rotationStabilization.cpp 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm

#include "rotationStabilization.hpp"

#include "motion/affineMotion.hpp"
#include "synchro/motionSyncFarneback.hpp"
#include "common/queue.hpp"
#include "common/thread.hpp"
#include "util/registeredAlgo.hpp"

#include "libvideostitch/logging.hpp"
#include "libvideostitch/inputDef.hpp"
#include "libvideostitch/inputFactory.hpp"
#include "libvideostitch/panoDef.hpp"
#include "libvideostitch/ptv.hpp"

#include <opencv2/core/core.hpp>

#include <atomic>
#include <sstream>
#ifndef NDEBUG
#include <iostream>
#endif

namespace VideoStitch {

namespace Stab {
namespace {
Util::RegisteredAlgo<RotationStabilizationAlgorithm> registered("stabilization");
}

RotationStabilizationAlgorithm::RotationStabilizationAlgorithm(const Ptv::Value* config)
    : firstFrame(0), lastFrame(1000), convolutionSpan(30) {
  if (config != NULL) {
    const Ptv::Value* value = config->has("first_frame");
    if (value && value->getType() == Ptv::Value::INT) {
      firstFrame = value->asInt();
    }
    value = config->has("last_frame");
    if (value && value->getType() == Ptv::Value::INT) {
      lastFrame = value->asInt();
    }
    value = config->has("devices");
    if (value && value->getType() == Ptv::Value::LIST) {
      const std::vector<Ptv::Value*>& devIds = value->asList();
      for (std::vector<Ptv::Value*>::const_iterator d = devIds.begin(); d != devIds.end(); ++d) {
        value = (*d)->has("id");
        if (value && value->getType() == Ptv::Value::INT) {
          devices.push_back((int)value->asInt());
        }
      }
    }
    value = config->has("convolution_span");
    if (value && value->getType() == Ptv::Value::INT) {
      convolutionSpan = value->asInt();
    }
    if (devices.size() == 0) devices.push_back(0);
  }
}

RotationStabilizationAlgorithm::~RotationStabilizationAlgorithm() {}

const char* RotationStabilizationAlgorithm::docString =
    "An algorithm that attemps to smooth camera movements with jitter.\n"
    "The configuration is as follow:\n"
    "{ \"first_frame\"       # The first frame of the sequence to stabilize\n"
    "  \"last_frame\"        # The last frame of the sequence to stabilize\n"
    "  \"convolution_span\"  # The radius in frame of the convolution\n"
    "                        # This corresponds to the low-pass frequency of the non-jitter movement,\n"
    "                        # eg. for removing vibrations at a frequency of 6 frames/sec, set the\n"
    "                        # radius to 6 or more.\n"
    "}\n";

namespace {
struct OpticalFlow {
  OpticalFlow() : frame(0) {}

  OpticalFlow(int64_t fr,
              std::vector<std::pair<Motion::ImageSpace::MotionVectorField, const Core::InputDefinition*> >& fi)
      : frame(fr), field(fi) {}

  int64_t frame;
  std::vector<std::pair<Motion::ImageSpace::MotionVectorField, const Core::InputDefinition*> > field;
};

struct OpticalFlowCompare {
  bool operator()(const OpticalFlow& lhs, const OpticalFlow& rhs) const { return lhs.frame > rhs.frame; }
};

class RotationModelFitting : public ThreadPool::Task {
 public:
  typedef Motion::RotationalMotionModelEstimation::MotionModel MotionModel;

  RotationModelFitting(const Core::PanoDefinition& pano, int64_t firstFrame, int64_t lastFrame,
                       Util::Algorithm::ProgressReporter* progress,
                       std::vector<std::queue<VideoStitch::Motion::OpticalFlow> >& opticalFlowFields,
                       std::mutex& queuesLock, MotionModel& model, std::mutex& modelLock, std::atomic<int>& frameCnt,
                       std::atomic<int>& cancellation)
      : estimator(pano),
        firstFrame(firstFrame),
        lastFrame(lastFrame),
        progress(progress),
        opticalFlowFields(opticalFlowFields),
        queuesLock(queuesLock),
        model(model),
        modelLock(modelLock),
        frameCounter(frameCnt),
        cancellation(cancellation) {}

