Commit d23b511e authored by Guillaume Seguin's avatar Guillaume Seguin

Factor our trackball into its own module, move things to printrun.gl

parent f9e9a074
...@@ -28,79 +28,9 @@ from pyglet.gl import * ...@@ -28,79 +28,9 @@ from pyglet.gl import *
from pyglet import gl from pyglet import gl
from . import gcoder from . import gcoder
from .glpanel import wxGLPanel from .gl.panel import wxGLPanel
from .libtatlin import actors from .gl.trackball import trackball, mulquat, build_rotmatrix
from .gl.libtatlin import actors
def cross(v1, v2):
return [v1[1]*v2[2]-v1[2]*v2[1], v1[2]*v2[0]-v1[0]*v2[2], v1[0]*v2[1]-v1[1]*v2[0]]
def trackball(p1x, p1y, p2x, p2y, r):
TRACKBALLSIZE = r
if p1x == p2x and p1y == p2y:
return [0.0, 0.0, 0.0, 1.0]
p1 = [p1x, p1y, project_to_sphere(TRACKBALLSIZE, p1x, p1y)]
p2 = [p2x, p2y, project_to_sphere(TRACKBALLSIZE, p2x, p2y)]
a = cross(p2, p1)
d = map(lambda x, y: x - y, p1, p2)
t = math.sqrt(sum(map(lambda x: x * x, d))) / (2.0 * TRACKBALLSIZE)
if (t > 1.0):
t = 1.0
if (t < -1.0):
t = -1.0
phi = 2.0 * math.asin(t)
return axis_to_quat(a, phi)
def axis_to_quat(a, phi):
lena = math.sqrt(sum(map(lambda x: x * x, a)))
q = map(lambda x: x * (1 / lena), a)
q = map(lambda x: x * math.sin(phi / 2.0), q)
q.append(math.cos(phi / 2.0))
return q
def build_rotmatrix(q):
m = (GLdouble * 16)()
m[0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2])
m[1] = 2.0 * (q[0] * q[1] - q[2] * q[3])
m[2] = 2.0 * (q[2] * q[0] + q[1] * q[3])
m[3] = 0.0
m[4] = 2.0 * (q[0] * q[1] + q[2] * q[3])
m[5] = 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0])
m[6] = 2.0 * (q[1] * q[2] - q[0] * q[3])
m[7] = 0.0
m[8] = 2.0 * (q[2] * q[0] - q[1] * q[3])
m[9] = 2.0 * (q[1] * q[2] + q[0] * q[3])
m[10] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0])
m[11] = 0.0
m[12] = 0.0
m[13] = 0.0
m[14] = 0.0
m[15] = 1.0
return m
def project_to_sphere(r, x, y):
d = math.sqrt(x * x + y * y)
if (d < r * 0.70710678118654752440):
return math.sqrt(r * r - d * d)
else:
t = r / 1.41421356237309504880
return t * t / d
def mulquat(q1, rq):
return [q1[3] * rq[0] + q1[0] * rq[3] + q1[1] * rq[2] - q1[2] * rq[1],
q1[3] * rq[1] + q1[1] * rq[3] + q1[2] * rq[0] - q1[0] * rq[2],
q1[3] * rq[2] + q1[2] * rq[3] + q1[0] * rq[1] - q1[1] * rq[0],
q1[3] * rq[3] - q1[0] * rq[0] - q1[1] * rq[1] - q1[2] * rq[2]]
class GcodeViewPanel(wxGLPanel): class GcodeViewPanel(wxGLPanel):
......
#!/usr/bin/env python #!/usr/bin/env python
# This file is part of the Printrun suite. # This file is part of the Printrun suite.
...@@ -28,8 +27,6 @@ pyglet.options['debug_gl'] = True ...@@ -28,8 +27,6 @@ pyglet.options['debug_gl'] = True
from pyglet.gl import * from pyglet.gl import *
from pyglet import gl from pyglet import gl
from . import gcoder
class wxGLPanel(wx.Panel): class wxGLPanel(wx.Panel):
'''A simple class for using OpenGL with wxPython.''' '''A simple class for using OpenGL with wxPython.'''
......
#!/usr/bin/env python
# This file is part of the Printrun suite.
#
# Printrun is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Printrun is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Printrun. If not, see <http://www.gnu.org/licenses/>.
from pyglet.gl import *
def cross(v1, v2):
return [v1[1]*v2[2]-v1[2]*v2[1], v1[2]*v2[0]-v1[0]*v2[2], v1[0]*v2[1]-v1[1]*v2[0]]
def trackball(p1x, p1y, p2x, p2y, r):
TRACKBALLSIZE = r
if p1x == p2x and p1y == p2y:
return [0.0, 0.0, 0.0, 1.0]
p1 = [p1x, p1y, project_to_sphere(TRACKBALLSIZE, p1x, p1y)]
p2 = [p2x, p2y, project_to_sphere(TRACKBALLSIZE, p2x, p2y)]
a = cross(p2, p1)
d = map(lambda x, y: x - y, p1, p2)
t = math.sqrt(sum(map(lambda x: x * x, d))) / (2.0 * TRACKBALLSIZE)
if (t > 1.0):
t = 1.0
if (t < -1.0):
t = -1.0
phi = 2.0 * math.asin(t)
return axis_to_quat(a, phi)
def axis_to_quat(a, phi):
lena = math.sqrt(sum(map(lambda x: x * x, a)))
q = map(lambda x: x * (1 / lena), a)
q = map(lambda x: x * math.sin(phi / 2.0), q)
q.append(math.cos(phi / 2.0))
return q
def build_rotmatrix(q):
m = (GLdouble * 16)()
m[0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2])
m[1] = 2.0 * (q[0] * q[1] - q[2] * q[3])
m[2] = 2.0 * (q[2] * q[0] + q[1] * q[3])
m[3] = 0.0
m[4] = 2.0 * (q[0] * q[1] + q[2] * q[3])
m[5] = 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0])
m[6] = 2.0 * (q[1] * q[2] - q[0] * q[3])
m[7] = 0.0
m[8] = 2.0 * (q[2] * q[0] - q[1] * q[3])
m[9] = 2.0 * (q[1] * q[2] + q[0] * q[3])
m[10] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0])
m[11] = 0.0
m[12] = 0.0
m[13] = 0.0
m[14] = 0.0
m[15] = 1.0
return m
def project_to_sphere(r, x, y):
d = math.sqrt(x * x + y * y)
if (d < r * 0.70710678118654752440):
return math.sqrt(r * r - d * d)
else:
t = r / 1.41421356237309504880
return t * t / d
def mulquat(q1, rq):
return [q1[3] * rq[0] + q1[0] * rq[3] + q1[1] * rq[2] - q1[2] * rq[1],
q1[3] * rq[1] + q1[1] * rq[3] + q1[2] * rq[0] - q1[0] * rq[2],
q1[3] * rq[2] + q1[2] * rq[3] + q1[0] * rq[1] - q1[1] * rq[0],
q1[3] * rq[3] - q1[0] * rq[0] - q1[1] * rq[1] - q1[2] * rq[2]]
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment