imageMapping.cpp 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
// Copyright (c) 2012-2017 VideoStitch SAS
// Copyright (c) 2018 stitchEm

#include "imageMapping.hpp"

#include "imageMerger.hpp"
#include "inputsMap.hpp"
#include "inputsMapCubemap.hpp"

#include "gpu/allocator.hpp"
#include "gpu/buffer.hpp"
#include "gpu/memcpy.hpp"
#include "image/unpack.hpp"
#include "gpu/core1/transform.hpp"
#include "parallax/imageWarper.hpp"
#include "parallax/imageFlow.hpp"

#include "libvideostitch/imageMergerFactory.hpp"
#include "libvideostitch/imageWarperFactory.hpp"
#include "libvideostitch/imageFlowFactory.hpp"
#include "libvideostitch/input.hpp"
#include "libvideostitch/inputDef.hpp"
#include "libvideostitch/panoDef.hpp"
#include "libvideostitch/preprocessor.hpp"
#include "libvideostitch/profile.hpp"
#include "input/inputFrame.hpp"
#include "gpu/image/imgInsert.hpp"

#include <cmath>
#include <cassert>
#include <sstream>

#undef max

//#define READBACK_INPUT_IMAGE
//#define READBACKMAPPEDIMAGE

#if defined(READBACK_INPUT_IMAGE) || defined(READBACKMAPPEDIMAGE)
#include "util/debugUtils.hpp"
#include "util/imageProcessingGPUUtils.hpp"

#include <sstream>
#endif

namespace VideoStitch {
namespace Core {

ImageMapping::ImageMapping(videoreaderid_t imId)
    : outputBounds(),
      wrapsAround(-1),  // invalid
      imId(imId) {}

ImageMapping::~ImageMapping() {
  delete surface;
  delete transform;
  delete merger;
  delete devCoord;
}

Status ImageMapping::setup(ImageMapping* prevMapping, const PanoDefinition& pano,
                           const ImageMergerFactory& mergerFactory, std::shared_ptr<InputsMap> inputsMap,
                           GPU::Stream stream, bool progressive) {
  // create merger
  ImageMerger* prev = nullptr;
  if (prevMapping) prev = prevMapping->merger;
  Potential<ImageMerger> cur = mergerFactory.create(pano, *this, prev, progressive);
  if (!cur.ok()) {
    return Status(Origin::Stitcher, ErrType::SetupFailure, "Could not setup merger for input " + std::to_string(imId),
                  cur.status());
  }
  merger = cur.release();

  // create transform
  const InputDefinition& inputDef = pano.getInput(imId);
  transform = Transform::create(inputDef, merger->warpMergeType());
  if (!transform) {
    return {Origin::Stitcher, ErrType::SetupFailure,
            "Cannot create v1 transformation for input " + std::to_string(imId)};
  }

  if (pano.getProjection() == PanoProjection::Cubemap || pano.getProjection() == PanoProjection::EquiangularCubemap) {
    const Status status = merger->setupCubemap(pano, *inputsMap, *this, stream);
    if (!status.ok()) {
      return Status(Origin::Stitcher, ErrType::SetupFailure, "Could not setup merger for input " + std::to_string(imId),
                    status);
    }
  } else {
    const Status status = merger->setup(pano, *inputsMap, *this, stream);
    if (!status.ok()) {
      return Status(Origin::Stitcher, ErrType::SetupFailure, "Could not setup merger for input " + std::to_string(imId),
                    status);
    }
  }

  // Precompute coordinate buffer
  FAIL_RETURN(precomputedCoord(0, pano, stream));

  return Status::OK();
}

Status ImageMapping::warp(frameid_t frame, const PanoDefinition& pano, GPU::Buffer<uint32_t> buffer, GPU::Surface& surf,
                          GPU::Stream& stream) {
  if (outputBounds[EQUIRECTANGULAR].empty()) {
    return Status::OK();  // nothing to do.
  }
  const InputDefinition& inputDef = pano.getInput(imId);

  GPU::Buffer<uint32_t> devBuffer =
      (getMerger().warpMergeType() == ImageMerger::Format::None) ? devWork[EQUIRECTANGULAR].borrow() : buffer;
  const unsigned char* mask = getMerger().getMaskMerger() && (getMerger().warpMergeType() != ImageMerger::Format::None)
                                  ? getMerger().getMaskMerger()->getAlpha(EQUIRECTANGULAR).devicePtr()
                                  : nullptr;
  // start mapping
  Status s = pano.getPrecomputedCoordinateBuffer()
                 ? transform->mapBufferLookup(frame, devBuffer, surf, mask, getSurfaceCoord(),
                                              (float)(1.0 / pano.getPrecomputedCoordinateShrinkFactor()),
                                              outputBounds[EQUIRECTANGULAR], pano, inputDef, getSurface(), stream)

                 : transform->mapBuffer(frame, devBuffer, surf, mask, outputBounds[EQUIRECTANGULAR], pano, inputDef,
                                        getSurface(), stream);
#ifdef READBACKMAPPEDIMAGE
  if (!getOutputRect(EQUIRECTANGULAR).empty()) {
    stream.synchronize();
    std::stringstream ss;
    ss << "warped-";
    ss << imId << ".png";
    Debug::dumpRGBADeviceBuffer(ss.str().c_str(), devWork[EQUIRECTANGULAR].borrow(),
                                getOutputRect(EQUIRECTANGULAR).getWidth(), getOutputRect(EQUIRECTANGULAR).getHeight());
  }
#endif

  return s;
}

Status ImageMapping::warpCubemap(frameid_t frame, const PanoDefinition& pano, bool equiangular, GPU::Stream& stream) {
  const InputDefinition& inputDef = pano.getInput(imId);

  // start mapping
  Status s = transform->warpCubemap(
      frame, devWork[CUBE_MAP_POSITIVE_X].borrow(), outputBounds[CUBE_MAP_POSITIVE_X],
      devWork[CUBE_MAP_NEGATIVE_X].borrow(), outputBounds[CUBE_MAP_NEGATIVE_X], devWork[CUBE_MAP_POSITIVE_Y].borrow(),
      outputBounds[CUBE_MAP_POSITIVE_Y], devWork[CUBE_MAP_NEGATIVE_Y].borrow(), outputBounds[CUBE_MAP_NEGATIVE_Y],
      devWork[CUBE_MAP_POSITIVE_Z].borrow(), outputBounds[CUBE_MAP_POSITIVE_Z], devWork[CUBE_MAP_NEGATIVE_Z].borrow(),
      outputBounds[CUBE_MAP_NEGATIVE_Z], pano, inputDef, getSurface(), equiangular, stream);

#ifdef READBACKMAPPEDIMAGE
  for (int t = CUBE_MAP_POSITIVE_X; t <= CUBE_MAP_NEGATIVE_Z; ++t) {
    TextureTarget target = (TextureTarget)t;
    if (!getOutputRect(target).empty()) {
      stream.synchronize();
      std::stringstream ss;
      ss << "warped-";
      ss << imId << "-" << t << ".png";
      Debug::dumpRGBADeviceBuffer(ss.str().c_str(), devWork[t].borrow(), getOutputRect(target).getWidth(),
                                  getOutputRect(target).getHeight());
    }
  }
#endif

  return s;
}

Status ImageMapping::reconstruct(TextureTarget target, const PanoDefinition& pano, GPU::Buffer<uint32_t> progressivePbo,
                                 bool final, GPU::Stream& stream) const {
  if (final) {
    FAIL_RETURN(merger->reconstruct(target, pano, progressivePbo, false, stream));
  }
  return Status::OK();
}

ImageMappingFlow::~ImageMappingFlow() {
  delete warper;
  delete flow;
}

Status ImageMappingFlow::setup(ImageMappingFlow* prevMapping, const PanoDefinition& pano,
                               const StereoRigDefinition* rigDef, const ImageMergerFactory& mergerFactory,
                               std::vector<readerid_t> id0s, std::shared_ptr<InputsMap> inputsMap,
                               const ImageWarperFactory& warperFactory, const ImageFlowFactory& flowFactory,
                               GPU::Stream stream) {
  FAIL_RETURN(ImageMapping::setup(prevMapping, pano, mergerFactory, inputsMap, stream, true));

  if (prevMapping) {
    Potential<ImageWarper> potWarper = warperFactory.create();
    FAIL_RETURN(potWarper.status());

    if (potWarper->needImageFlow()) {
      id0s.push_back((int)(prevMapping->imId));
      Potential<MergerPair> curPair =
          MergerPair::create(pano, rigDef, 1024, 175, id0s, imId, prevMapping->getOutputRect(EQUIRECTANGULAR),
                             getOutputRect(EQUIRECTANGULAR), stream);
      FAIL_RETURN(curPair.status());

      // It is a valid merger pair if and only if they are overlapping
      // Or else, there is nothing to be done here
      // TODO: Need to extend this concept later, in case they are not overlapping
      // but close to each other, finding the flow will potentially increase the
      // quality of blending
      if (curPair->doesOverlap()) {
        mergerPair = std::shared_ptr<MergerPair>(curPair.release());

        FAIL_RETURN(potWarper->init(mergerPair));
        FAIL_RETURN(potWarper->setupCommon(stream));
        warper = potWarper.release();

        Potential<ImageFlow> curFlow = flowFactory.create();
        FAIL_RETURN(curFlow.status());
        FAIL_RETURN(curFlow->init(mergerPair));
        flow = curFlow.release();
      }
    }
  }

  return Status::OK();
}

Status ImageMappingFlow::warp(frameid_t frame, const PanoDefinition& pano, GPU::Buffer<uint32_t> progressivePbo,
                              GPU::Surface& surf, GPU::Stream& stream) {
  // the first mapping is the reference image
  if (!mergerPair) {
    return ImageMapping::warp(frame, pano, progressivePbo, surf, stream);
  }

  // copy the input texture to a pixel buffer object
  GPU::memcpyAsync(devFlowIn.borrow(), getSurface(), stream);

  const int2 panoSize = make_int2((int)pano.getWidth(), (int)pano.getHeight());
  PROPAGATE_FAILURE_STATUS(flow->findMultiScaleImageFlow(
      frame, 0, panoSize, progressivePbo, make_int2(int(getSurface().width()), int(getSurface().height())),
      devFlowIn.borrow_const(), stream));

  int2 lookupOffset = flow->getLookupOffset(0);
  GPU::UniqueBuffer<float4> debug;
  PROPAGATE_FAILURE_STATUS(debug.alloc(outputBounds[0].getArea(), "Tmp Image Mapping"));
  GPU::UniqueBuffer<uint32_t> flowWarpedBuffer;
  PROPAGATE_FAILURE_STATUS(flowWarpedBuffer.alloc(outputBounds[0].getArea(), "Tmp Image Mapping"));

  // Need color remapping here as well, but this remain for later
  warper->warp(devWork[EQUIRECTANGULAR].borrow(), devFlowIn.borrow(), flow->getExtrapolatedFlowRect(0),
               flow->getFinalExtrapolatedFlowBuffer(), lookupOffset.x, lookupOffset.y, debug.borrow(),
               flowWarpedBuffer.borrow(), stream);
  PROPAGATE_FAILURE_STATUS(stream.synchronize());

#ifdef WARPED_INPUT_IMAGE
  {
    stream.synchronize();
    std::stringstream ss;
    ss.str("");
    ss << "debugOut-" << getImId() << ".png";
    Debug::dumpRGBADeviceBufferWithTransferFn<Debug::Float4ValueGetter<0, 1>, Debug::clamp0255>(
        ss.str().c_str(), debug.borrow_const(), outputBounds[EQUIRECTANGULAR].getWidth(),
        outputBounds[EQUIRECTANGULAR].getHeight());

    ss.str("");
    ss << "flowWarpedOut-" << getImId() << ".png";
    Debug::dumpRGBADeviceBuffer(ss.str().c_str(), flowWarpedBuffer.borrow_const(),
                                outputBounds[EQUIRECTANGULAR].getWidth(), outputBounds[EQUIRECTANGULAR].getHeight());

    ss.str("");
    ss << "warpedOut-" << getImId() << ".png";
    Debug::dumpRGBADeviceBuffer(ss.str().c_str(), devWork[EQUIRECTANGULAR].borrow_const(),
                                outputBounds[EQUIRECTANGULAR].getWidth(), outputBounds[EQUIRECTANGULAR].getHeight());

    GPU::UniqueBuffer<uint32_t> panoBuffer;
    PROPAGATE_FAILURE_STATUS(panoBuffer.alloc(pano.getWidth() * pano.getHeight(), "Tmp ImageMapping"));
    PROPAGATE_FAILURE_STATUS(Util::ImageProcessingGPU::packBuffer<uint32_t>(
        pano.getWidth(), 0, outputBounds[EQUIRECTANGULAR], devWork[EQUIRECTANGULAR].borrow_const(),
        Core::Rect(0, 0, pano.getHeight() - 1, pano.getWidth() - 1), panoBuffer.borrow(), stream));
    PROPAGATE_FAILURE_STATUS(stream.synchronize());
    ss.str("");
    ss << "warpedOutPanoSpace-" << getImId() << ".png";
    Debug::dumpRGBADeviceBuffer(ss.str().c_str(), panoBuffer.borrow_const(), pano.getWidth(), pano.getHeight());

    ss.str("");
    ss << "panoDevOut-" << getImId() << ".png";
    Debug::dumpRGBADeviceBuffer(ss.str().c_str(), panoDevOut, pano.getWidth(), pano.getHeight());
  }
#endif

  return Status::OK();
}

Status ImageMappingFlow::reconstruct(TextureTarget target, const PanoDefinition& pano,
                                     GPU::Buffer<uint32_t> progressivePbo, bool final, GPU::Stream& stream) const {
  if (merger->isMultiScale()) {
    FAIL_RETURN(merger->reconstruct(target, pano, progressivePbo, !final, stream));
  }
  return Status::OK();
}

Status ImageMapping::precomputedCoord(frameid_t frame, const PanoDefinition& pano, GPU::Stream& stream) {
  if (!pano.getPrecomputedCoordinateBuffer()) {
    return Status::OK();
  }
  setHBounds(EQUIRECTANGULAR_LOOKUP,
             int64_t(outputBounds[EQUIRECTANGULAR].left() / pano.getPrecomputedCoordinateShrinkFactor()),
             int64_t(outputBounds[EQUIRECTANGULAR].right() / pano.getPrecomputedCoordinateShrinkFactor()),
             int64_t(pano.getWidth() / pano.getPrecomputedCoordinateShrinkFactor()));
  setVBounds(EQUIRECTANGULAR_LOOKUP,
             int64_t(outputBounds[EQUIRECTANGULAR].top() / pano.getPrecomputedCoordinateShrinkFactor()),
             int64_t(outputBounds[EQUIRECTANGULAR].bottom() / pano.getPrecomputedCoordinateShrinkFactor()));

  // The coordinate buffer was not allocated, this is a valid call
  if (!devCoord || (devCoord->getWidth() != (size_t)outputBounds[EQUIRECTANGULAR_LOOKUP].getWidth()) ||
      (devCoord->getHeight() != (size_t)outputBounds[EQUIRECTANGULAR_LOOKUP].getHeight())) {
    delete devCoord;
    auto tex = Core::OffscreenAllocator::createCoordSurface(outputBounds[EQUIRECTANGULAR_LOOKUP].getWidth(),
                                                            outputBounds[EQUIRECTANGULAR_LOOKUP].getHeight(),
                                                            "Warped Coordinate Mapping");
    if (tex.ok()) {
      devCoord = tex.release();
    }
  }
  if (outputBounds.empty()) {
    return Status::OK();  // nothing to do.
  }
  const InputDefinition& inputDef = pano.getInput(imId);
  PROPAGATE_FAILURE_STATUS(transform->mapBufferCoord(frame, getSurfaceCoord(), outputBounds[EQUIRECTANGULAR_LOOKUP],
                                                     pano, inputDef, stream));
  return Status::OK();
}

Status ImageMapping::setupTexArrayAsync(frameid_t frame, const Input::PotentialFrame& inputFrame,
                                        const InputDefinition& inputDef, GPU::Stream& stream,
                                        Input::VideoReader* reader, const PreProcessor* preprocessor) {
  if (outputBounds.empty()) {
    return Status::OK();  // nothing to do.
  }

  GPU::Buffer<unsigned char> inputDevBuffer;
  if (inputFrame.status.ok()) {
    switch (inputFrame.frame.addressSpace()) {
      case Host:
        PROPAGATE_FAILURE_STATUS(GPU::memcpyAsync(devUnpackTmp.borrow(), inputFrame.frame.hostBuffer(),
                                                  (size_t)reader->getFrameDataSize(), stream));
        inputDevBuffer = devUnpackTmp.borrow();
        break;
      case Device:
        inputDevBuffer = inputFrame.frame.deviceBuffer();
        break;
    }
    PROPAGATE_FAILURE_STATUS(reader->unpackDevBuffer(getSurface(), inputDevBuffer, stream));
    if (preprocessor) {
      preprocessor->process(frame, getSurface(), inputDef.getWidth(), inputDef.getHeight(), imId, stream);
    }
  } else {
    // error policy : black frames in case of reader error/EOF
    // PROPAGATE_FAILURE_STATUS(GPU::memsetToZeroAsync(devOutBuf, inputDef.getWidth() * inputDef.getHeight() * 4,
    // stream));
  }

#ifdef READBACK_INPUT_IMAGE
  stream.synchronize();
  std::stringstream ss;
  ss << "inputdata-" << imId << ".png";
  Debug::dumpRGBATexture(ss.str().c_str(), getSurface(), inputDef.getWidth(), inputDef.getHeight());
#endif
  return Status::OK();
}

void ImageMapping::setHBounds(TextureTarget t, int64_t l, int64_t r, int64_t panoWidth) {
  assert(l <= panoWidth);
  if (t == EQUIRECTANGULAR) {
    if (l > r) {
      r += panoWidth;
      wrapsAround = 1;
    } else {
      wrapsAround = 0;
    }
  }
  outputBounds[t].setLeft(l);
  outputBounds[t].setRight(r);
}

void ImageMapping::setVBounds(TextureTarget t, int64_t top, int64_t bottom) {
  assert(top <= bottom);
  // see setHBounds
  outputBounds[t].setTop(top);
  outputBounds[t].setBottom(bottom);
}

Status ImageMapping::allocateUnpackBuffer(int64_t frameDataSize) {
  PROPAGATE_FAILURE_STATUS(devUnpackTmp.alloc((size_t)frameDataSize, "Unpacking Input Frame"));
  return Status::OK();
}

Status ImageMapping::allocateOutputBuffers(TextureTarget t, int64_t width, int64_t height) {
  if (!outputBounds[t].empty()) {
    PROPAGATE_FAILURE_STATUS(
        devWork[t].alloc((size_t)std::max(outputBounds[t].getArea(), width * height), "Warped Input Frame"));
  }
  return Status::OK();
}

Status ImageMappingFlow::allocateOutputBuffers(TextureTarget t, int64_t width, int64_t height) {
  ImageMapping::allocateOutputBuffers(t, width, height);
  if (!outputBounds[t].empty()) {
    PROPAGATE_FAILURE_STATUS(
        devFlowIn.alloc((size_t)std::max(outputBounds[t].getArea(), width * height), "Warped Input Frame"));
  }
  return Status::OK();
}

Status ImageMapping::allocateBuffers(TextureTarget t, int64_t width, int64_t height) {
  if (!surface) {
    auto tex = OffscreenAllocator::createSourceSurface(width, height, "ImageMapping");
    if (tex.ok()) {
      surface = tex.release();
    }
  }
  return allocateOutputBuffers(t, width, height);
}

Status ImageMapping::allocateBuffersPartial(TextureTarget t, int64_t width, int64_t height,
                                            SourceSurface* sourceSurface) {
  surface = sourceSurface;
  return allocateOutputBuffers(t, width, height);
}
}  // namespace Core
}  // namespace VideoStitch