  virtual void run() {
    for (;;) {
      if (cancellation) {
        return;
      }
      if (frameCounter == (lastFrame - firstFrame)) {
        return;
      }
      std::vector<std::pair<Motion::ImageSpace::MotionVectorField, const Core::InputDefinition*> > field;
      int currentFrame = 0;
      {
        std::unique_lock<std::mutex> ql(queuesLock);
        bool atLeastOneEmptyQueue = false;
        for (std::size_t i = 0; i < opticalFlowFields.size(); ++i) {
          atLeastOneEmptyQueue = atLeastOneEmptyQueue || opticalFlowFields[i].empty();
        }
        if (atLeastOneEmptyQueue) {
          continue;
        }

        currentFrame = opticalFlowFields.front().front().frame;
        bool allConsistent = true;
        for (std::size_t i = 1; i < opticalFlowFields.size(); ++i) {
          allConsistent = allConsistent && (currentFrame == opticalFlowFields[i].front().frame);
        }
        if (!allConsistent) {
          /// This should never happen
          std::ostringstream oss;
          oss << "RotationModelFitting: the set of processing queues is in an inconsistent state: ";
          for (std::size_t i = 0; i < opticalFlowFields.size(); ++i) {
            oss << opticalFlowFields[i].front().frame << "  ";
          }
          oss << "  Abording";
          Logger::get(Logger::Error) << oss.str() << std::endl;
          ++cancellation;
          return;
        }

        for (std::size_t i = 0; i < opticalFlowFields.size(); ++i) {
          field.push_back(std::make_pair(opticalFlowFields[i].front().field, opticalFlowFields[i].front().inputDef));
          opticalFlowFields[i].pop();
        }
      }

      // estimate the quaternion between last frame and current frame
      Quaternion<double> h;
      if (!estimator.motionModel(field, currentFrame, h).ok()) {
        Logger::get(Logger::Warning) << "Could not estimate rotation for frame " << currentFrame << ", skipping."
                                     << std::endl;
      }
      ++frameCounter;
      std::unique_lock<std::mutex> sl(modelLock);
      model[currentFrame] = h;
      std::stringstream ss;
      ss << "Computing rotational model for frame " << frameCounter << " out of " << lastFrame - firstFrame;
      if (cancellation > 0 ||
          (progress && progress->notify(ss.str(), (100.0 * (double)frameCounter) / (double)(lastFrame - firstFrame)))) {
        ++cancellation;
        return;
      }
    }
  }

 private:
  Motion::RotationalMotionModelEstimation estimator;
  int64_t firstFrame;
  int64_t lastFrame;
  Util::Algorithm::ProgressReporter* progress;
  std::vector<std::queue<VideoStitch::Motion::OpticalFlow> >& opticalFlowFields;
  std::mutex& queuesLock;
  MotionModel& model;
  std::mutex& modelLock;
  std::atomic<int>& frameCounter;
  std::atomic<int>& cancellation;
};
}  // namespace

namespace {
#ifndef NDEBUG
double radToDeg(double v) { return v * (180.0 / M_PI); }
#endif

inline cv::Vec4d quat2vec(Quaternion<double>& q) { return cv::Vec4d(q.getQ0(), q.getQ1(), q.getQ2(), q.getQ3()); }
}  // namespace

/**
 * For a sequence of unit quaternions qk, qk+1, qk+2, ...
 * with q = (cos(θk),sin(θk)nk)
 * Note that qk and − qk represent the same rotation (double folding property)
 * We need to first ensure that qk · ql > 0.
 * Now we can simply average them!
 *
 * Apply a temporal convolution, followed by a normalisation to unit length.
 * The length of the convolution can be a parameter.
 */
Potential<Ptv::Value> RotationStabilizationAlgorithm::apply(Core::PanoDefinition* pano, ProgressReporter* progress,
                                                            Util::OpaquePtr** ctx) const {
  std::mutex modelMutex;
  std::mutex queuesMutex;
  std::atomic<int> frameCounterOpticalFlow(0);
  std::atomic<int> frameCounterRotationEstimation(0);
  std::atomic<int> cancellation(0);
  std::atomic<int> failure(0);
  int numCores =
      getNumCores() < static_cast<int>(pano->numInputs()) ? getNumCores() : static_cast<int>(pano->numInputs());
  Logger::get(Logger::Warning) << "Num cores: " << numCores << std::endl;
  ThreadPool opticalFlowThreadPool(numCores);

