Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
M
MarlinKimbra
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
machinery
MarlinKimbra
Commits
b5a673fa
Commit
b5a673fa
authored
Feb 11, 2015
by
MagoKimbra
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix Temperature.cpp width arduino 1.6
parent
12485790
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
139 additions
and
126 deletions
+139
-126
temperature.cpp
MarlinKimbra/temperature.cpp
+139
-126
No files found.
MarlinKimbra/temperature.cpp
View file @
b5a673fa
...
@@ -210,7 +210,7 @@ static void updateTemperaturesFromRawValues();
...
@@ -210,7 +210,7 @@ static void updateTemperaturesFromRawValues();
#endif //WATCH_TEMP_PERIOD
#endif //WATCH_TEMP_PERIOD
#ifndef SOFT_PWM_SCALE
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#define SOFT_PWM_SCALE 0
#endif
#endif
#ifdef FILAMENT_SENSOR
#ifdef FILAMENT_SENSOR
...
@@ -242,41 +242,39 @@ void PID_autotune(float temp, int extruder, int ncycles)
...
@@ -242,41 +242,39 @@ void PID_autotune(float temp, int extruder, int ncycles)
float
Kp
,
Ki
,
Kd
;
float
Kp
,
Ki
,
Kd
;
float
max
=
0
,
min
=
10000
;
float
max
=
0
,
min
=
10000
;
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
(defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
unsigned
long
extruder_autofan_last_check
=
millis
();
unsigned
long
extruder_autofan_last_check
=
millis
();
#endif
#endif
if
((
extruder
>=
EXTRUDERS
)
#if (TEMP_BED_PIN <= -1)
#if (TEMP_BED_PIN <= -1)
||
(
extruder
<
0
)
if
((
extruder
>=
EXTRUDERS
)
||
(
extruder
<
0
))
#else
if
(
extruder
>=
EXTRUDERS
)
#endif
#endif
)
{
{
SERIAL_ECHOLN
(
"PID Autotune failed. Bad extruder number."
);
SERIAL_ECHOLN
(
"PID Autotune failed. Bad extruder number."
);
return
;
return
;
}
}
SERIAL_ECHOLN
(
"PID Autotune start"
);
SERIAL_ECHOLN
(
"PID Autotune start"
);
disable_heater
();
// switch off all heaters.
disable_heater
();
// switch off all heaters.
if
(
extruder
<
0
)
if
(
extruder
<
0
)
{
{
soft_pwm_bed
=
(
MAX_BED_POWER
)
/
2
;
soft_pwm_bed
=
(
MAX_BED_POWER
)
/
2
;
bias
=
d
=
(
MAX_BED_POWER
)
/
2
;
bias
=
d
=
(
MAX_BED_POWER
)
/
2
;
}
}
else
else
{
{
soft_pwm
[
extruder
]
=
(
PID_MAX
)
/
2
;
soft_pwm
[
extruder
]
=
(
PID_MAX
)
/
2
;
bias
=
d
=
(
PID_MAX
)
/
2
;
bias
=
d
=
(
PID_MAX
)
/
2
;
}
}
for
(;;)
{
for
(;;)
{
if
(
temp_meas_ready
==
true
)
{
// temp sample ready
if
(
temp_meas_ready
==
true
)
{
// temp sample ready
updateTemperaturesFromRawValues
();
updateTemperaturesFromRawValues
();
...
@@ -517,8 +515,8 @@ void checkExtruderAutoFans()
...
@@ -517,8 +515,8 @@ void checkExtruderAutoFans()
void
manage_heater
()
void
manage_heater
()
{
{
float
pid_input
;
static
float
pid_input
;
float
pid_output
;
static
float
pid_output
;
if
(
temp_meas_ready
!=
true
)
//better readability
if
(
temp_meas_ready
!=
true
)
//better readability
return
;
return
;
...
@@ -526,23 +524,24 @@ void manage_heater()
...
@@ -526,23 +524,24 @@ void manage_heater()
updateTemperaturesFromRawValues
();
updateTemperaturesFromRawValues
();
#ifdef HEATER_0_USES_MAX6675
#ifdef HEATER_0_USES_MAX6675
if
(
current_temperature
[
0
]
>
1023
||
current_temperature
[
0
]
>
HEATER_0_MAXTEMP
)
{
if
(
current_temperature
[
0
]
>
1023
||
current_temperature
[
0
]
>
HEATER_0_MAXTEMP
)
{
max_temp_error
(
0
);
max_temp_error
(
0
);
}
}
if
(
current_temperature
[
0
]
==
0
||
current_temperature
[
0
]
<
HEATER_0_MINTEMP
)
{
if
(
current_temperature
[
0
]
==
0
||
current_temperature
[
0
]
<
HEATER_0_MINTEMP
)
{
min_temp_error
(
0
);
min_temp_error
(
0
);
}
}
#endif //HEATER_0_USES_MAX6675
#endif //HEATER_0_USES_MAX6675
#ifndef SINGLENOZZLE
#ifndef SINGLENOZZLE
for
(
int
e
=
0
;
e
<
EXTRUDERS
;
e
++
)
for
(
int
e
=
0
;
e
<
EXTRUDERS
;
e
++
)
{
#else
#else
for
(
int
e
=
0
;
e
<
1
;
e
++
)
for
(
int
e
=
0
;
e
<
1
;
e
++
)
#endif // !SINLGENOZZE
{
{
#endif // !SINLGENOZZE
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
thermal_runaway_protection
(
&
thermal_runaway_state_machine
[
e
],
&
thermal_runaway_timer
[
e
],
current_temperature
[
e
],
target_temperature
[
e
],
e
,
THERMAL_RUNAWAY_PROTECTION_PERIOD
,
THERMAL_RUNAWAY_PROTECTION_HYSTERESIS
);
thermal_runaway_protection
(
&
thermal_runaway_state_machine
[
e
],
&
thermal_runaway_timer
[
e
],
current_temperature
[
e
],
target_temperature
[
e
],
e
,
THERMAL_RUNAWAY_PROTECTION_PERIOD
,
THERMAL_RUNAWAY_PROTECTION_HYSTERESIS
);
#endif
#endif
...
@@ -550,119 +549,133 @@ void manage_heater()
...
@@ -550,119 +549,133 @@ void manage_heater()
pid_input
=
current_temperature
[
e
];
pid_input
=
current_temperature
[
e
];
#ifndef PID_OPENLOOP
#ifndef PID_OPENLOOP
pid_error
[
e
]
=
target_temperature
[
e
]
-
pid_input
;
pid_error
[
e
]
=
target_temperature
[
e
]
-
pid_input
;
if
(
pid_error
[
e
]
>
PID_FUNCTIONAL_RANGE
)
{
if
(
pid_error
[
e
]
>
PID_FUNCTIONAL_RANGE
)
pid_output
=
BANG_MAX
;
{
pid_reset
[
e
]
=
true
;
pid_output
=
BANG_MAX
;
}
pid_reset
[
e
]
=
true
;
else
if
(
pid_error
[
e
]
<
-
PID_FUNCTIONAL_RANGE
||
target_temperature
[
e
]
==
0
)
{
}
pid_output
=
0
;
else
if
(
pid_error
[
e
]
<
-
PID_FUNCTIONAL_RANGE
||
target_temperature
[
e
]
==
0
)
pid_reset
[
e
]
=
true
;
{
pid_output
=
0
;
pid_reset
[
e
]
=
true
;
}
else
{
if
(
pid_reset
[
e
]
==
true
)
{
temp_iState
[
e
]
=
0.0
;
pid_reset
[
e
]
=
false
;
}
}
else
{
pTerm
[
e
]
=
Kp
[
e
]
*
pid_error
[
e
];
if
(
pid_reset
[
e
]
==
true
)
{
temp_iState
[
e
]
+=
pid_error
[
e
];
temp_iState
[
e
]
=
0.0
;
temp_iState
[
e
]
=
constrain
(
temp_iState
[
e
],
temp_iState_min
[
e
],
temp_iState_max
[
e
]);
pid_reset
[
e
]
=
false
;
iTerm
[
e
]
=
Ki
[
e
]
*
temp_iState
[
e
];
}
pTerm
[
e
]
=
Kp
[
e
]
*
pid_error
[
e
];
//K1 defined in Configuration.h in the PID settings
temp_iState
[
e
]
+=
pid_error
[
e
];
#define K2 (1.0-K1)
temp_iState
[
e
]
=
constrain
(
temp_iState
[
e
],
temp_iState_min
[
e
],
temp_iState_max
[
e
]);
dTerm
[
e
]
=
(
Kd
[
e
]
*
(
pid_input
-
temp_dState
[
e
]))
*
K2
+
(
K1
*
dTerm
[
e
]);
iTerm
[
e
]
=
Ki
[
e
]
*
temp_iState
[
e
];
pid_output
=
pTerm
[
e
]
+
iTerm
[
e
]
-
dTerm
[
e
];
if
(
pid_output
>
PID_MAX
)
//K1 defined in Configuration.h in the PID settings
{
#define K2 (1.0-K1)
if
(
pid_error
[
e
]
>
0
)
temp_iState
[
e
]
-=
pid_error
[
e
];
// conditional un-integration
dTerm
[
e
]
=
(
Kd
[
e
]
*
(
pid_input
-
temp_dState
[
e
]))
*
K2
+
(
K1
*
dTerm
[
e
]);
pid_output
=
PID_MAX
;
pid_output
=
pTerm
[
e
]
+
iTerm
[
e
]
-
dTerm
[
e
];
}
else
if
(
pid_output
<
0
)
if
(
pid_output
>
PID_MAX
)
{
{
if
(
pid_error
[
e
]
>
0
)
temp_iState
[
e
]
-=
pid_error
[
e
];
// conditional un-integration
if
(
pid_error
[
e
]
<
0
)
temp_iState
[
e
]
-=
pid_error
[
e
];
// conditional un-integration
pid_output
=
PID_MAX
;
pid_output
=
0
;
}
else
if
(
pid_output
<
0
){
if
(
pid_error
[
e
]
<
0
)
temp_iState
[
e
]
-=
pid_error
[
e
];
// conditional un-integration
pid_output
=
0
;
}
}
}
temp_dState
[
e
]
=
pid_input
;
}
#else
temp_dState
[
e
]
=
pid_input
;
pid_output
=
constrain
(
target_temperature
[
e
],
0
,
PID_MAX
);
#else
pid_output
=
constrain
(
target_temperature
[
e
],
0
,
PID_MAX
);
#endif //PID_OPENLOOP
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
#ifdef PID_DEBUG
SERIAL_ECHO_START
;
SERIAL_ECHO_START
;
SERIAL_ECHO
(
" PID_DEBUG "
);
SERIAL_ECHO
(
" PID_DEBUG "
);
SERIAL_ECHO
(
e
);
SERIAL_ECHO
(
e
);
SERIAL_ECHO
(
": Input "
);
SERIAL_ECHO
(
": Input "
);
SERIAL_ECHO
(
pid_input
);
SERIAL_ECHO
(
pid_input
);
SERIAL_ECHO
(
" Output "
);
SERIAL_ECHO
(
" Output "
);
SERIAL_ECHO
(
pid_output
);
SERIAL_ECHO
(
pid_output
);
SERIAL_ECHO
(
" pTerm "
);
SERIAL_ECHO
(
" pTerm "
);
SERIAL_ECHO
(
pTerm
[
e
]);
SERIAL_ECHO
(
pTerm
[
e
]);
SERIAL_ECHO
(
" iTerm "
);
SERIAL_ECHO
(
" iTerm "
);
SERIAL_ECHO
(
iTerm
[
e
]);
SERIAL_ECHO
(
iTerm
[
e
]);
SERIAL_ECHO
(
" dTerm "
);
SERIAL_ECHO
(
" dTerm "
);
SERIAL_ECHOLN
(
dTerm
[
e
]);
SERIAL_ECHOLN
(
dTerm
[
e
]);
#endif //PID_DEBUG
#endif //PID_DEBUG
#else
/
* PID off */
#else /
/NO PIDTEMP
pid_output
=
0
;
pid_output
=
0
;
if
(
current_temperature
[
e
]
<
target_temperature
[
e
])
{
if
(
current_temperature
[
e
]
<
target_temperature
[
e
])
{
pid_output
=
PID_MAX
;
pid_output
=
PID_MAX
;
}
}
#endif
#endif
//PIDTEMP
// Check if temperature is within the correct range
// Check if temperature is within the correct range
if
((
current_temperature
[
e
]
>
minttemp
[
e
])
&&
(
current_temperature
[
e
]
<
maxttemp
[
e
]))
if
((
current_temperature
[
e
]
>
minttemp
[
e
])
&&
(
current_temperature
[
e
]
<
maxttemp
[
e
]))
{
{
soft_pwm
[
e
]
=
(
int
)
pid_output
>>
1
;
soft_pwm
[
e
]
=
(
int
)
pid_output
>>
1
;
}
}
else
{
else
soft_pwm
[
e
]
=
0
;
{
}
soft_pwm
[
e
]
=
0
;
}
#ifdef WATCH_TEMP_PERIOD
#ifdef WATCH_TEMP_PERIOD
if
(
watchmillis
[
e
]
&&
millis
()
-
watchmillis
[
e
]
>
WATCH_TEMP_PERIOD
)
if
(
watchmillis
[
e
]
&&
millis
()
-
watchmillis
[
e
]
>
WATCH_TEMP_PERIOD
)
{
{
if
(
degHotend
(
e
)
<
watch_start_temp
[
e
]
+
WATCH_TEMP_INCREASE
)
if
(
degHotend
(
e
)
<
watch_start_temp
[
e
]
+
WATCH_TEMP_INCREASE
)
{
{
setTargetHotend
(
0
,
e
);
setTargetHotend
(
0
,
e
);
LCD_MESSAGEPGM
(
"Heating failed"
);
LCD_MESSAGEPGM
(
"Heating failed"
);
SERIAL_ECHO_START
;
SERIAL_ECHO_START
;
SERIAL_ECHOLN
(
"Heating failed"
);
SERIAL_ECHOLN
(
"Heating failed"
);
}
else
{
}
watchmillis
[
e
]
=
0
;
else
}
{
watchmillis
[
e
]
=
0
;
}
}
}
#endif
#endif //WATCH_TEMP_PERIOD
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if
(
fabs
(
current_temperature
[
0
]
-
redundant_temperature
)
>
MAX_REDUNDANT_TEMP_SENSOR_DIFF
)
{
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
disable_heater
();
if
(
fabs
(
current_temperature
[
0
]
-
redundant_temperature
)
>
MAX_REDUNDANT_TEMP_SENSOR_DIFF
)
if
(
IsStopped
()
==
false
)
{
{
SERIAL_ERROR_START
;
disable_heater
();
SERIAL_ERRORLNPGM
(
"Extruder switched off. Temperature difference between temp sensors is too high !"
);
if
(
IsStopped
()
==
false
)
LCD_ALERTMESSAGEPGM
(
"Err: REDUNDANT TEMP ERROR"
);
{
}
SERIAL_ERROR_START
;
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
SERIAL_ERRORLNPGM
(
"Extruder switched off. Temperature difference between temp sensors is too high !"
);
Stop
();
LCD_ALERTMESSAGEPGM
(
"Err: REDUNDANT TEMP ERROR"
);
#endif
}
}
#endif
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop
();
#endif
}
#endif //TEMP_SENSOR_1_AS_REDUNDANT
}
// End extruder for loop
}
// End extruder for loop
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
if
(
millis
()
-
extruder_autofan_last_check
>
2500
)
// only need to check fan state very infrequently
if
(
millis
()
-
extruder_autofan_last_check
>
2500
)
// only need to check fan state very infrequently
{
{
checkExtruderAutoFans
();
checkExtruderAutoFans
();
extruder_autofan_last_check
=
millis
();
extruder_autofan_last_check
=
millis
();
}
}
#endif
#endif
#ifndef PIDTEMPBED
#ifndef PIDTEMPBED
if
(
millis
()
-
previous_millis_bed_heater
<
BED_CHECK_INTERVAL
)
if
(
millis
()
-
previous_millis_bed_heater
<
BED_CHECK_INTERVAL
)
return
;
return
;
previous_millis_bed_heater
=
millis
();
previous_millis_bed_heater
=
millis
();
#endif
#endif
#if TEMP_SENSOR_BED != 0
#if TEMP_SENSOR_BED != 0
#if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
#if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
thermal_runaway_protection
(
&
thermal_runaway_bed_state_machine
,
&
thermal_runaway_bed_timer
,
current_temperature_bed
,
target_temperature_bed
,
9
,
THERMAL_RUNAWAY_PROTECTION_BED_PERIOD
,
THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS
);
thermal_runaway_protection
(
&
thermal_runaway_bed_state_machine
,
&
thermal_runaway_bed_timer
,
current_temperature_bed
,
target_temperature_bed
,
9
,
THERMAL_RUNAWAY_PROTECTION_BED_PERIOD
,
THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS
);
#endif
#endif
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment