrow(), curLevel.width() * curLevel.height(), stream);
} else {
Image::add10n8(curLevel.data(), devTmp.borrow(), curLevel.width() * curLevel.height(), stream);
}
} else if (level == 0) {
// finest level to RGBA
Image::addClamp(curLevel.data(), devTmp.borrow(), curLevel.width() * curLevel.height(), stream);
} else {
Image::add10(curLevel.data(), devTmp.borrow(), curLevel.width() * curLevel.height(), stream);
}
}
#ifdef PYRAMID_COLLAPSE
stream.synchronize();
std::stringstream ss;
ss << "testCollapse-" << name << "-0.png";
Debug::dumpRGBADeviceBuffer(ss.str().c_str(), lvls[0].data(), lvls[0].width(), lvls[0].height());
for (int level = 1; level < numLevels(); ++level) {
std::stringstream ss;
ss << "testCollapse-" << name << "-" << level << ".png";
Debug::dumpRGB210DeviceBuffer(ss.str().c_str(), lvls[level].data(), lvls[level].width(), lvls[level].height());
}
std::stringstream ss1;
ss1 << "testCollapse-" << name << "-" << numLevels() << ".png";
Debug::dumpRGBADeviceBuffer(ss1.str().c_str(), lvls[numLevels()].data(), lvls[numLevels()].width(),
lvls[numLevels()].height());
#endif
return Status::OK();
}
template <typename T>
Status LaplacianPyramid<T>::collapse(bool final, GPU::Stream stream) {
assert(levels[0].data().wasAllocated());
std::vector<LevelSpec<T>>& lvls = final ? levels : reconstructedLevels;
for (int level = numLevels() - 1; level >= 0; --level) {
LevelSpec<T>& curLevel = lvls[level];
// Upsample next level, store in devTmp:
const LevelSpec<T>& nextLevel = levels[level + 1];
FAIL_RETURN(
Image::upsample22(devTmp.borrow(), nextLevel.data(), curLevel.width(), curLevel.height(), wrap, stream));
// Add with current level:
FAIL_RETURN(Image::addRaw(curLevel.data(), devTmp.borrow_const(), curLevel.width() * curLevel.height(), stream));
}
return Status::OK();
}
template <typename T>
void LaplacianPyramid<T>::start(GPU::Buffer<T> result, GPU::Buffer<T> reconstruct, GPU::Stream stream) {
if (levelLocation == ExternalFirstLevel) {
if (reconstruction == Multiple) {
reconstructedLevels[0].setDataBuffer(reconstruct);
} else {
reconstructedLevels[0].setDataBuffer(result);
}
levels[0].setDataBuffer(result);
}
GPU::memsetToZeroAsync(pyramid.borrow(), devBufferSizeInPixels * sizeof(T), stream);
}
template class LaplacianPyramid<uint32_t>;
template class LaplacianPyramid<unsigned char>;
template class LaplacianPyramid<float2>;
} // namespace Core
} // namespace VideoStitch