  std::vector<int> numberOfProcessedFrames(pano->numInputs());
  Input::DefaultReaderFactory readerFactory((int)firstFrame, (int)lastFrame);
  std::vector<std::shared_ptr<Input::VideoReader> > readers;
  std::vector<const Core::InputDefinition*> inputDefs;

  frameid_t realLastFrame = static_cast<frameid_t>(lastFrame);
  std::vector<std::vector<std::size_t> > vectInputsPerCore(numCores);
  for (readerid_t indexSource = 0; indexSource < pano->numInputs(); ++indexSource) {
    vectInputsPerCore[indexSource % numCores].push_back(indexSource);

    const Core::InputDefinition* im = &(pano->getInput(indexSource));
    Potential<Input::Reader> reader = readerFactory.create(indexSource, *im);
    FAIL_CAUSE(reader.status(), Origin::StabilizationAlgorithm, ErrType::SetupFailure,
               "Could not create input readers");

    Input::VideoReader* videoReader = dynamic_cast<Input::VideoReader*>(reader.release());
    if (videoReader) {
      readers.push_back(std::shared_ptr<Input::VideoReader>(videoReader));
    }
    frameid_t lastFrameCurrentReader = videoReader->getLastFrame() - pano->getInput(indexSource).getFrameOffset();
    if (lastFrameCurrentReader < realLastFrame) {
      realLastFrame = lastFrameCurrentReader;
    }
    inputDefs.push_back(im);
  }
  if (realLastFrame < static_cast<frameid_t>(lastFrame)) {
    std::ostringstream oss;
    oss << "Last frame out of range. Updating last frame from " << lastFrame << " to " << realLastFrame << std::endl;
    Logger::get(Logger::Warning) << oss.str() << std::endl;
    lastFrame = realLastFrame;
  }

  std::vector<Motion::AffineMotionModelEstimation::MotionModel> motionModels;
  std::vector<std::vector<double> > magnitudes;
  std::vector<std::queue<VideoStitch::Motion::OpticalFlow> > opticalFlowFields(pano->numInputs());

  ThreadPool globalRotationEstimationThreadPool(numCores);

  int w = static_cast<int>(readers.front()->getWidth());
  int h = static_cast<int>(readers.front()->getHeight());
  int minDim = w < h ? w : h;

  int minSize = 128;
  int downscaleFactor = 1;
  while ((minDim / (2 * downscaleFactor)) > minSize) {
    downscaleFactor *= 2;
  }

  StabContext* state = NULL;
  if (ctx == NULL) {
    state = new StabContext();  // no memoization
  } else {
    if (*ctx == NULL) {
      *ctx = new StabContext();  // bootstrap memoization
    }
    state = dynamic_cast<StabContext*>(*ctx);
  }

  for (int indexCore = 0; indexCore < numCores; ++indexCore) {
    std::unique_ptr<Synchro::MotionEstimationTaskFarneback> taskFarneback(new Synchro::MotionEstimationTaskFarneback(
        progress, firstFrame, lastFrame, pano->numInputs(), readers, inputDefs, vectInputsPerCore[indexCore],
        motionModels, magnitudes, opticalFlowFields, numberOfProcessedFrames, frameCounterOpticalFlow, cancellation,
        failure, queuesMutex, downscaleFactor, 100, true));
    if (taskFarneback == nullptr) {
      return {Origin::StabilizationAlgorithm, ErrType::SetupFailure, "Could not initialize the motion estimation task"};
    }
    opticalFlowThreadPool.tryRun(taskFarneback.release());
  }

  for (int indexCore = 0; indexCore < numCores; ++indexCore) {
    std::unique_ptr<RotationModelFitting> taskRotationModel(
        new RotationModelFitting(*pano, firstFrame, lastFrame, nullptr, opticalFlowFields, queuesMutex, state->models,
                                 modelMutex, frameCounterRotationEstimation, cancellation));
    if (taskRotationModel == nullptr) {
      return {Origin::StabilizationAlgorithm, ErrType::SetupFailure, "Could not initialize the rotation model fitting"};
    }
    globalRotationEstimationThreadPool.tryRun(taskRotationModel.release());
  }

  opticalFlowThreadPool.waitAll();
  globalRotationEstimationThreadPool.waitAll();

#ifndef NDEBUG
  Logger::get(Logger::Debug) << "RotationStabilizationAlgorithm: frameCounterOpticalFlow: " << frameCounterOpticalFlow
                             << std::endl;
  Logger::get(Logger::Debug) << "RotationStabilizationAlgorithm: frameCounterRotationEstimation: "
                             << frameCounterRotationEstimation << std::endl;
  for (std::size_t i = 0; i < opticalFlowFields.size(); ++i) {
    Logger::get(Logger::Debug) << "RotationStabilizationAlgorithm: opticalFlowFields[" << i
                               << "] : " << opticalFlowFields[i].size() << std::endl;
  }
#endif

  if (cancellation) {
    return Status{Origin::StabilizationAlgorithm, ErrType::OperationAbortedByUser, "Algorithm cancelled"};
  }

  if (failure) {
    return Status{Origin::StabilizationAlgorithm, ErrType::OutOfResources, ""};
  }

  // From a motion model to a panorama-orientation model
  std::vector<Quaternion<double> > orientations;
  Quaternion<double> acc;
  const int64_t kUnknown = std::numeric_limits<size_t>::max();
  int64_t interpolate_from = kUnknown;
  for (int64_t i = firstFrame; i <= lastFrame; ++i) {
    const auto& m = state->models[i];
    if (m.getQ0() != 0.0 || m.getQ1() != 0.0 || m.getQ2() != 0.0 || m.getQ3() != 0.0) {
      if (interpolate_from != kUnknown) {
        // recover from interpolation mode
        // interpolate between last known and first correct quaternion
        for (int64_t j = 1; j < i - interpolate_from; ++j) {
          acc *= Quaternion<double>::slerp(state->models[(size_t)interpolate_from], m,
                                           (double)j / (double)(i - interpolate_from));
          orientations.push_back(acc.conjugate());
        }
        interpolate_from = kUnknown;
      }
      // standard case
      acc *= m;
      orientations.push_back(acc.conjugate());
    } else if (interpolate_from == kUnknown) {
      interpolate_from = i - 1;
    }
  }

  // Average the camera attitudes over the decay span,
  // use it as a target attitude
  // http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070017872.pdf
  std::vector<Quaternion<double> > target;
  for (int i = 0; i < (int)orientations.size(); ++i) {
    cv::Matx<double, 4, 4> M = quat2vec(orientations[i]) * quat2vec(orientations[i]).t();
    for (int j = 1; j <= (int)convolutionSpan; j++) {
      if (i - j >= 0) M += quat2vec(orientations[i - j]) * quat2vec(orientations[i - j]).t();
      if (i + j < (int)orientations.size()) M += quat2vec(orientations[i + j]) * quat2vec(orientations[i + j]).t();
    }

#ifndef NDEBUG
    Logger::get(Logger::Debug) << "RotationStabilizationAlgorithm: Matrix M" << std::endl;
    for (int indexRow = 0; indexRow < M.rows; ++indexRow) {
      for (int indexCol = 0; indexCol < M.cols; ++indexCol) {
        Logger::get(Logger::Debug) << M(indexRow, indexCol) << "\t";
      }
      Logger::get(Logger::Debug) << std::endl;
    }
#endif

    // take the eigenvector of M with the biggest eigenvalue and normalize it
    cv::Matx<double, 4, 4> eigenvectors;
    cv::Matx<double, 4, 1> eigenvalues;
    cv::eigen(M, eigenvalues, eigenvectors);

#ifndef NDEBUG
    Logger::get(Logger::Debug) << "RotationStabilizationAlgorithm: eigenvectors:" << std::endl;
    for (int indexRow = 0; indexRow < eigenvectors.rows; ++indexRow) {
      for (int indexCol = 0; indexCol < eigenvectors.cols; ++indexCol) {
        Logger::get(Logger::Debug) << eigenvectors(indexRow, indexCol) << "\t";
      }
      Logger::get(Logger::Debug) << std::endl;
    }
    Logger::get(Logger::Debug) << std::endl
                               << "RotationStabilizationAlgorithm: eigenvalues: " << eigenvalues(0, 0) << " "
                               << eigenvalues(1, 0) << " " << eigenvalues(2, 0) << " " << eigenvalues(3, 0)
                               << std::endl;
#endif

    // eigen returns eigenvalues in descending order
    Quaternion<double> attitude(eigenvectors(0, 0), eigenvectors(0, 1), eigenvectors(0, 2), eigenvectors(0, 3));
    target.push_back(attitude / attitude.norm());
  }

#ifndef NDEBUG
  // GNUPlot command:
  // plot "plot.data" using 2 title "Yaw", "plot.data" using 3 title "Pitch", "plot.data" using 4 title "Roll"
  // plot "plot.data" using 2 title "Yaw", "plot.data" using 3 title "Pitch", "plot.data" using 4 title "Roll",
  // "plot.data" using 5 title "Corrected Yaw", "plot.data" using 6 title "Corrected Pitch", "plot.data" using 7 title
  // "Corrected Roll" plot "plot.data" using 2 title "Yaw", "plot.data" using 3 title "Pitch", "plot.data" using 4 title
  // "Roll", "plot.data" using 5 title "Target Yaw", "plot.data" using 6 title "Target Pitch", "plot.data" using 7 title
  // "Target Roll", "plot.data" using 8 title "Yaw Correction", "plot.data" using 9 title "Pitch Correction",
  // "plot.data" using 10 title "Roll Correction"
  for (size_t i = 0; i < orientations.size(); ++i) {
    double yaw, pitch, roll;
    double tar_yaw, tar_pitch, tar_roll;
    double corr_yaw, corr_pitch, corr_roll;
    Quaternion<double> r = orientations[i].conjugate() * target[i];
    orientations[i].toEuler(yaw, pitch, roll);
    target[i].toEuler(tar_yaw, tar_pitch, tar_roll);
    r.toEuler(corr_yaw, corr_pitch, corr_roll);
    Quaternion<double> fake = orientations[i].conjugate();
    double fcorr_yaw, fcorr_pitch, fcorr_roll;
    fake.toEuler(fcorr_yaw, fcorr_pitch, fcorr_roll);
    // std::cout << "Frame" << i << " " << radToDeg(yaw) << " " << radToDeg(pitch) << " " << radToDeg(roll);
    // std::cout << " " << radToDeg(tar_yaw) << " " << radToDeg(tar_pitch) << " " << radToDeg(tar_roll);
    // std::cout << " " << radToDeg(corr_yaw) << " " << radToDeg(corr_pitch) << " " << radToDeg(corr_roll) << std::endl;
    std::cout << radToDeg(roll) << " " << radToDeg(tar_roll) << " " << radToDeg(corr_roll) << " "
              << radToDeg(fcorr_roll) << std::endl;
  }
#endif

  // apply the rotation from the current orientation to the target orientation
  // we want the initial frame to have the same orientation as the stabilized
  // previous frame before correction
  // initial = orientations[firstFrame+1].conjugate() * target[firstFrame+1] * correction
  // correction = target[firstFrame+1].conjugate() * orientations[firstFrame+1] * initial
  Quaternion<double> initial = pano->getStabilization().at((int)firstFrame);
  Quaternion<double> correction = target[0].conjugate() * orientations[0] * initial;
  Core::SphericalSpline* head = Core::SphericalSpline::point((int)firstFrame, initial);
  Core::SphericalSpline* spline = head;
  for (size_t i = 0; i < orientations.size(); ++i) {
    Quaternion<double> r = orientations[i].conjugate() * target[i] * correction;
    spline = spline->lineTo((int)(firstFrame + i + 1), r);
  }
  Core::QuaternionCurve* stab = new Core::QuaternionCurve(head);

  stab->extend(&pano->getStabilization());
  pano->replaceStabilization(stab);
  Core::Curve *yaw = NULL, *pitch = NULL, *roll = NULL;
  Core::toEuler(pano->getStabilization(), &yaw, &pitch, &roll);
  pano->replaceStabilizationYaw(yaw);
  pano->replaceStabilizationPitch(pitch);
  pano->replaceStabilizationRoll(roll);

  if (ctx == NULL) {
    delete state;
  }

  return Potential<Ptv::Value>(Status::OK());
}

}  // namespace Stab
}  // namespace VideoStitch