Commit b0afb3e3 authored by MagoKimbra's avatar MagoKimbra

Update more fuction

parent 4c81e56a
...@@ -75,6 +75,11 @@ ...@@ -75,6 +75,11 @@
// This is used for single nozzle and multiple extrusion configuration // This is used for single nozzle and multiple extrusion configuration
// Uncomment below to enable (One Hotend) // Uncomment below to enable (One Hotend)
//#define SINGLENOZZLE //#define SINGLENOZZLE
#ifdef SINGLENOZZLE
#define HOTENDS 1
#else
#define HOTENDS EXTRUDERS
#endif
/*********************************************************************** /***********************************************************************
*********************** Multiextruder MKR4 *************************** *********************** Multiextruder MKR4 ***************************
......
This diff is collapsed.
...@@ -126,11 +126,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the log ...@@ -126,11 +126,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the log
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this #define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Set the number of grid points per dimension // Set the number of grid points per dimension
......
...@@ -126,11 +126,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the lo ...@@ -126,11 +126,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the lo
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this #define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Set the number of grid points per dimension // Set the number of grid points per dimension
......
...@@ -150,11 +150,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the log ...@@ -150,11 +150,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the log
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this #define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Set the number of grid points per dimension // Set the number of grid points per dimension
......
...@@ -252,19 +252,17 @@ extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in m ...@@ -252,19 +252,17 @@ extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in m
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS]; extern float current_position[NUM_AXIS];
extern float destination[NUM_AXIS]; extern float destination[NUM_AXIS];
extern float add_homing[3]; extern float home_offset[3];
// Extruder offset // Hotend offset
#if EXTRUDERS > 1 #if HOTENDS > 1
#ifndef SINGLENOZZLE
#ifndef DUAL_X_CARRIAGE #ifndef DUAL_X_CARRIAGE
#define NUM_HOTEND_OFFSETS 2 // only in XY plane #define NUM_HOTEND_OFFSETS 2 // only in XY plane
#else #else
#define NUM_HOTEND_OFFSETS 3 // supports offsets in XYZ plane #define NUM_HOTEND_OFFSETS 3 // supports offsets in XYZ plane
#endif #endif
extern float hotend_offset[NUM_HOTEND_OFFSETS][EXTRUDERS]; extern float hotend_offset[NUM_HOTEND_OFFSETS][HOTENDS];
#endif // end SINGLENOZZLE #endif // HOTENDS > 1
#endif // end EXTRUDERS
#ifdef NPR2 #ifdef NPR2
extern int old_color; // old color for system NPR2 extern int old_color; // old color for system NPR2
......
This diff is collapsed.
...@@ -504,7 +504,6 @@ void CardReader::printingHasFinished() { ...@@ -504,7 +504,6 @@ void CardReader::printingHasFinished() {
startFileprint(); startFileprint();
} }
else { else {
quickStop();
file.close(); file.close();
sdprinting = false; sdprinting = false;
if (SD_FINISHED_STEPPERRELEASE) { if (SD_FINISHED_STEPPERRELEASE) {
......
...@@ -4448,7 +4448,7 @@ DaveX plan for Teensylu/printrboard-type pinouts (ref teensylu & sprinter) for a ...@@ -4448,7 +4448,7 @@ DaveX plan for Teensylu/printrboard-type pinouts (ref teensylu & sprinter) for a
/**************************************************************************************** /****************************************************************************************
************************************* FEATURE ******************************************* ************************************* FEATURE *******************************************
/****************************************************************************************/ ****************************************************************************************/
#ifdef SINGLENOZZLE #ifdef SINGLENOZZLE
#undef HEATER_1_PIN #undef HEATER_1_PIN
......
...@@ -107,11 +107,8 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; ...@@ -107,11 +107,8 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
X_DIR_WRITE(v); \ X_DIR_WRITE(v); \
X2_DIR_WRITE(v); \ X2_DIR_WRITE(v); \
} \ } \
else{ \ else { \
if (current_block->active_driver) \ if (current_block->active_driver) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
X2_DIR_WRITE(v); \
else \
X_DIR_WRITE(v); \
} }
#define X_APPLY_STEP(v,ALWAYS) \ #define X_APPLY_STEP(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \ if (extruder_duplication_enabled || ALWAYS) { \
...@@ -119,10 +116,7 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; ...@@ -119,10 +116,7 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
X2_STEP_WRITE(v); \ X2_STEP_WRITE(v); \
} \ } \
else { \ else { \
if (current_block->active_driver != 0) \ if (current_block->active_driver != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
X2_STEP_WRITE(v); \
else \
X_STEP_WRITE(v); \
} }
#else #else
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v) #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
...@@ -130,16 +124,16 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; ...@@ -130,16 +124,16 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
#endif #endif
#ifdef Y_DUAL_STEPPER_DRIVERS #ifdef Y_DUAL_STEPPER_DRIVERS
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR) #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v) #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
#else #else
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v) #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v) #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
#endif #endif
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v) #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v) #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
#else #else
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v) #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v) #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
......
This diff is collapsed.
...@@ -40,21 +40,12 @@ void manage_heater(); //it is critical that this is called periodically. ...@@ -40,21 +40,12 @@ void manage_heater(); //it is critical that this is called periodically.
// low level conversion routines // low level conversion routines
// do not use these routines and variables outside of temperature.cpp // do not use these routines and variables outside of temperature.cpp
#ifndef SINGLENOZZLE extern int target_temperature[HOTENDS];
extern int target_temperature[EXTRUDERS]; extern float current_temperature[HOTENDS];
extern float current_temperature[EXTRUDERS]; #ifdef SHOW_TEMP_ADC_VALUES
#ifdef SHOW_TEMP_ADC_VALUES extern int current_temperature_raw[HOTENDS];
extern int current_temperature_raw[EXTRUDERS];
extern int current_temperature_bed_raw;
#endif
#else
extern int target_temperature[1];
extern float current_temperature[1];
#ifdef SHOW_TEMP_ADC_VALUES
extern int current_temperature_raw[1];
extern int current_temperature_bed_raw; extern int current_temperature_bed_raw;
#endif #endif
#endif //SINGLENOZZLE
extern int target_temperature_bed; extern int target_temperature_bed;
extern float current_temperature_bed; extern float current_temperature_bed;
...@@ -67,11 +58,7 @@ extern float current_temperature_bed; ...@@ -67,11 +58,7 @@ extern float current_temperature_bed;
#endif #endif
#ifdef PIDTEMP #ifdef PIDTEMP
#ifndef SINGLENOZZLE extern float Kp[HOTENDS],Ki[HOTENDS],Kd[HOTENDS];
extern float Kp[EXTRUDERS],Ki[EXTRUDERS],Kd[EXTRUDERS];
#else
extern float Kp[1],Ki[1],Kd[1];
#endif
float scalePID_i(float i); float scalePID_i(float i);
float scalePID_d(float d); float scalePID_d(float d);
float unscalePID_i(float i); float unscalePID_i(float i);
...@@ -89,64 +76,33 @@ extern float current_temperature_bed; ...@@ -89,64 +76,33 @@ extern float current_temperature_bed;
//high level conversion routines, for use outside of temperature.cpp //high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease. //inline so that there is no performance decrease.
//deg=degreeCelsius //deg=degreeCelsius
#if HOTENDS <= 1
FORCE_INLINE float degHotend(uint8_t extruder) { #define HOTEND_ARG 0
#ifndef SINGLENOZZLE
return current_temperature[extruder];
#else #else
return current_temperature[0]; #define HOTEND_ARG hotend
#endif #endif
}
#ifdef SHOW_TEMP_ADC_VALUES FORCE_INLINE float degHotend(uint8_t hotend) { return current_temperature[HOTEND_ARG]; }
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { FORCE_INLINE float degBed() { return current_temperature_bed; }
#ifndef SINGLENOZZLE
return current_temperature_raw[extruder];
#else
return current_temperature_raw[0];
#endif
}
#ifdef SHOW_TEMP_ADC_VALUES
FORCE_INLINE float rawHotendTemp(uint8_t hotend) { return current_temperature_raw[HOTEND_ARG]; }
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; } FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif //SHOW_TEMP_ADC_VALUES #endif //SHOW_TEMP_ADC_VALUES
FORCE_INLINE float degBed() { return current_temperature_bed; } FORCE_INLINE float degTargetHotend(uint8_t hotend) { return target_temperature[HOTEND_ARG]; }
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
#ifndef SINGLENOZZLE
return target_temperature[extruder];
#else
return target_temperature[0];
#endif
}
FORCE_INLINE float degTargetBed() { return target_temperature_bed; } FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t hotend) { target_temperature[HOTEND_ARG] = celsius; }
#ifndef SINGLENOZZLE
target_temperature[extruder] = celsius;
#else
target_temperature[0] = celsius;
#endif
}
FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; } FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; }
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { FORCE_INLINE bool isHeatingHotend(uint8_t hotend) { return target_temperature[HOTEND_ARG] > current_temperature[HOTEND_ARG]; }
#ifndef SINGLENOZZLE
return target_temperature[extruder] > current_temperature[extruder];
#else
return target_temperature[0] > current_temperature[0];
#endif
}
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; } FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { FORCE_INLINE bool isCoolingHotend(uint8_t hotend) { return target_temperature[HOTEND_ARG] < current_temperature[HOTEND_ARG]; }
#ifndef SINGLENOZZLE
return target_temperature[extruder] < current_temperature[extruder];
#else
return target_temperature[0] < current_temperature[0];
#endif
}
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; } FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
...@@ -155,7 +111,7 @@ FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_tempe ...@@ -155,7 +111,7 @@ FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_tempe
#define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0) #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
#define isHeatingHotend0() isHeatingHotend(0) #define isHeatingHotend0() isHeatingHotend(0)
#define isCoolingHotend0() isCoolingHotend(0) #define isCoolingHotend0() isCoolingHotend(0)
#if EXTRUDERS > 1 && !defined(SINGLENOZZLE) #if HOTENDS > 1
#define degHotend1() degHotend(1) #define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1) #define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1) #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
...@@ -164,7 +120,7 @@ FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_tempe ...@@ -164,7 +120,7 @@ FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_tempe
#else #else
#define setTargetHotend1(_celsius) do{}while(0) #define setTargetHotend1(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 2 && !defined(SINGLENOZZLE) #if HOTENDS > 2
#define degHotend2() degHotend(2) #define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2) #define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2) #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
...@@ -173,7 +129,7 @@ FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_tempe ...@@ -173,7 +129,7 @@ FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_tempe
#else #else
#define setTargetHotend2(_celsius) do{}while(0) #define setTargetHotend2(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 3 && !defined(SINGLENOZZLE) #if HOTENDS > 3
#define degHotend3() degHotend(3) #define degHotend3() degHotend(3)
#define degTargetHotend3() degTargetHotend(3) #define degTargetHotend3() degTargetHotend(3)
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3) #define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
...@@ -182,8 +138,8 @@ FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_tempe ...@@ -182,8 +138,8 @@ FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_tempe
#else #else
#define setTargetHotend3(_celsius) do{}while(0) #define setTargetHotend3(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 4 #if HOTENDS > 4
#error Invalid number of extruders #error Invalid number of hotend
#endif #endif
int getHeaterPower(int heater); int getHeaterPower(int heater);
...@@ -212,7 +168,7 @@ FORCE_INLINE void autotempShutdown() { ...@@ -212,7 +168,7 @@ FORCE_INLINE void autotempShutdown() {
#endif #endif
} }
void PID_autotune(float temp, int extruder, int ncycles); void PID_autotune(float temp, int hotend, int ncycles);
void setExtruderAutoFanState(int pin, bool state); void setExtruderAutoFanState(int pin, bool state);
void checkExtruderAutoFans(); void checkExtruderAutoFans();
......
...@@ -214,8 +214,8 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l ...@@ -214,8 +214,8 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args) #define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args)
#endif //!ENCODER_RATE_MULTIPLIER #endif //!ENCODER_RATE_MULTIPLIER
#define END_MENU() \ #define END_MENU() \
if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \ if (encoderLine >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; encoderLine = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\
if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \ if (encoderLine >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = encoderLine - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \
} } while(0) } } while(0)
/** Used variables to keep track of the menu */ /** Used variables to keep track of the menu */
...@@ -446,7 +446,7 @@ static void lcd_main_menu() { ...@@ -446,7 +446,7 @@ static void lcd_main_menu() {
void lcd_set_home_offsets() { void lcd_set_home_offsets() {
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
if (i != E_AXIS) { if (i != E_AXIS) {
add_homing[i] -= current_position[i]; home_offset[i] -= current_position[i];
current_position[i] = 0.0; current_position[i] = 0.0;
} }
} }
...@@ -971,21 +971,21 @@ static void lcd_control_temperature_menu() { ...@@ -971,21 +971,21 @@ static void lcd_control_temperature_menu() {
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif #endif
#if EXTRUDERS > 1 #if HOTENDS > 1
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[1], 0, HEATER_1_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
#endif #endif
#if EXTRUDERS > 2 #if HOTENDS > 2
#if TEMP_SENSOR_2 != 0 #if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[2], 0, HEATER_2_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
#endif #endif
#if EXTRUDERS > 3 #if HOTENDS > 3
#if TEMP_SENSOR_3 != 0 #if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 4", &target_temperature[3], 0, HEATER_3_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 4", &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
#endif #endif
#endif //EXTRUDERS > 3 #endif //HOTENDS > 3
#endif //EXTRUDERS > 2 #endif //HOTENDS > 2
#endif //EXTRUDERS > 1 #endif //HOTENDS > 1
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif #endif
...@@ -1004,8 +1004,7 @@ static void lcd_control_temperature_menu() { ...@@ -1004,8 +1004,7 @@ static void lcd_control_temperature_menu() {
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d);
#ifndef SINGLENOZZLE #if HOTENDS > 1
#if EXTRUDERS > 1
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(Ki[1]); raw_Ki = unscalePID_i(Ki[1]);
raw_Kd = unscalePID_d(Kd[1]); raw_Kd = unscalePID_d(Kd[1]);
...@@ -1013,8 +1012,8 @@ static void lcd_control_temperature_menu() { ...@@ -1013,8 +1012,8 @@ static void lcd_control_temperature_menu() {
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E2", &raw_Ki, 0.01, 9990, copy_and_scalePID_i); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E2", &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E2", &raw_Kd, 1, 9990, copy_and_scalePID_d); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E2", &raw_Kd, 1, 9990, copy_and_scalePID_d);
#endif //EXTRUDERS > 1 #endif //HOTENDS > 1
#if EXTRUDERS > 2 #if HOTENDS > 2
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(Ki[2]); raw_Ki = unscalePID_i(Ki[2]);
raw_Kd = unscalePID_d(Kd[2]); raw_Kd = unscalePID_d(Kd[2]);
...@@ -1022,8 +1021,8 @@ static void lcd_control_temperature_menu() { ...@@ -1022,8 +1021,8 @@ static void lcd_control_temperature_menu() {
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E3", &raw_Ki, 0.01, 9990, copy_and_scalePID_i); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E3", &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E3", &raw_Kd, 1, 9990, copy_and_scalePID_d); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E3", &raw_Kd, 1, 9990, copy_and_scalePID_d);
#endif //EXTRUDERS > 2 #endif //HOTENDS > 2
#if EXTRUDERS > 3 #if HOTENDS > 3
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(Ki[3]); raw_Ki = unscalePID_i(Ki[3]);
raw_Kd = unscalePID_d(Kd[3]); raw_Kd = unscalePID_d(Kd[3]);
...@@ -1031,8 +1030,7 @@ static void lcd_control_temperature_menu() { ...@@ -1031,8 +1030,7 @@ static void lcd_control_temperature_menu() {
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E4", &raw_Ki, 0.01, 9990, copy_and_scalePID_i); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E4", &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E4", &raw_Kd, 1, 9990, copy_and_scalePID_d); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E4", &raw_Kd, 1, 9990, copy_and_scalePID_d);
#endif //EXTRUDERS > 2 #endif //HOTENDS > 2
#endif //SINGLENOZZLE
#endif //PIDTEMP #endif //PIDTEMP
MENU_ITEM(submenu, MSG_PREHEAT_PLA_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu); MENU_ITEM(submenu, MSG_PREHEAT_PLA_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu);
MENU_ITEM(submenu, MSG_PREHEAT_ABS_SETTINGS, lcd_control_temperature_preheat_abs_settings_menu); MENU_ITEM(submenu, MSG_PREHEAT_ABS_SETTINGS, lcd_control_temperature_preheat_abs_settings_menu);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment