Commit 86d3dd96 authored by MagoKimbra's avatar MagoKimbra

Update code

parent ba8f964e
...@@ -123,17 +123,29 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the lo ...@@ -123,17 +123,29 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the lo
#define AUTO_BED_LEVELING_GRID #define AUTO_BED_LEVELING_GRID
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this #define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2 #define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID #else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to estimate the plane of the print bed // Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15 #define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180 #define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15 #define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20 #define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#endif // AUTO_BED_LEVELING_GRID #endif // AUTO_BED_LEVELING_GRID
// Offsets to the probe relative to the extruder tip (Hotend - Probe) // Offsets to the probe relative to the extruder tip (Hotend - Probe)
......
...@@ -123,17 +123,29 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the lo ...@@ -123,17 +123,29 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the lo
#define AUTO_BED_LEVELING_GRID #define AUTO_BED_LEVELING_GRID
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this #define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2 #define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID #else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to estimate the plane of the print bed // Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15 #define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180 #define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15 #define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20 #define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#endif // AUTO_BED_LEVELING_GRID #endif // AUTO_BED_LEVELING_GRID
// Offsets to the probe relative to the extruder tip (Hotend - Probe) // Offsets to the probe relative to the extruder tip (Hotend - Probe)
......
...@@ -147,17 +147,29 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the lo ...@@ -147,17 +147,29 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the lo
#define AUTO_BED_LEVELING_GRID #define AUTO_BED_LEVELING_GRID
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this #define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2 #define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID #else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to estimate the plane of the print bed // Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15 #define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180 #define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15 #define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20 #define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#endif // AUTO_BED_LEVELING_GRID #endif // AUTO_BED_LEVELING_GRID
// Offsets to the probe relative to the extruder tip (Hotend - Probe) // Offsets to the probe relative to the extruder tip (Hotend - Probe)
......
...@@ -32,6 +32,9 @@ ...@@ -32,6 +32,9 @@
#include "WProgram.h" #include "WProgram.h"
#endif #endif
#define BIT(b) (1<<(b))
#define TEST(n,b) (((n)&BIT(b))!=0)
// Arduino < 1.0.0 does not define this, so we need to do it ourselves // Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin #ifndef analogInputToDigitalPin
#define analogInputToDigitalPin(p) ((p) + 0xA0) #define analogInputToDigitalPin(p) ((p) + 0xA0)
......
...@@ -76,7 +76,7 @@ void MarlinSerial::begin(long baud) { ...@@ -76,7 +76,7 @@ void MarlinSerial::begin(long baud) {
#endif #endif
if (useU2X) { if (useU2X) {
M_UCSRxA = 1 << M_U2Xx; M_UCSRxA = BIT(M_U2Xx);
baud_setting = (F_CPU / 4 / baud - 1) / 2; baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else { } else {
M_UCSRxA = 0; M_UCSRxA = 0;
......
...@@ -97,14 +97,14 @@ class MarlinSerial { //: public Stream ...@@ -97,14 +97,14 @@ class MarlinSerial { //: public Stream
} }
FORCE_INLINE void write(uint8_t c) { FORCE_INLINE void write(uint8_t c) {
while (!((M_UCSRxA) & (1 << M_UDREx))) while (!TEST(M_UCSRxA, M_UDREx))
; ;
M_UDRx = c; M_UDRx = c;
} }
FORCE_INLINE void checkRx(void) { FORCE_INLINE void checkRx(void) {
if ((M_UCSRxA & (1<<M_RXCx)) != 0) { if (TEST(M_UCSRxA, M_RXCx)) {
unsigned char c = M_UDRx; unsigned char c = M_UDRx;
int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE; int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;
......
...@@ -1166,6 +1166,24 @@ bool extruder_duplication_enabled = false; // used in mode 2 ...@@ -1166,6 +1166,24 @@ bool extruder_duplication_enabled = false; // used in mode 2
#endif // SCARA #endif // SCARA
} }
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
feedrate = homing_feedrate[Z_AXIS];
current_position[Z_AXIS] = z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder, active_driver);
st_synchronize();
feedrate = XY_TRAVEL_SPEED;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder, active_driver);
st_synchronize();
feedrate = oldFeedRate;
}
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
...@@ -1252,24 +1270,6 @@ bool extruder_duplication_enabled = false; // used in mode 2 ...@@ -1252,24 +1270,6 @@ bool extruder_duplication_enabled = false; // used in mode 2
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
feedrate = homing_feedrate[Z_AXIS];
current_position[Z_AXIS] = z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder, active_driver);
st_synchronize();
feedrate = xy_travel_speed;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder, active_driver);
st_synchronize();
feedrate = oldFeedRate;
}
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) { static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z); do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
} }
...@@ -2365,66 +2365,107 @@ inline void gcode_G28(boolean home_x=false, boolean home_y=false) { ...@@ -2365,66 +2365,107 @@ inline void gcode_G28(boolean home_x=false, boolean home_y=false) {
#if Z_HOME_DIR < 0 // If homing towards BED do Z last #if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING #ifndef Z_SAFE_HOMING
if (code_seen('M') && !(home_x || home_y)) { // Manual G28 if (code_seen('M') && !(home_x || home_y)) {
// Manual G28 bed level
#ifdef ULTIPANEL #ifdef ULTIPANEL
if(home_all_axis) { SERIAL_ECHOLN(" --LEVEL PLATE SCRIPT--");
boolean zig = true; set_ChangeScreen(true);
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION); while(!lcd_clicked()) {
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION); set_pageShowInfo(0);
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) { lcd_update();
int xProbe, xInc;
if (zig) { // zig
xProbe = LEFT_PROBE_BED_POSITION;
xInc = xGridSpacing;
zig = false;
}
else // zag
{
xProbe = RIGHT_PROBE_BED_POSITION;
xInc = -xGridSpacing;
zig = true;
}
for (int xCount=0; xCount < 2; xCount++) {
destination[X_AXIS] = xProbe;
destination[Y_AXIS] = yProbe;
destination[Z_AXIS] = 5 * home_dir(Z_AXIS) * (-1);
feedrate = XY_TRAVEL_SPEED;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder, active_driver);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
HOMEAXIS(Z);
lcd_setstatus("Press button ");
boolean beepbutton=true;
while(!lcd_clicked()) {
manage_heater();
manage_inactivity();
lcd_update();
if(beepbutton) {
#if BEEPER > 0
SET_OUTPUT(BEEPER);
WRITE(BEEPER,HIGH);
delay(100);
WRITE(BEEPER,LOW);
delay(3);
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6,100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
beepbutton=false;
}
}
xProbe += xInc;
}
}
lcd_setstatus("Finish ");
enquecommands_P(PSTR("G28 X0 Y0\nG4 P0\nG4 P0\nG4 P0"));
} }
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = millis();
enable_endstops(true);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
feedrate = 0.0;
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
HOMEAXIS(Z);
#endif
HOMEAXIS(X);
HOMEAXIS(Y);
#if Z_HOME_DIR < 0
HOMEAXIS(Z);
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
endstops_hit_on_purpose();
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_MIN_POS + 5);
// PROBE FIRST POINT
set_pageShowInfo(1);
set_ChangeScreen(true);
do_blocking_move_to(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS]);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_MIN_POS);
while(!lcd_clicked()) {
manage_heater();
manage_inactivity();
}
// PROBE SECOND POINT
set_ChangeScreen(true);
set_pageShowInfo(2);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS + 5);
do_blocking_move_to(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS]);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS);
while(!lcd_clicked()) {
manage_heater();
manage_inactivity();
}
// PROBE THIRD POINT
set_ChangeScreen(true);
set_pageShowInfo(3);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS + 5);
do_blocking_move_to(RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, current_position[Z_AXIS]);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS);
while(!lcd_clicked()) {
manage_heater();
manage_inactivity();
}
// PROBE FOURTH POINT
set_ChangeScreen(true);
set_pageShowInfo(4);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS + 5);
do_blocking_move_to(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, current_position[Z_AXIS]);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS);
while(!lcd_clicked()) {
manage_heater();
manage_inactivity();
}
// PROBE CENTER
set_ChangeScreen(true);
set_pageShowInfo(5);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS + 5);
do_blocking_move_to((X_MAX_POS-X_MIN_POS)/2, (Y_MAX_POS-Y_MIN_POS)/2, current_position[Z_AXIS]);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS);
while(!lcd_clicked()) {
manage_heater();
manage_inactivity();
}
// FINISH MANUAL BED LEVEL
set_ChangeScreen(true);
set_pageShowInfo(6);
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS],Z_MIN_POS + 5);
enquecommands_P(PSTR("G28 X0 Y0\nG4 P0\nG4 P0\nG4 P0"));
#endif // ULTIPANEL #endif // ULTIPANEL
} }
else if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) else if((home_all_axis) || (code_seen(axis_codes[Z_AXIS])))
...@@ -2593,12 +2634,6 @@ inline void gcode_G28(boolean home_x=false, boolean home_y=false) { ...@@ -2593,12 +2634,6 @@ inline void gcode_G28(boolean home_x=false, boolean home_y=false) {
* Usage: "G29 E" or "G29 e" * Usage: "G29 E" or "G29 e"
* *
*/ */
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
inline void gcode_G29() { inline void gcode_G29() {
// Prevent user from running a G29 without first homing in X and Y // Prevent user from running a G29 without first homing in X and Y
...@@ -2624,7 +2659,7 @@ inline void gcode_G28(boolean home_x=false, boolean home_y=false) { ...@@ -2624,7 +2659,7 @@ inline void gcode_G28(boolean home_x=false, boolean home_y=false) {
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t'); bool topo_flag = code_seen('T') || code_seen('t');
if (verbose_level > 0) SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n"); if (verbose_level > 0) SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
......
...@@ -35,14 +35,14 @@ ...@@ -35,14 +35,14 @@
*/ */
static void spiInit(uint8_t spiRate) { static void spiInit(uint8_t spiRate) {
// See avr processor documentation // See avr processor documentation
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1); SPCR = BIT(SPE) | BIT(MSTR) | (spiRate >> 1);
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X; SPSR = spiRate & 1 || spiRate == 6 ? 0 : BIT(SPI2X);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI receive a byte */ /** SPI receive a byte */
static uint8_t spiRec() { static uint8_t spiRec() {
SPDR = 0XFF; SPDR = 0XFF;
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
return SPDR; return SPDR;
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
...@@ -52,18 +52,18 @@ void spiRead(uint8_t* buf, uint16_t nbyte) { ...@@ -52,18 +52,18 @@ void spiRead(uint8_t* buf, uint16_t nbyte) {
if (nbyte-- == 0) return; if (nbyte-- == 0) return;
SPDR = 0XFF; SPDR = 0XFF;
for (uint16_t i = 0; i < nbyte; i++) { for (uint16_t i = 0; i < nbyte; i++) {
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[i] = SPDR; buf[i] = SPDR;
SPDR = 0XFF; SPDR = 0XFF;
} }
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[nbyte] = SPDR; buf[nbyte] = SPDR;
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI send a byte */ /** SPI send a byte */
static void spiSend(uint8_t b) { static void spiSend(uint8_t b) {
SPDR = b; SPDR = b;
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI send block - only one call so force inline */ /** SPI send block - only one call so force inline */
...@@ -71,12 +71,12 @@ static inline __attribute__((always_inline)) ...@@ -71,12 +71,12 @@ static inline __attribute__((always_inline))
void spiSendBlock(uint8_t token, const uint8_t* buf) { void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPDR = token; SPDR = token;
for (uint16_t i = 0; i < 512; i += 2) { for (uint16_t i = 0; i < 512; i += 2) {
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i]; SPDR = buf[i];
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i + 1]; SPDR = buf[i + 1];
} }
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
#else // SOFTWARE_SPI #else // SOFTWARE_SPI
......
...@@ -334,9 +334,9 @@ static inline __attribute__((always_inline)) ...@@ -334,9 +334,9 @@ static inline __attribute__((always_inline))
void setPinMode(uint8_t pin, uint8_t mode) { void setPinMode(uint8_t pin, uint8_t mode) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) { if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (mode) { if (mode) {
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit; *digitalPinMap[pin].ddr |= BIT(digitalPinMap[pin].bit);
} else { } else {
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit); *digitalPinMap[pin].ddr &= ~BIT(digitalPinMap[pin].bit);
} }
} else { } else {
badPinNumber(); badPinNumber();
...@@ -354,9 +354,9 @@ static inline __attribute__((always_inline)) ...@@ -354,9 +354,9 @@ static inline __attribute__((always_inline))
void fastDigitalWrite(uint8_t pin, uint8_t value) { void fastDigitalWrite(uint8_t pin, uint8_t value) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) { if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (value) { if (value) {
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit; *digitalPinMap[pin].port |= BIT(digitalPinMap[pin].bit);
} else { } else {
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit); *digitalPinMap[pin].port &= ~BIT(digitalPinMap[pin].bit);
} }
} else { } else {
badPinNumber(); badPinNumber();
......
...@@ -171,9 +171,9 @@ static inline uint8_t FAT_SECOND(uint16_t fatTime) { ...@@ -171,9 +171,9 @@ static inline uint8_t FAT_SECOND(uint16_t fatTime) {
return 2*(fatTime & 0X1F); return 2*(fatTime & 0X1F);
} }
/** Default date for file timestamps is 1 Jan 2000 */ /** Default date for file timestamps is 1 Jan 2000 */
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1; uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | BIT(5) | 1;
/** Default time for file timestamp is 1 am */ /** Default time for file timestamp is 1 am */
uint16_t const FAT_DEFAULT_TIME = (1 << 11); uint16_t const FAT_DEFAULT_TIME = BIT(11);
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** /**
* \class SdBaseFile * \class SdBaseFile
......
...@@ -360,7 +360,7 @@ bool SdVolume::init(Sd2Card* dev, uint8_t part) { ...@@ -360,7 +360,7 @@ bool SdVolume::init(Sd2Card* dev, uint8_t part) {
blocksPerCluster_ = fbs->sectorsPerCluster; blocksPerCluster_ = fbs->sectorsPerCluster;
// determine shift that is same as multiply by blocksPerCluster_ // determine shift that is same as multiply by blocksPerCluster_
clusterSizeShift_ = 0; clusterSizeShift_ = 0;
while (blocksPerCluster_ != (1 << clusterSizeShift_)) { while (blocksPerCluster_ != BIT(clusterSizeShift_)) {
// error if not power of 2 // error if not power of 2
if (clusterSizeShift_++ > 7) goto fail; if (clusterSizeShift_++ > 7) goto fail;
} }
......
...@@ -24,9 +24,9 @@ ...@@ -24,9 +24,9 @@
#define BLEN_A 0 #define BLEN_A 0
#define BLEN_B 1 #define BLEN_B 1
#define BLEN_C 2 #define BLEN_C 2
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#define EN_B (1<<BLEN_B) #define EN_B BIT(BLEN_B)
#define EN_C (1<<BLEN_C) #define EN_C BIT(BLEN_C)
#define LCD_CLICKED (buttons&EN_C) #define LCD_CLICKED (buttons&EN_C)
#endif #endif
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Amortar motors" #define MSG_DISABLE_STEPPERS "Amortar motors"
#define MSG_AUTO_HOME "Levar a l'orichen" #define MSG_AUTO_HOME "Levar a l'orichen"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Establir zero" #define MSG_SET_ORIGIN "Establir zero"
#define MSG_PREHEAT_PLA "Precalentar PLA" #define MSG_PREHEAT_PLA "Precalentar PLA"
...@@ -49,9 +56,9 @@ ...@@ -49,9 +56,9 @@
#define MSG_FAN_SPEED "Ixoriador" #define MSG_FAN_SPEED "Ixoriador"
#define MSG_FLOW "Fluxo" #define MSG_FLOW "Fluxo"
#define MSG_CONTROL "Control" #define MSG_CONTROL "Control"
#define MSG_MIN "\002 Min" #define MSG_MIN " " STR_THERMOMETER " Min"
#define MSG_MAX "\002 Max" #define MSG_MAX " " STR_THERMOMETER " Max"
#define MSG_FACTOR "\002 Fact" #define MSG_FACTOR " " STR_THERMOMETER " Fact"
#define MSG_AUTOTEMP "Autotemp" #define MSG_AUTOTEMP "Autotemp"
#define MSG_ON "On" #define MSG_ON "On"
#define MSG_OFF "Off" #define MSG_OFF "Off"
...@@ -82,7 +89,7 @@ ...@@ -82,7 +89,7 @@
#define MSG_TEMPERATURE "Temperatura" #define MSG_TEMPERATURE "Temperatura"
#define MSG_MOTION "Movimiento" #define MSG_MOTION "Movimiento"
#define MSG_VOLUMETRIC "Filament" #define MSG_VOLUMETRIC "Filament"
#define MSG_VOLUMETRIC_ENABLED "E in mm3" #define MSG_VOLUMETRIC_ENABLED "E in mm" STR_h3
#define MSG_FILAMENT_SIZE_EXTRUDER "Fil. Dia." #define MSG_FILAMENT_SIZE_EXTRUDER "Fil. Dia."
#define MSG_CONTRAST "Contrast" #define MSG_CONTRAST "Contrast"
#define MSG_STORE_EPROM "Alzar Memoria" #define MSG_STORE_EPROM "Alzar Memoria"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Apagar motors" #define MSG_DISABLE_STEPPERS "Apagar motors"
#define MSG_AUTO_HOME "Home global" #define MSG_AUTO_HOME "Home global"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Establir origen" #define MSG_SET_ORIGIN "Establir origen"
#define MSG_PREHEAT_PLA "Preescalfar PLA" #define MSG_PREHEAT_PLA "Preescalfar PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Stepper abschalt." #define MSG_DISABLE_STEPPERS "Stepper abschalt."
#define MSG_AUTO_HOME "Auto Nullpunkt" #define MSG_AUTO_HOME "Auto Nullpunkt"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Setze Nullpunkt" #define MSG_SET_ORIGIN "Setze Nullpunkt"
#define MSG_PREHEAT_PLA "Vorwärmen PLA" #define MSG_PREHEAT_PLA "Vorwärmen PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Disable steppers" #define MSG_DISABLE_STEPPERS "Disable steppers"
#define MSG_AUTO_HOME "Auto home" #define MSG_AUTO_HOME "Auto home"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Set origin" #define MSG_SET_ORIGIN "Set origin"
#define MSG_PREHEAT_PLA "Preheat PLA" #define MSG_PREHEAT_PLA "Preheat PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Apagar motores" #define MSG_DISABLE_STEPPERS "Apagar motores"
#define MSG_AUTO_HOME "Llevar al origen" #define MSG_AUTO_HOME "Llevar al origen"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Ajustar offsets" #define MSG_SET_HOME_OFFSETS "Ajustar offsets"
#define MSG_SET_ORIGIN "Establecer cero" #define MSG_SET_ORIGIN "Establecer cero"
#define MSG_PREHEAT_PLA "Precalentar PLA" #define MSG_PREHEAT_PLA "Precalentar PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Itzali motoreak" #define MSG_DISABLE_STEPPERS "Itzali motoreak"
#define MSG_AUTO_HOME "Hasierara joan" #define MSG_AUTO_HOME "Hasierara joan"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Hasiera ipini" #define MSG_SET_ORIGIN "Hasiera ipini"
#define MSG_PREHEAT_PLA "Aurreberotu PLA" #define MSG_PREHEAT_PLA "Aurreberotu PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Vapauta moottorit" #define MSG_DISABLE_STEPPERS "Vapauta moottorit"
#define MSG_AUTO_HOME "Aja referenssiin" #define MSG_AUTO_HOME "Aja referenssiin"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Aseta origo" #define MSG_SET_ORIGIN "Aseta origo"
#define MSG_PREHEAT_PLA "Esil" STR_ae "mmit" STR_ae " PLA" #define MSG_PREHEAT_PLA "Esil" STR_ae "mmit" STR_ae " PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Arreter moteurs" #define MSG_DISABLE_STEPPERS "Arreter moteurs"
#define MSG_AUTO_HOME "Home auto." #define MSG_AUTO_HOME "Home auto."
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Regler origine" #define MSG_SET_ORIGIN "Regler origine"
#define MSG_PREHEAT_PLA "Prechauffage PLA" #define MSG_PREHEAT_PLA "Prechauffage PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Disabilita Motori" #define MSG_DISABLE_STEPPERS "Disabilita Motori"
#define MSG_AUTO_HOME "Auto Home" #define MSG_AUTO_HOME "Auto Home"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Setta offset home" #define MSG_SET_HOME_OFFSETS "Setta offset home"
#define MSG_SET_ORIGIN "Imposta Origine" #define MSG_SET_ORIGIN "Imposta Origine"
#define MSG_PREHEAT_PLA "Preriscalda PLA" #define MSG_PREHEAT_PLA "Preriscalda PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Motoren uit" #define MSG_DISABLE_STEPPERS "Motoren uit"
#define MSG_AUTO_HOME "Auto home" #define MSG_AUTO_HOME "Auto home"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Nulpunt instellen" #define MSG_SET_ORIGIN "Nulpunt instellen"
#define MSG_PREHEAT_PLA "PLA voorverwarmen" #define MSG_PREHEAT_PLA "PLA voorverwarmen"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Wylacz silniki" #define MSG_DISABLE_STEPPERS "Wylacz silniki"
#define MSG_AUTO_HOME "Auto. poz. zerowa" #define MSG_AUTO_HOME "Auto. poz. zerowa"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Ustaw punkt zero" #define MSG_SET_ORIGIN "Ustaw punkt zero"
#define MSG_PREHEAT_PLA "Rozgrzej PLA" #define MSG_PREHEAT_PLA "Rozgrzej PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS " Apagar motores" #define MSG_DISABLE_STEPPERS " Apagar motores"
#define MSG_AUTO_HOME "Ir para origen" #define MSG_AUTO_HOME "Ir para origen"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Estabelecer orig." #define MSG_SET_ORIGIN "Estabelecer orig."
#define MSG_PREHEAT_PLA "Pre-aquecer PLA" #define MSG_PREHEAT_PLA "Pre-aquecer PLA"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS " Desligar motores" #define MSG_DISABLE_STEPPERS " Desligar motores"
#define MSG_AUTO_HOME "Ir para home" #define MSG_AUTO_HOME "Ir para home"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Def. home offsets" #define MSG_SET_HOME_OFFSETS "Def. home offsets"
#define MSG_SET_ORIGIN "Estabelecer orig." #define MSG_SET_ORIGIN "Estabelecer orig."
#define MSG_PREHEAT_PLA "Pre-aquecer PLA" #define MSG_PREHEAT_PLA "Pre-aquecer PLA"
...@@ -44,14 +51,14 @@ ...@@ -44,14 +51,14 @@
#define MSG_MOVE_1MM "Mover 1mm" #define MSG_MOVE_1MM "Mover 1mm"
#define MSG_MOVE_10MM "Mover 10mm" #define MSG_MOVE_10MM "Mover 10mm"
#define MSG_SPEED "Velocidade" #define MSG_SPEED "Velocidade"
#define MSG_NOZZLE "\002Bico" #define MSG_NOZZLE "Bico"
#define MSG_BED "\002Base" #define MSG_BED "Base"
#define MSG_FAN_SPEED "Velocidade do ar." #define MSG_FAN_SPEED "Velocidade do ar."
#define MSG_FLOW "Fluxo" #define MSG_FLOW "Fluxo"
#define MSG_CONTROL "Controlo \003" #define MSG_CONTROL "Control"
#define MSG_MIN "\002 Min" #define MSG_MIN " " STR_THERMOMETER " Min"
#define MSG_MAX "\002 Max" #define MSG_MAX " " STR_THERMOMETER " Max"
#define MSG_FACTOR "\002 Fact" #define MSG_FACTOR " " STR_THERMOMETER " Fact"
#define MSG_AUTOTEMP "Autotemp" #define MSG_AUTOTEMP "Autotemp"
#define MSG_ON "On " #define MSG_ON "On "
#define MSG_OFF "Off" #define MSG_OFF "Off"
......
...@@ -16,6 +16,13 @@ ...@@ -16,6 +16,13 @@
#define MSG_DISABLE_STEPPERS "Выкл. двигатели" #define MSG_DISABLE_STEPPERS "Выкл. двигатели"
#define MSG_AUTO_HOME "Парковка" #define MSG_AUTO_HOME "Парковка"
#define MSG_BED_SETTING "Bed Setting" #define MSG_BED_SETTING "Bed Setting"
#define MSG_LP_INTRO " Leveling bed... Press to start "
#define MSG_LP_1 " Adjust first point & Press the button"
#define MSG_LP_2 " Adjust second point & Press the button"
#define MSG_LP_3 " Adjust third point & Press the button"
#define MSG_LP_4 " Adjust fourth point & Press the button"
#define MSG_LP_5 " Is it ok? Press to end"
#define MSG_LP_6 " BED leveled!"
#define MSG_SET_HOME_OFFSETS "Set home offsets" #define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Запомнить ноль" #define MSG_SET_ORIGIN "Запомнить ноль"
#define MSG_PREHEAT_PLA "Преднагрев PLA" #define MSG_PREHEAT_PLA "Преднагрев PLA"
......
...@@ -4363,6 +4363,8 @@ DaveX plan for Teensylu/printrboard-type pinouts (ref teensylu & sprinter) for a ...@@ -4363,6 +4363,8 @@ DaveX plan for Teensylu/printrboard-type pinouts (ref teensylu & sprinter) for a
#endif // 99 #endif // 99
/****************************************************************************************/ /****************************************************************************************/
/**************************************************************************************** /****************************************************************************************
********************************* END MOTHERBOARD *************************************** ********************************* END MOTHERBOARD ***************************************
/****************************************************************************************/ /****************************************************************************************/
...@@ -4371,52 +4373,6 @@ DaveX plan for Teensylu/printrboard-type pinouts (ref teensylu & sprinter) for a ...@@ -4371,52 +4373,6 @@ DaveX plan for Teensylu/printrboard-type pinouts (ref teensylu & sprinter) for a
#error Unknown MOTHERBOARD value in configuration.h #error Unknown MOTHERBOARD value in configuration.h
#endif #endif
/****************************************************************************************
************************************* FEATURE *******************************************
/****************************************************************************************/
#ifdef SINGLENOZZLE
#undef HEATER_1_PIN
#undef HEATER_2_PIN
#undef HEATER_3_PIN
#define HEATER_1_PIN -1
#define HEATER_2_PIN -1
#define HEATER_3_PIN -1
#undef TEMP_1_PIN
#undef TEMP_2_PIN
#undef TEMP_3_PIN
#define TEMP_1_PIN -1
#define TEMP_2_PIN -1
#define TEMP_3_PIN -1
#endif //SINGLENOZZLE
#ifdef MKR4
#if (EXTRUDERS == 2) && (DRIVER_EXTRUDERS==1) // Use this for one driver and two extruder
#define E0E1_CHOICE_PIN 5
#elif (EXTRUDERS == 3) && (DRIVER_EXTRUDERS==2) // Use this for two driver and 3 extruder
#define E0E2_CHOICE_PIN 5
#elif (EXTRUDERS == 4) && (DRIVER_EXTRUDERS==2) // Use this for two driver and 4 extruder
#define E0E2_CHOICE_PIN 5
#define E1E3_CHOICE_PIN 6
#endif //EXTRUDERS
#endif //MKR4
#ifdef NPR2
#define E_MIN_PIN 19
#endif //NPR2
#ifdef LASERBEAM
#define LASER_PWR_PIN 42
#define LASER_TTL_PIN 44
#endif
#ifdef FILAMENT_END_SWITCH
#define PAUSE_PIN 19
#endif
/****************************************************************************************/
#ifndef HEATER_1_PIN #ifndef HEATER_1_PIN
#define HEATER_1_PIN -1 #define HEATER_1_PIN -1
#endif #endif
...@@ -4485,6 +4441,54 @@ DaveX plan for Teensylu/printrboard-type pinouts (ref teensylu & sprinter) for a ...@@ -4485,6 +4441,54 @@ DaveX plan for Teensylu/printrboard-type pinouts (ref teensylu & sprinter) for a
#define Z_MAX_PIN -1 #define Z_MAX_PIN -1
#endif //Z_HOME_DIR > 0 #endif //Z_HOME_DIR > 0
#endif //!DELTA #endif //!DELTA
/****************************************************************************************/
/****************************************************************************************
************************************* FEATURE *******************************************
/****************************************************************************************/
#ifdef SINGLENOZZLE
#undef HEATER_1_PIN
#undef HEATER_2_PIN
#undef HEATER_3_PIN
#define HEATER_1_PIN -1
#define HEATER_2_PIN -1
#define HEATER_3_PIN -1
#undef TEMP_1_PIN
#undef TEMP_2_PIN
#undef TEMP_3_PIN
#define TEMP_1_PIN -1
#define TEMP_2_PIN -1
#define TEMP_3_PIN -1
#endif //SINGLENOZZLE
#ifdef MKR4
#if (EXTRUDERS == 2) && (DRIVER_EXTRUDERS==1) // Use this for one driver and two extruder
#define E0E1_CHOICE_PIN 5
#elif (EXTRUDERS == 3) && (DRIVER_EXTRUDERS==2) // Use this for two driver and 3 extruder
#define E0E2_CHOICE_PIN 5
#elif (EXTRUDERS == 4) && (DRIVER_EXTRUDERS==2) // Use this for two driver and 4 extruder
#define E0E2_CHOICE_PIN 5
#define E1E3_CHOICE_PIN 6
#endif //EXTRUDERS
#endif //MKR4
#ifdef NPR2
#define E_MIN_PIN 19
#endif //NPR2
#ifdef LASERBEAM
#define LASER_PWR_PIN 42
#define LASER_TTL_PIN 44
#endif
#ifdef FILAMENT_END_SWITCH
#define PAUSE_PIN 19
#endif
/****************************************************************************************/
#include "pins2tool.h" #include "pins2tool.h"
......
...@@ -40,4 +40,4 @@ ...@@ -40,4 +40,4 @@
//============================================================================ //============================================================================
\ No newline at end of file
...@@ -664,37 +664,37 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi ...@@ -664,37 +664,37 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
#ifndef COREXY #ifndef COREXY
if (target[X_AXIS] < position[X_AXIS]) if (target[X_AXIS] < position[X_AXIS])
{ {
block->direction_bits |= (1<<X_AXIS); block->direction_bits |= BIT(X_AXIS);
} }
if (target[Y_AXIS] < position[Y_AXIS]) if (target[Y_AXIS] < position[Y_AXIS])
{ {
block->direction_bits |= (1<<Y_AXIS); block->direction_bits |= BIT(Y_AXIS);
} }
#else //COREXY #else //COREXY
if (target[X_AXIS] < position[X_AXIS]) if (target[X_AXIS] < position[X_AXIS])
{ {
block->direction_bits |= (1<<X_HEAD); block->direction_bits |= BIT(X_HEAD);
} }
if (target[Y_AXIS] < position[Y_AXIS]) if (target[Y_AXIS] < position[Y_AXIS])
{ {
block->direction_bits |= (1<<Y_HEAD); block->direction_bits |= BIT(Y_HEAD);
} }
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0) if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
{ {
block->direction_bits |= (1<<X_AXIS); block->direction_bits |= BIT(X_AXIS);
} }
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0) if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
{ {
block->direction_bits |= (1<<Y_AXIS); block->direction_bits |= BIT(Y_AXIS);
} }
#endif //COREXY #endif //COREXY
if (target[Z_AXIS] < position[Z_AXIS]) if (target[Z_AXIS] < position[Z_AXIS])
{ {
block->direction_bits |= (1<<Z_AXIS); block->direction_bits |= BIT(Z_AXIS);
} }
if (target[E_AXIS] < position[E_AXIS]) if (target[E_AXIS] < position[E_AXIS])
{ {
block->direction_bits |= (1<<E_AXIS); block->direction_bits |= BIT(E_AXIS);
} }
block->active_driver = driver; block->active_driver = driver;
...@@ -934,7 +934,7 @@ Having the real displacement of the head, we can calculate the total movement le ...@@ -934,7 +934,7 @@ Having the real displacement of the head, we can calculate the total movement le
old_direction_bits = block->direction_bits; old_direction_bits = block->direction_bits;
segment_time = lround((float)segment_time / speed_factor); segment_time = lround((float)segment_time / speed_factor);
if((direction_change & (1<<X_AXIS)) == 0) if((direction_change & BIT(X_AXIS)) == 0)
{ {
x_segment_time[0] += segment_time; x_segment_time[0] += segment_time;
} }
...@@ -944,7 +944,7 @@ Having the real displacement of the head, we can calculate the total movement le ...@@ -944,7 +944,7 @@ Having the real displacement of the head, we can calculate the total movement le
x_segment_time[1] = x_segment_time[0]; x_segment_time[1] = x_segment_time[0];
x_segment_time[0] = segment_time; x_segment_time[0] = segment_time;
} }
if((direction_change & (1<<Y_AXIS)) == 0) if((direction_change & BIT(Y_AXIS)) == 0)
{ {
y_segment_time[0] += segment_time; y_segment_time[0] += segment_time;
} }
...@@ -1185,7 +1185,8 @@ void set_extrude_min_temp(float temp) { extrude_min_temp = temp; } ...@@ -1185,7 +1185,8 @@ void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
#endif #endif
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
void reset_acceleration_rates() { void reset_acceleration_rates()
{
for(int8_t i=0; i < 3 + EXTRUDERS; i++) { for(int8_t i=0; i < 3 + EXTRUDERS; i++) {
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
} }
......
...@@ -29,46 +29,47 @@ ...@@ -29,46 +29,47 @@
#include "language.h" #include "language.h"
#include "cardreader.h" #include "cardreader.h"
#include "speed_lookuptable.h" #include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif
//=========================================================================== //===========================================================================
//=============================public variables ============================ //============================= public variables ============================
//=========================================================================== //===========================================================================
block_t *current_block; // A pointer to the block currently being traced block_t *current_block; // A pointer to the block currently being traced
//=========================================================================== //===========================================================================
//=============================private variables ============================ //============================= private variables ===========================
//=========================================================================== //===========================================================================
//static makes it impossible to be called from outside of this file by extern.! //static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt // Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer
counter_y, // Counter variables for the bresenham line tracer
counter_z, static long counter_x, counter_y, counter_z, counter_e;
counter_e;
volatile static unsigned long step_events_completed; // The number of step events executed in the current block volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE #ifdef ADVANCE
static long advance_rate, advance, final_advance = 0; static long advance_rate, advance, final_advance = 0;
static long old_advance = 0; static long old_advance = 0;
static long e_steps[4]; static long e_steps[4];
#endif #endif
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deceleration start point static unsigned short acc_step_rate; // needed for deccelaration start point
static char step_loops; static char step_loops;
static unsigned short OCR1A_nominal; static unsigned short OCR1A_nominal;
static unsigned short step_loops_nominal; static unsigned short step_loops_nominal;
volatile long endstops_trigsteps[3]={0,0,0}; volatile long endstops_trigsteps[3] = { 0 };
volatile long endstops_stepsTotal,endstops_stepsDone; volatile long endstops_stepsTotal, endstops_stepsDone;
static volatile bool endstop_x_hit=false; static volatile bool endstop_x_hit = false;
static volatile bool endstop_y_hit=false; static volatile bool endstop_y_hit = false;
static volatile bool endstop_z_hit=false; static volatile bool endstop_z_hit = false;
#ifdef NPR2 #ifdef NPR2
static volatile bool endstop_e_hit=false; static volatile bool endstop_e_hit=false;
...@@ -82,201 +83,232 @@ static volatile bool endstop_z_hit=false; ...@@ -82,201 +83,232 @@ static volatile bool endstop_z_hit=false;
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
#endif #endif
static bool old_x_min_endstop=false; static bool old_x_min_endstop = false,
static bool old_x_max_endstop=false; old_x_max_endstop = false,
static bool old_y_min_endstop=false; old_y_min_endstop = false,
static bool old_y_max_endstop=false; old_y_max_endstop = false,
static bool old_z_min_endstop=false; old_z_min_endstop = false,
static bool old_z_max_endstop=false; old_z_max_endstop = false;
static bool check_endstops = true; static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile long count_position[NUM_AXIS] = { 0 };
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; volatile signed char count_direction[NUM_AXIS] = { 1 };
//=========================================================================== //===========================================================================
//============================ Functions ==================================== //================================ functions ================================
//=========================================================================== //===========================================================================
#define CHECK_ENDSTOPS if(check_endstops) #ifdef DUAL_X_CARRIAGE
#define X_APPLY_DIR(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_DIR_WRITE(v); \
X2_DIR_WRITE(v); \
} \
else{ \
if (current_block->active_driver) \
X2_DIR_WRITE(v); \
else \
X_DIR_WRITE(v); \
}
#define X_APPLY_STEP(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_STEP_WRITE(v); \
X2_STEP_WRITE(v); \
} \
else { \
if (current_block->active_driver != 0) \
X2_STEP_WRITE(v); \
else \
X_STEP_WRITE(v); \
}
#else
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
#endif
#ifdef Y_DUAL_STEPPER_DRIVERS
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v)
#else
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
#endif
#ifdef Z_DUAL_STEPPER_DRIVERS
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
#else
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
#endif
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
// intRes = intIn1 * intIn2 >> 16 // intRes = intIn1 * intIn2 >> 16
// uses: // uses:
// r26 to store 0 // r26 to store 0
// r27 to store the byte 1 of the 24 bit result // r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \ #define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \ asm volatile ( \
"clr r26 \n\t" \ "clr r26 \n\t" \
"mul %A1, %B2 \n\t" \ "mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \ "movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \ "mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \ "add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"lsr r0 \n\t" \ "lsr r0 \n\t" \
"adc %A0, r26 \n\t" \ "adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"clr r1 \n\t" \ "clr r1 \n\t" \
: \ : \
"=&r" (intRes) \ "=&r" (intRes) \
: \ : \
"d" (charIn1), \ "d" (charIn1), \
"d" (intIn2) \ "d" (intIn2) \
: \ : \
"r26" \ "r26" \
) )
// intRes = longIn1 * longIn2 >> 24 // intRes = longIn1 * longIn2 >> 24
// uses: // uses:
// r26 to store 0 // r26 to store 0
// r27 to store the byte 1 of the 48bit result // r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \ #define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \ asm volatile ( \
"clr r26 \n\t" \ "clr r26 \n\t" \
"mul %A1, %B2 \n\t" \ "mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \ "mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \ "mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \ "movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \ "mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \ "add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \ "mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \ "add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \ "adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \ "mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \ "add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \ "adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \ "mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \ "add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \ "adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \ "mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \ "add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \ "adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \ "mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \ "add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \ "adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"lsr r27 \n\t" \ "lsr r27 \n\t" \
"adc %A0, r26 \n\t" \ "adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"clr r1 \n\t" \ "clr r1 \n\t" \
: \ : \
"=&r" (intRes) \ "=&r" (intRes) \
: \ : \
"d" (longIn1), \ "d" (longIn1), \
"d" (longIn2) \ "d" (longIn2) \
: \ : \
"r26" , "r27" \ "r26" , "r27" \
) )
// Some useful constants // Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A) #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
#ifdef NPR2 #ifdef NPR2
void checkHitEndstops()
{ void endstops_hit_on_purpose() {
if( endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_e_hit) { endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_e_hit = false;
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if(endstop_x_hit) {
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
if(endstop_e_hit) {
SERIAL_ECHOPAIR(" E:",(float)endstops_trigsteps[E_AXIS]/axis_steps_per_unit[E_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "E");
}
SERIAL_ECHOLN("");
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
endstop_e_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetHotend3(0);
setTargetBed(0);
}
#endif
}
} }
void endstops_hit_on_purpose() void checkHitEndstops() {
{ if( endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_e_hit) {
endstop_x_hit=false; SERIAL_ECHO_START;
endstop_y_hit=false; SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
endstop_z_hit=false; if(endstop_x_hit) {
endstop_e_hit=false; SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
if(endstop_e_hit) {
SERIAL_ECHOPAIR(" E:", (float)endstops_trigsteps[E_AXIS] / axis_steps_per_unit[E_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "E");
}
SERIAL_ECHOLN("");
endstops_hit_on_purpose();
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetHotend3(0);
setTargetBed(0);
}
#endif
}
} }
#else // NOT NPR2 #else // NOT NPR2
void checkHitEndstops() void endstops_hit_on_purpose() {
{ endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if(endstop_x_hit) {
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
SERIAL_EOL;
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetHotend3(0);
setTargetBed(0);
}
#endif
}
} }
void endstops_hit_on_purpose() void checkHitEndstops() {
{ if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
endstop_x_hit=false; SERIAL_ECHO_START;
endstop_y_hit=false; SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
endstop_z_hit=false; if (endstop_x_hit) {
SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
}
if (endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
}
if (endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
SERIAL_EOL;
endstops_hit_on_purpose();
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetHotend3(0);
setTargetBed(0);
}
#endif
}
} }
#endif // NOT NPR2 #endif // NOT NPR2
void enable_endstops(bool check) void enable_endstops(bool check) { check_endstops = check; }
{
check_endstops = check;
}
// __________________________ // __________________________
// /| |\ _________________ ^ // /| |\ _________________ ^
...@@ -301,23 +333,23 @@ void st_wake_up() { ...@@ -301,23 +333,23 @@ void st_wake_up() {
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer; unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff; step_rate = (step_rate >> 2) & 0x3fff;
step_loops = 4; step_loops = 4;
} }
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1)&0x7fff; step_rate = (step_rate >> 1) & 0x7fff;
step_loops = 2; step_loops = 2;
} }
else { else {
step_loops = 1; step_loops = 1;
} }
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed step_rate -= (F_CPU / 500000); // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
...@@ -330,7 +362,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { ...@@ -330,7 +362,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
timer = (unsigned short)pgm_read_word_near(table_address); timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
} }
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen) if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer; return timer;
} }
...@@ -353,49 +385,45 @@ FORCE_INLINE void trapezoid_generator_reset() { ...@@ -353,49 +385,45 @@ FORCE_INLINE void trapezoid_generator_reset() {
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time; OCR1A = acceleration_time;
// SERIAL_ECHO_START; // SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :"); // SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0); // SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :"); // SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0); // SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :"); // SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0); // SERIAL_ECHOLN(current_block->final_advance/256.0);
} }
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) ISR(TIMER1_COMPA_vect) {
{
// If there is no current block, attempt to pop one from the buffer // If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) { if (!current_block) {
// Anything in the buffer? // Anything in the buffer?
current_block = plan_get_current_block(); current_block = plan_get_current_block();
if (current_block != NULL) { if (current_block) {
current_block->busy = true; current_block->busy = true;
trapezoid_generator_reset(); trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1); counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x; counter_y = counter_z = counter_e = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0; step_events_completed = 0;
#ifdef Z_LATE_ENABLE #ifdef Z_LATE_ENABLE
if(current_block->steps_z > 0) { if (current_block->steps_z > 0) {
enable_z(); enable_z();
OCR1A = 2000; //1ms wait OCR1A = 2000; //1ms wait
return; return;
} }
#endif #endif
// #ifdef ADVANCE // #ifdef ADVANCE
// e_steps[current_block->active_driver] = 0; // e_steps[current_block->active_driver] = 0;
// #endif // #endif
} }
else { else {
OCR1A=2000; // 1kHz. OCR1A = 2000; // 1kHz.
} }
} }
...@@ -404,147 +432,96 @@ ISR(TIMER1_COMPA_vect) ...@@ -404,147 +432,96 @@ ISR(TIMER1_COMPA_vect)
out_bits = current_block->direction_bits; out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0) { if (TEST(out_bits, X_AXIS)) {
#ifdef DUAL_X_CARRIAGE X_APPLY_DIR(INVERT_X_DIR,0);
if (extruder_duplication_enabled){ count_direction[X_AXIS] = -1;
X_DIR_WRITE(INVERT_X_DIR);
X2_DIR_WRITE(INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
X2_DIR_WRITE(INVERT_X_DIR);
else
X_DIR_WRITE(INVERT_X_DIR);
}
#else
X_DIR_WRITE(INVERT_X_DIR);
#endif
count_direction[X_AXIS]=-1;
} }
else { else {
#ifdef DUAL_X_CARRIAGE X_APPLY_DIR(!INVERT_X_DIR,0);
if (extruder_duplication_enabled){ count_direction[X_AXIS] = 1;
X_DIR_WRITE(!INVERT_X_DIR);
X2_DIR_WRITE( !INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
X2_DIR_WRITE(!INVERT_X_DIR);
else
X_DIR_WRITE(!INVERT_X_DIR);
}
#else
X_DIR_WRITE(!INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1;
} }
if((out_bits & (1<<Y_AXIS))!=0){
Y_DIR_WRITE(INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_DIR_WRITE(!(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=-1;
}
else{
Y_DIR_WRITE(!INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_DIR_WRITE((INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=1; if (TEST(out_bits, Y_AXIS)) {
Y_APPLY_DIR(INVERT_Y_DIR,0);
count_direction[Y_AXIS] = -1;
}
else {
Y_APPLY_DIR(!INVERT_Y_DIR,0);
count_direction[Y_AXIS] = 1;
} }
CHECK_ENDSTOPS { // check X and Y Endstops #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
endstop_## axis ##_hit = true; \
step_events_completed = current_block->step_event_count; \
} \
old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
// Check X and Y endstops
if (check_endstops) {
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // Head direction in -X axis for CoreXY bots.
if ((out_bits & (1<<X_HEAD)) != 0) // If DeltaX == -DeltaY, the movement is only in Y axis
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS)))
if (TEST(out_bits, X_HEAD))
#endif #endif
{ // -direction { // -direction
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif #endif
{ {
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); UPDATE_ENDSTOP(x, X, min, MIN);
if (x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { #endif
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
} }
old_x_min_endstop = x_min_endstop;
#endif
} }
} else { // +direction
else { // +direction #ifdef DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if ((current_block->active_driver == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif #endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
UPDATE_ENDSTOP(x, X, max, MAX);
#endif
}
} }
}
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction if (TEST(out_bits, Y_AXIS)) // -direction
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // Head direction in -Y axis for CoreXY bots.
if ((out_bits & (1<<Y_HEAD)) != 0) // If DeltaX == DeltaY, the movement is only in X axis
#endif if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS)))
{ // -direction if (TEST(out_bits, Y_HEAD))
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_min_endstop = y_min_endstop;
#endif
}
else { // +direction
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif #endif
} { // -direction
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
UPDATE_ENDSTOP(y, Y, min, MIN);
#endif
}
else { // +direction
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
UPDATE_ENDSTOP(y, Y, max, MAX);
#endif
}
} }
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if (TEST(out_bits, Z_AXIS)) { // -direction
Z_DIR_WRITE(INVERT_Z_DIR); Z_DIR_WRITE(INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(INVERT_Z_DIR); Z2_DIR_WRITE(INVERT_Z_DIR);
#endif #endif
count_direction[Z_AXIS]=-1; count_direction[Z_AXIS] = -1;
CHECK_ENDSTOPS { if (check_endstops) {
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); UPDATE_ENDSTOP(z, Z, min, MIN);
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_min_endstop = z_min_endstop;
#endif #endif
} }
} }
...@@ -554,26 +531,20 @@ ISR(TIMER1_COMPA_vect) ...@@ -554,26 +531,20 @@ ISR(TIMER1_COMPA_vect)
Z2_DIR_WRITE(!INVERT_Z_DIR); Z2_DIR_WRITE(!INVERT_Z_DIR);
#endif #endif
count_direction[Z_AXIS]=1; count_direction[Z_AXIS] = 1;
CHECK_ENDSTOPS { if (check_endstops) {
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING); UPDATE_ENDSTOP(z, Z, max, MAX);
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_max_endstop = z_max_endstop;
#endif #endif
} }
} }
#ifndef ADVANCE #ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) { // -direction if (TEST(out_bits, E_AXIS)) { // -direction
REV_E_DIR(); REV_E_DIR();
count_direction[E_AXIS]=-1; count_direction[E_AXIS]=-1;
#ifdef NPR2 #ifdef NPR2
CHECK_ENDSTOPS { if (check_endstops) {
#if defined(E_MIN_PIN) && E_MIN_PIN > -1 #if defined(E_MIN_PIN) && E_MIN_PIN > -1
bool e_min_endstop=(READ(E_MIN_PIN) != E_MIN_ENDSTOP_INVERTING); bool e_min_endstop=(READ(E_MIN_PIN) != E_MIN_ENDSTOP_INVERTING);
if (e_min_endstop && old_e_min_endstop && (current_block->steps_e > 0)) { if (e_min_endstop && old_e_min_endstop && (current_block->steps_e > 0)) {
...@@ -592,7 +563,8 @@ ISR(TIMER1_COMPA_vect) ...@@ -592,7 +563,8 @@ ISR(TIMER1_COMPA_vect)
} }
#endif //!ADVANCE #endif //!ADVANCE
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) // Take multiple steps per interrupt (For high speed moves)
for (int8_t i=0; i < step_loops; i++) {
#ifndef AT90USB #ifndef AT90USB
MSerial.checkRx(); // Check for serial chars. MSerial.checkRx(); // Check for serial chars.
#endif #endif
...@@ -601,140 +573,63 @@ ISR(TIMER1_COMPA_vect) ...@@ -601,140 +573,63 @@ ISR(TIMER1_COMPA_vect)
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) { if (counter_e > 0) {
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction e_steps[current_block->active_driver] += TEST(out_bits, E_AXIS) ? -1 : 1;
e_steps[current_block->active_driver]--;
}
else {
e_steps[current_block->active_driver]++;
}
} }
#endif //ADVANCE #endif //ADVANCE
#ifdef CONFIG_STEPPERS_TOSHIBA #ifdef CONFIG_STEPPERS_TOSHIBA
/* The toshiba stepper controller require much longer pulses /**
* tjerfore we 'stage' decompose the pulses between high, and * The Toshiba stepper controller require much longer pulses.
* low instead of doing each in turn. The extra tests add enough * So we 'stage' decompose the pulses between high and low
* lag to allow it work with without needing NOPs * instead of doing each in turn. The extra tests add enough
*/ * lag to allow it work with without needing NOPs
counter_x += current_block->steps_x; */
if (counter_x > 0) X_STEP_WRITE(HIGH); counter_x += current_block->steps_x;
if (counter_x > 0) X_STEP_WRITE(HIGH);
counter_y += current_block->steps_y; counter_y += current_block->steps_y;
if (counter_y > 0) Y_STEP_WRITE(HIGH); if (counter_y > 0) Y_STEP_WRITE(HIGH);
counter_z += current_block->steps_z;
counter_z += current_block->steps_z; if (counter_z > 0) Z_STEP_WRITE(HIGH);
if (counter_z > 0) Z_STEP_WRITE(HIGH); #ifndef ADVANCE
counter_e += current_block->steps_e;
#ifndef ADVANCE if (counter_e > 0) E_STEP_WRITE(HIGH);
counter_e += current_block->steps_e; #endif
if (counter_e > 0) WRITE_E_STEP(HIGH);
#endif //!ADVANCE
if (counter_x > 0) {
counter_x -= current_block->step_event_count;
count_position[X_AXIS] += count_direction[X_AXIS];
X_STEP_WRITE(LOW);
}
if (counter_y > 0) {
counter_y -= current_block->step_event_count;
count_position[Y_AXIS] += count_direction[Y_AXIS];
Y_STEP_WRITE( LOW);
}
if (counter_z > 0) {
counter_z -= current_block->step_event_count;
count_position[Z_AXIS] += count_direction[Z_AXIS];
Z_STEP_WRITE(LOW);
}
#ifndef ADVANCE #define STEP_IF_COUNTER(axis, AXIS) \
if (counter_e > 0) { if (counter_## axis > 0) {
counter_e -= current_block->step_event_count; counter_## axis -= current_block->step_event_count; \
count_position[E_AXIS] += count_direction[E_AXIS]; count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
WRITE_E_STEP(LOW); AXIS ##_STEP_WRITE(LOW);
}
#endif //!ADVANCE
#else
counter_x += current_block->steps_x;
if (counter_x > 0) {
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_STEP_WRITE(!INVERT_X_STEP_PIN);
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
}
else {
if (current_block->active_driver != 0)
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
else
X_STEP_WRITE(!INVERT_X_STEP_PIN);
}
#else
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
counter_x -= current_block->step_event_count;
count_position[X_AXIS] += count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_STEP_WRITE(INVERT_X_STEP_PIN);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
}
else {
if (current_block->active_driver != 0)
X2_STEP_WRITE(INVERT_X_STEP_PIN);
else
X_STEP_WRITE(INVERT_X_STEP_PIN);
} }
#else
X_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
}
counter_y += current_block->steps_y; STEP_IF_COUNTER(x, X);
if (counter_y > 0) { STEP_IF_COUNTER(y, Y);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN); STEP_IF_COUNTER(z, Z);
#ifndef ADVANCE
#ifdef Y_DUAL_STEPPER_DRIVERS STEP_IF_COUNTER(e, E);
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif #endif
counter_y -= current_block->step_event_count; #else // !CONFIG_STEPPERS_TOSHIBA
count_position[Y_AXIS] += count_direction[Y_AXIS];
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_STEP_WRITE( INVERT_Y_STEP_PIN);
#endif
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
Z_STEP_WRITE( !INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE(!INVERT_Z_STEP_PIN);
#endif
counter_z -= current_block->step_event_count; #define APPLY_MOVEMENT(axis, AXIS) \
count_position[Z_AXIS] += count_direction[Z_AXIS]; counter_## axis += current_block->steps_## axis; \
Z_STEP_WRITE( INVERT_Z_STEP_PIN); if (counter_## axis > 0) { \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
counter_## axis -= current_block->step_event_count; \
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
}
#ifdef Z_DUAL_STEPPER_DRIVERS APPLY_MOVEMENT(x, X);
Z2_STEP_WRITE(INVERT_Z_STEP_PIN); APPLY_MOVEMENT(y, Y);
APPLY_MOVEMENT(z, Z);
#ifndef ADVANCE
APPLY_MOVEMENT(e, E);
#endif #endif
}
#ifndef ADVANCE #endif // CONFIG_STEPPERS_TOSHIBA
counter_e += current_block->steps_e; step_events_completed++;
if (counter_e > 0) { if (step_events_completed >= current_block->step_event_count) break;
WRITE_E_STEP(!INVERT_E_STEP_PIN);
counter_e -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
WRITE_E_STEP(INVERT_E_STEP_PIN);
}
#endif //!ADVANCE
#endif // CONFIG_STEPPERS_TOSHIBA
step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break;
} }
// Calculare new timer value // Calculare new timer value
unsigned short timer; unsigned short timer;
...@@ -745,7 +640,7 @@ ISR(TIMER1_COMPA_vect) ...@@ -745,7 +640,7 @@ ISR(TIMER1_COMPA_vect)
acc_step_rate += current_block->initial_rate; acc_step_rate += current_block->initial_rate;
// upper limit // upper limit
if(acc_step_rate > current_block->nominal_rate) if (acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate; acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval // step_rate to timer interval
...@@ -756,16 +651,17 @@ ISR(TIMER1_COMPA_vect) ...@@ -756,16 +651,17 @@ ISR(TIMER1_COMPA_vect)
for(int8_t i=0; i < step_loops; i++) { for(int8_t i=0; i < step_loops; i++) {
advance += advance_rate; advance += advance_rate;
} }
//if(advance > current_block->advance) advance = current_block->advance; //if (advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps // Do E steps + advance steps
e_steps[current_block->active_driver] += ((advance >>8) - old_advance); e_steps[current_block->active_driver] += ((advance >>8) - old_advance);
old_advance = advance >>8; old_advance = advance >>8;
#endif #endif
} }
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive if (step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate; step_rate = current_block->final_rate;
} }
else { else {
...@@ -773,7 +669,7 @@ ISR(TIMER1_COMPA_vect) ...@@ -773,7 +669,7 @@ ISR(TIMER1_COMPA_vect)
} }
// lower limit // lower limit
if(step_rate < current_block->final_rate) if (step_rate < current_block->final_rate)
step_rate = current_block->final_rate; step_rate = current_block->final_rate;
// step_rate to timer interval // step_rate to timer interval
...@@ -784,7 +680,7 @@ ISR(TIMER1_COMPA_vect) ...@@ -784,7 +680,7 @@ ISR(TIMER1_COMPA_vect)
for(int8_t i=0; i < step_loops; i++) { for(int8_t i=0; i < step_loops; i++) {
advance -= advance_rate; advance -= advance_rate;
} }
if(advance < final_advance) advance = final_advance; if (advance < final_advance) advance = final_advance;
// Do E steps + advance steps // Do E steps + advance steps
e_steps[current_block->active_driver] += ((advance >>8) - old_advance); e_steps[current_block->active_driver] += ((advance >>8) - old_advance);
old_advance = advance >>8; old_advance = advance >>8;
...@@ -877,216 +773,205 @@ ISR(TIMER1_COMPA_vect) ...@@ -877,216 +773,205 @@ ISR(TIMER1_COMPA_vect)
} }
#endif // ADVANCE #endif // ADVANCE
void st_init() void st_init() {
{
digipot_init(); //Initialize Digipot Motor Current digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins microstep_init(); //Initialize Microstepping Pins
// initialise TMC Steppers // initialise TMC Steppers
#ifdef HAVE_TMCDRIVER #ifdef HAVE_TMCDRIVER
tmc_init(); tmc_init();
#endif #endif
// initialise L6470 Steppers // initialise L6470 Steppers
#ifdef HAVE_L6470DRIVER #ifdef HAVE_L6470DRIVER
L6470_init(); L6470_init();
#endif #endif
//Initialize Dir Pins // Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1 #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
X_DIR_INIT; X_DIR_INIT;
#endif #endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1 #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
X2_DIR_INIT; X2_DIR_INIT;
#endif #endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
Y_DIR_INIT; Y_DIR_INIT;
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1) Y2_DIR_INIT;
Y2_DIR_INIT; #endif
#endif
#endif #endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
Z_DIR_INIT; Z_DIR_INIT;
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1) #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
Z2_DIR_INIT; Z2_DIR_INIT;
#endif #endif
#endif #endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
E0_DIR_INIT; E0_DIR_INIT;
#endif #endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
E1_DIR_INIT; E1_DIR_INIT;
#endif #endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1) #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
E2_DIR_INIT; E2_DIR_INIT;
#endif #endif
#if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1) #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
E3_DIR_INIT; E3_DIR_INIT;
#endif #endif
//Initialize Enable Pins - steppers default to disabled. //Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
X_ENABLE_INIT; X_ENABLE_INIT;
if(!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
X2_ENABLE_INIT; X2_ENABLE_INIT;
if(!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
Y_ENABLE_INIT; Y_ENABLE_INIT;
if(!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1) #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
Y2_ENABLE_INIT; Y2_ENABLE_INIT;
if(!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif #endif
#endif #endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
Z_ENABLE_INIT; Z_ENABLE_INIT;
if(!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
Z2_ENABLE_INIT; Z2_ENABLE_INIT;
if(!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
#endif #endif
#endif #endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1) #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
E0_ENABLE_INIT; E0_ENABLE_INIT;
if(!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1) #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
E1_ENABLE_INIT; E1_ENABLE_INIT;
if(!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1) #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
E2_ENABLE_INIT; E2_ENABLE_INIT;
if(!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1) #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
E3_ENABLE_INIT; E3_ENABLE_INIT;
if(!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif #endif
//Choice E0-E1 or E0-E2 or E1-E3 pin //Choice E0-E1 or E0-E2 or E1-E3 pin
#if defined(E0E1_CHOICE_PIN) && (E0E1_CHOICE_PIN > -1) #if defined(E0E1_CHOICE_PIN) && (E0E1_CHOICE_PIN >= 0)
OUT_WRITE(E0E1_CHOICE_PIN,LOW); OUT_WRITE(E0E1_CHOICE_PIN,LOW);
#endif #endif
#if defined(E0E2_CHOICE_PIN) && (E0E2_CHOICE_PIN > -1) #if defined(E0E2_CHOICE_PIN) && (E0E2_CHOICE_PIN >= 0)
OUT_WRITE(E0E2_CHOICE_PIN,LOW); OUT_WRITE(E0E2_CHOICE_PIN,LOW);
#endif #endif
#if defined(E1E3_CHOICE_PIN) && (E1E3_CHOICE_PIN > -1) #if defined(E1E3_CHOICE_PIN) && (E1E3_CHOICE_PIN >= 0)
OUT_WRITE(E1E3_CHOICE_PIN,LOW); OUT_WRITE(E1E3_CHOICE_PIN,LOW);
#endif #endif
//endstops and pullups //endstops and pullups
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
SET_INPUT(X_MIN_PIN); SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN #ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH); WRITE(X_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
SET_INPUT(Y_MIN_PIN); SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN #ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH); WRITE(Y_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
SET_INPUT(Z_MIN_PIN); SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN #ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH); WRITE(Z_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(E_MIN_PIN) && E_MIN_PIN > -1 #if defined(E_MIN_PIN) && E_MIN_PIN >= 0
SET_INPUT(E_MIN_PIN); SET_INPUT(E_MIN_PIN);
#ifdef ENDSTOPPULLUP_EMIN #ifdef ENDSTOPPULLUP_EMIN
WRITE(E_MIN_PIN,HIGH); WRITE(E_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
SET_INPUT(X_MAX_PIN); SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX #ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH); WRITE(X_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
SET_INPUT(Y_MAX_PIN); SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX #ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH); WRITE(Y_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
SET_INPUT(Z_MAX_PIN); SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX #ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH); WRITE(Z_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#define AXIS_INIT(axis, AXIS, PIN) \
AXIS ##_STEP_INIT; \
AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
disable_## axis()
//Initialize Step Pins #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
X_STEP_INIT; // Initialize Step Pins
X_STEP_WRITE(INVERT_X_STEP_PIN); #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
disable_x(); AXIS_INIT(x, X, X);
#endif #endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
X2_STEP_INIT; AXIS_INIT(x, X2, X);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
disable_x();
#endif #endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
Y_STEP_INIT; #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
Y2_STEP_INIT; Y2_STEP_INIT;
Y2_STEP_WRITE(INVERT_Y_STEP_PIN); Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif #endif
disable_y(); AXIS_INIT(y, Y, Y);
#endif #endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
Z_STEP_INIT; #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
Z2_STEP_INIT; Z2_STEP_INIT;
Z2_STEP_WRITE(INVERT_Z_STEP_PIN); Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif #endif
disable_z(); AXIS_INIT(z, Z, Z);
#endif #endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
E0_STEP_INIT; E_AXIS_INIT(0);
E0_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e0();
#endif #endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
E1_STEP_INIT; E_AXIS_INIT(1);
E1_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e1();
#endif #endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
E2_STEP_INIT; E_AXIS_INIT(2);
E2_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e2();
#endif #endif
#if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1) #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
E3_STEP_INIT; E_AXIS_INIT(3);
E3_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e3();
#endif #endif
// waveform generation = 0100 = CTC // waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13); TCCR1B &= ~BIT(WGM13);
TCCR1B |= (1<<WGM12); TCCR1B |= BIT(WGM12);
TCCR1A &= ~(1<<WGM11); TCCR1A &= ~BIT(WGM11);
TCCR1A &= ~(1<<WGM10); TCCR1A &= ~BIT(WGM10);
// output mode = 00 (disconnected) // output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0); TCCR1A &= ~(3<<COM1A0);
...@@ -1104,15 +989,15 @@ void st_init() ...@@ -1104,15 +989,15 @@ void st_init()
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE #ifdef ADVANCE
#if defined(TCCR0A) && defined(WGM01) #if defined(TCCR0A) && defined(WGM01)
TCCR0A &= ~(1<<WGM01); TCCR0A &= ~BIT(WGM01);
TCCR0A &= ~(1<<WGM00); TCCR0A &= ~BIT(WGM00);
#endif #endif
e_steps[0] = 0; e_steps[0] = 0;
e_steps[1] = 0; e_steps[1] = 0;
e_steps[2] = 0; e_steps[2] = 0;
e_steps[3] = 0; e_steps[3] = 0;
TIMSK0 |= (1<<OCIE0A); TIMSK0 |= BIT(OCIE0A);
#endif //ADVANCE #endif //ADVANCE
enable_endstops(true); // Start with endstops active. After homing they can be disabled enable_endstops(true); // Start with endstops active. After homing they can be disabled
...@@ -1121,17 +1006,15 @@ void st_init() ...@@ -1121,17 +1006,15 @@ void st_init()
// Block until all buffered steps are executed // Block until all buffered steps are executed
void st_synchronize() void st_synchronize() {
{ while (blocks_queued()) {
while( blocks_queued()) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
} }
} }
void st_set_position(const long &x, const long &y, const long &z, const long &e) void st_set_position(const long &x, const long &y, const long &z, const long &e) {
{
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_position[X_AXIS] = x; count_position[X_AXIS] = x;
count_position[Y_AXIS] = y; count_position[Y_AXIS] = y;
...@@ -1140,15 +1023,13 @@ void st_set_position(const long &x, const long &y, const long &z, const long &e) ...@@ -1140,15 +1023,13 @@ void st_set_position(const long &x, const long &y, const long &z, const long &e)
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
void st_set_e_position(const long &e) void st_set_e_position(const long &e) {
{
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_position[E_AXIS] = e; count_position[E_AXIS] = e;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
long st_get_position(uint8_t axis) long st_get_position(uint8_t axis) {
{
long count_pos; long count_pos;
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_pos = count_position[axis]; count_pos = count_position[axis];
...@@ -1157,15 +1038,15 @@ long st_get_position(uint8_t axis) ...@@ -1157,15 +1038,15 @@ long st_get_position(uint8_t axis)
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
float st_get_position_mm(uint8_t axis)
{ float st_get_position_mm(uint8_t axis) {
float steper_position_in_steps = st_get_position(axis); float steper_position_in_steps = st_get_position(axis);
return steper_position_in_steps / axis_steps_per_unit[axis]; return steper_position_in_steps / axis_steps_per_unit[axis];
} }
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
void finishAndDisableSteppers() void finishAndDisableSteppers() {
{
st_synchronize(); st_synchronize();
disable_x(); disable_x();
disable_y(); disable_y();
...@@ -1176,17 +1057,15 @@ void finishAndDisableSteppers() ...@@ -1176,17 +1057,15 @@ void finishAndDisableSteppers()
disable_e3(); disable_e3();
} }
void quickStop() void quickStop() {
{
DISABLE_STEPPER_DRIVER_INTERRUPT(); DISABLE_STEPPER_DRIVER_INTERRUPT();
while(blocks_queued()) while (blocks_queued()) plan_discard_current_block();
plan_discard_current_block();
current_block = NULL; current_block = NULL;
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
#ifdef NPR2 #ifdef NPR2
void colorstep(long csteps,const bool direction){ void colorstep(long csteps,const bool direction) {
enable_e1(); enable_e1();
//setup new step //setup new step
WRITE(E1_DIR_PIN,(INVERT_E1_DIR)^direction); WRITE(E1_DIR_PIN,(INVERT_E1_DIR)^direction);
...@@ -1201,150 +1080,77 @@ void quickStop() ...@@ -1201,150 +1080,77 @@ void quickStop()
#endif //NPR2 #endif //NPR2
#ifdef BABYSTEPPING #ifdef BABYSTEPPING
void babystep(const uint8_t axis,const bool direction)
{
//MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
//store initial pin states
switch(axis)
{
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin= X_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
X_DIR_WRITE((INVERT_X_DIR)^direction);
#ifdef DUAL_X_CARRIAGE
X2_DIR_WRITE((INVERT_X_DIR)^direction);
#endif
//perform step
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
X2_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond // MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
X_STEP_WRITE(INVERT_X_STEP_PIN); void babystep(const uint8_t axis, const bool direction) {
#ifdef DUAL_X_CARRIAGE
X2_STEP_WRITE(INVERT_X_STEP_PIN); #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
#endif enable_## axis(); \
uint8_t old_pin = AXIS ##_DIR_READ; \
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
_delay_us(1U); \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
AXIS ##_APPLY_DIR(old_pin, true); \
}
//get old pin state back. switch(axis) {
X_DIR_WRITE(old_x_dir_pin);
#ifdef DUAL_X_CARRIAGE
X2_DIR_WRITE(old_x_dir_pin);
#endif
} case X_AXIS:
break; BABYSTEP_AXIS(x, X, false);
case Y_AXIS: break;
{
enable_y();
uint8_t old_y_dir_pin= Y_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
Y_DIR_WRITE((INVERT_Y_DIR)^direction);
#ifdef DUAL_Y_CARRIAGE
Y2_DIR_WRITE((INVERT_Y_DIR)^direction);
#endif
//perform step
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond case Y_AXIS:
BABYSTEP_AXIS(y, Y, false);
break;
case Z_AXIS: {
Y_STEP_WRITE(INVERT_Y_STEP_PIN); #ifndef DELTA
#ifdef DUAL_Y_CARRIAGE
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
//get old pin state back. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
Y_DIR_WRITE(old_y_dir_pin);
#ifdef DUAL_Y_CARRIAGE
Y2_DIR_WRITE(old_y_dir_pin);
#endif
} #else // DELTA
break;
#ifndef DELTA
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin= Z_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#endif
//perform step
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE( !INVERT_Z_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond bool z_direction = direction ^ BABYSTEP_INVERT_Z;
Z_STEP_WRITE( INVERT_Z_STEP_PIN); enable_x();
#ifdef Z_DUAL_STEPPER_DRIVERS enable_y();
Z2_STEP_WRITE(INVERT_Z_STEP_PIN); enable_z();
#endif uint8_t old_x_dir_pin = X_DIR_READ,
old_y_dir_pin = Y_DIR_READ,
old_z_dir_pin = Z_DIR_READ;
//setup new step
X_DIR_WRITE(INVERT_X_DIR^z_direction);
Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
//perform step
X_STEP_WRITE(!INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_delay_us(1U);
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
//get old pin state back.
X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
//get old pin state back. #endif
Z_DIR_WRITE(old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(old_z_dir_pin);
#endif
} break;
default: break;
}
} }
break;
#else //DELTA
case Z_AXIS:
{
enable_x();
enable_y();
enable_z();
uint8_t old_x_dir_pin= X_DIR_READ;
uint8_t old_y_dir_pin= Y_DIR_READ;
uint8_t old_z_dir_pin= Z_DIR_READ;
//setup new step
X_DIR_WRITE((INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
Y_DIR_WRITE((INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
//perform step
X_STEP_WRITE( !INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_delay_us(1U); // wait 1 microsecond
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
//get old pin state back.
X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
}
break;
#endif
default: break;
}
}
#endif //BABYSTEPPING #endif //BABYSTEPPING
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example // From Arduino DigitalPotControl example
{ void digitalPotWrite(int address, int value) {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI: SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value); SPI.transfer(value);
...@@ -1353,16 +1159,17 @@ void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl e ...@@ -1353,16 +1159,17 @@ void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl e
#endif #endif
} }
void digipot_init() //Initialize Digipot Motor Current // Initialize Digipot Motor Current
{ void digipot_init() {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
SPI.begin(); SPI.begin();
pinMode(DIGIPOTSS_PIN, OUTPUT); pinMode(DIGIPOTSS_PIN, OUTPUT);
for(int i=0;i<=4;i++) for (int i = 0; i <= 4; i++) {
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current(i,digipot_motor_current[i]); digipot_current(i,digipot_motor_current[i]);
}
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT); pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
...@@ -1376,69 +1183,64 @@ void digipot_init() //Initialize Digipot Motor Current ...@@ -1376,69 +1183,64 @@ void digipot_init() //Initialize Digipot Motor Current
#endif #endif
} }
void digipot_current(uint8_t driver, int current) void digipot_current(uint8_t driver, int current) {
{ #if HAS_DIGIPOTSS
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current); digitalPotWrite(digipot_ch[driver], current);
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); switch(driver) {
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
}
#endif #endif
} }
void microstep_init() void microstep_init() {
{
const uint8_t microstep_modes[] = MICROSTEP_MODES; const uint8_t microstep_modes[] = MICROSTEP_MODES;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
pinMode(E1_MS1_PIN,OUTPUT); pinMode(E1_MS1_PIN,OUTPUT);
pinMode(E1_MS2_PIN,OUTPUT); pinMode(E1_MS2_PIN,OUTPUT);
#endif #endif
#if defined(X_MS1_PIN) && X_MS1_PIN > -1 #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
pinMode(X_MS1_PIN,OUTPUT); pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT); pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT); pinMode(Y_MS1_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT); pinMode(Y_MS2_PIN,OUTPUT);
pinMode(Z_MS1_PIN,OUTPUT); pinMode(Z_MS1_PIN,OUTPUT);
pinMode(Z_MS2_PIN,OUTPUT); pinMode(Z_MS2_PIN,OUTPUT);
pinMode(E0_MS1_PIN,OUTPUT); pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT); pinMode(E0_MS2_PIN,OUTPUT);
for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]); for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
#endif #endif
} }
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
{ if (ms1 >= 0) switch(driver) {
if(ms1 > -1) switch(driver) case 0: digitalWrite(X_MS1_PIN, ms1); break;
{ case 1: digitalWrite(Y_MS1_PIN, ms1); break;
case 0: digitalWrite( X_MS1_PIN,ms1); break; case 2: digitalWrite(Z_MS1_PIN, ms1); break;
case 1: digitalWrite( Y_MS1_PIN,ms1); break; case 3: digitalWrite(E0_MS1_PIN, ms1); break;
case 2: digitalWrite( Z_MS1_PIN,ms1); break; #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
case 3: digitalWrite(E0_MS1_PIN,ms1); break; case 4: digitalWrite(E1_MS1_PIN, ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
case 4: digitalWrite(E1_MS1_PIN,ms1); break;
#endif #endif
} }
if(ms2 > -1) switch(driver) if (ms2 >= 0) switch(driver) {
{ case 0: digitalWrite(X_MS2_PIN, ms2); break;
case 0: digitalWrite( X_MS2_PIN,ms2); break; case 1: digitalWrite(Y_MS2_PIN, ms2); break;
case 1: digitalWrite( Y_MS2_PIN,ms2); break; case 2: digitalWrite(Z_MS2_PIN, ms2); break;
case 2: digitalWrite( Z_MS2_PIN,ms2); break; case 3: digitalWrite(E0_MS2_PIN, ms2); break;
case 3: digitalWrite(E0_MS2_PIN,ms2); break; #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1 case 4: digitalWrite(E1_MS2_PIN, ms2); break;
case 4: digitalWrite(E1_MS2_PIN,ms2); break;
#endif #endif
} }
} }
void microstep_mode(uint8_t driver, uint8_t stepping_mode) void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
{ switch(stepping_mode) {
switch(stepping_mode)
{
case 1: microstep_ms(driver,MICROSTEP1); break; case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break; case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break; case 4: microstep_ms(driver,MICROSTEP4); break;
...@@ -1447,25 +1249,23 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode) ...@@ -1447,25 +1249,23 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode)
} }
} }
void microstep_readings() void microstep_readings() {
{
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n"); SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL( digitalRead(X_MS1_PIN)); SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN)); SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
SERIAL_PROTOCOLPGM("Y: "); SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN)); SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN)); SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
SERIAL_PROTOCOLPGM("Z: "); SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN)); SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN)); SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN)); SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN)); SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN)); SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN)); SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
#endif #endif
} }
...@@ -25,32 +25,32 @@ ...@@ -25,32 +25,32 @@
#include "stepper_indirection.h" #include "stepper_indirection.h"
#if DRIVER_EXTRUDERS > 3 #if DRIVER_EXTRUDERS > 3
#define WRITE_E_STEP(v) { if(current_block->active_driver == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_driver == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_driver == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}} #define E_STEP_WRITE(v) { if(current_block->active_driver == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_driver == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_driver == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
#define NORM_E_DIR() { if(current_block->active_driver == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_driver == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_driver == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}} #define NORM_E_DIR() { if(current_block->active_driver == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_driver == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_driver == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
#define REV_E_DIR() { if(current_block->active_driver == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_driver == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_driver == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}} #define REV_E_DIR() { if(current_block->active_driver == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_driver == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_driver == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
#elif DRIVER_EXTRUDERS > 2 #elif DRIVER_EXTRUDERS > 2
#define WRITE_E_STEP(v) { if(current_block->active_driver == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_driver == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}} #define E_STEP_WRITE(v) { if(current_block->active_driver == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_driver == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
#define NORM_E_DIR() { if(current_block->active_driver == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_driver == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}} #define NORM_E_DIR() { if(current_block->active_driver == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_driver == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
#define REV_E_DIR() { if(current_block->active_driver == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_driver == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}} #define REV_E_DIR() { if(current_block->active_driver == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_driver == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
#elif DRIVER_EXTRUDERS > 1 #elif DRIVER_EXTRUDERS > 1
#ifndef DUAL_X_CARRIAGE #ifndef DUAL_X_CARRIAGE
#define WRITE_E_STEP(v) { if(current_block->active_driver == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }} #define E_STEP_WRITE(v) { if(current_block->active_driver == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
#define NORM_E_DIR() { if(current_block->active_driver == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }} #define NORM_E_DIR() { if(current_block->active_driver == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_driver == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }} #define REV_E_DIR() { if(current_block->active_driver == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
#else #else
extern bool extruder_duplication_enabled; extern bool extruder_duplication_enabled;
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_driver == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }} #define E_STEP_WRITE(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_driver == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_driver == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }} #define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_driver == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_driver == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }} #define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_driver == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
#endif #endif
#else #else
#define WRITE_E_STEP(v) E0_STEP_WRITE(v) #define E_STEP_WRITE(v) E0_STEP_WRITE(v)
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR) #define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR) #define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
#endif //DRIVER_EXTRUDERS #endif //DRIVER_EXTRUDERS
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
extern bool abort_on_endstop_hit; extern bool abort_on_endstop_hit;
#endif #endif
// Initialize and start the stepper motor subsystem // Initialize and start the stepper motor subsystem
...@@ -67,8 +67,8 @@ void st_set_e_position(const long &e); ...@@ -67,8 +67,8 @@ void st_set_e_position(const long &e);
long st_get_position(uint8_t axis); long st_get_position(uint8_t axis);
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
// Get current position in mm // Get current position in mm
float st_get_position_mm(uint8_t axis); float st_get_position_mm(uint8_t axis);
#endif //ENABLE_AUTO_BED_LEVELING #endif //ENABLE_AUTO_BED_LEVELING
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
......
...@@ -574,17 +574,17 @@ inline void _temp_error(int e, const char *msg1, const char *msg2) { ...@@ -574,17 +574,17 @@ inline void _temp_error(int e, const char *msg1, const char *msg2) {
void max_temp_error(uint8_t e) { void max_temp_error(uint8_t e) {
disable_heater(); disable_heater();
_temp_error(e, MSG_MAXTEMP_EXTRUDER_OFF, MSG_ERR_MAXTEMP); _temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
} }
void min_temp_error(uint8_t e) { void min_temp_error(uint8_t e) {
disable_heater(); disable_heater();
_temp_error(e, MSG_MINTEMP_EXTRUDER_OFF, MSG_ERR_MINTEMP); _temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
} }
void bed_max_temp_error(void) { void bed_max_temp_error(void) {
#if HAS_HEATER_BED #if HAS_HEATER_BED
WRITE_HEATER_BED(0); WRITE_HEATER_BED(0);
#endif #endif
_temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED); _temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED));
} }
void manage_heater() { void manage_heater() {
...@@ -939,8 +939,8 @@ void tp_init() ...@@ -939,8 +939,8 @@ void tp_init()
{ {
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD); MCUCR=BIT(JTD);
MCUCR=(1<<JTD); MCUCR=BIT(JTD);
#endif #endif
// Finish init of mult extruder arrays // Finish init of mult extruder arrays
...@@ -1003,13 +1003,13 @@ void tp_init() ...@@ -1003,13 +1003,13 @@ void tp_init()
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675
#ifdef DIDR2 #ifdef DIDR2
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0) #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
#else #else
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0) #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
#endif #endif
// Set analog inputs // Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
DIDR0 = 0; DIDR0 = 0;
#ifdef DIDR2 #ifdef DIDR2
DIDR2 = 0; DIDR2 = 0;
...@@ -1036,7 +1036,7 @@ void tp_init() ...@@ -1036,7 +1036,7 @@ void tp_init()
// Use timer0 for temperature measurement // Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt // Interleave temperature interrupt with millies interrupt
OCR0B = 128; OCR0B = 128;
TIMSK0 |= (1<<OCIE0B); TIMSK0 |= BIT(OCIE0B);
// Wait for temperature measurement to settle // Wait for temperature measurement to settle
delay(250); delay(250);
...@@ -1252,12 +1252,12 @@ void disable_heater() { ...@@ -1252,12 +1252,12 @@ void disable_heater() {
max6675_temp = 0; max6675_temp = 0;
#ifdef PRR #ifdef PRR
PRR &= ~(1<<PRSPI); PRR &= ~BIT(PRSPI);
#elif defined(PRR0) #elif defined(PRR0)
PRR0 &= ~(1<<PRSPI); PRR0 &= ~BIT(PRSPI);
#endif #endif
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0); SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
// enable TT_MAX6675 // enable TT_MAX6675
WRITE(MAX6675_SS, 0); WRITE(MAX6675_SS, 0);
...@@ -1268,13 +1268,13 @@ void disable_heater() { ...@@ -1268,13 +1268,13 @@ void disable_heater() {
// read MSB // read MSB
SPDR = 0; SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;); for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp = SPDR; max6675_temp = SPDR;
max6675_temp <<= 8; max6675_temp <<= 8;
// read LSB // read LSB
SPDR = 0; SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;); for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp |= SPDR; max6675_temp |= SPDR;
// disable TT_MAX6675 // disable TT_MAX6675
...@@ -1319,7 +1319,7 @@ ISR(TIMER0_COMPB_vect) { ...@@ -1319,7 +1319,7 @@ ISR(TIMER0_COMPB_vect) {
static unsigned long raw_temp_3_value = 0; static unsigned long raw_temp_3_value = 0;
static unsigned long raw_temp_bed_value = 0; static unsigned long raw_temp_bed_value = 0;
static TempState temp_state = StartupDelay; static TempState temp_state = StartupDelay;
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE); static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
// Static members for each heater // Static members for each heater
#ifdef SLOW_PWM_HEATERS #ifdef SLOW_PWM_HEATERS
...@@ -1407,7 +1407,7 @@ ISR(TIMER0_COMPB_vect) { ...@@ -1407,7 +1407,7 @@ ISR(TIMER0_COMPB_vect) {
if (soft_pwm_fan < pwm_count) WRITE_FAN(0); if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif #endif
pwm_count += (1 << SOFT_PWM_SCALE); pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f; pwm_count &= 0x7f;
#else // SLOW_PWM_HEATERS #else // SLOW_PWM_HEATERS
...@@ -1492,7 +1492,7 @@ ISR(TIMER0_COMPB_vect) { ...@@ -1492,7 +1492,7 @@ ISR(TIMER0_COMPB_vect) {
if (soft_pwm_fan < pwm_count) WRITE_FAN(0); if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif //FAN_SOFT_PWM #endif //FAN_SOFT_PWM
pwm_count += (1 << SOFT_PWM_SCALE); pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f; pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
...@@ -1520,9 +1520,9 @@ ISR(TIMER0_COMPB_vect) { ...@@ -1520,9 +1520,9 @@ ISR(TIMER0_COMPB_vect) {
#endif // SLOW_PWM_HEATERS #endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
#ifdef MUX5 #ifdef MUX5
#define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else #else
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif #endif
......
...@@ -146,7 +146,7 @@ FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { ...@@ -146,7 +146,7 @@ FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
#else #else
return target_temperature[0] < current_temperature[0]; return target_temperature[0] < current_temperature[0];
#endif #endif
}; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; } FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
......
...@@ -13,6 +13,11 @@ int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added t ...@@ -13,6 +13,11 @@ int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added t
bool encoderRateMultiplierEnabled; bool encoderRateMultiplierEnabled;
int32_t lastEncoderMovementMillis; int32_t lastEncoderMovementMillis;
int pageShowInfo = 0;
boolean ChangeScreen = false;
void set_pageShowInfo(int value){ pageShowInfo = value; }
void set_ChangeScreen(boolean state) { ChangeScreen = state; }
/* Configuration settings */ /* Configuration settings */
int plaPreheatHotendTemp; int plaPreheatHotendTemp;
int plaPreheatHPBTemp; int plaPreheatHPBTemp;
...@@ -651,6 +656,99 @@ void lcd_cooldown() { ...@@ -651,6 +656,99 @@ void lcd_cooldown() {
lcd_return_to_status(); lcd_return_to_status();
} }
void config_lcd_level_bed()
{
setTargetHotend(0,0);
SERIAL_ECHOLN("Leveling...");
currentMenu = lcd_level_bed;
enquecommands_P(PSTR("G28 M"));
pageShowInfo = 0;
}
void lcd_level_bed()
{
if(ChangeScreen){
lcd.clear();
switch(pageShowInfo){
case 0:
{
lcd.setCursor(0, 1);
lcd_printPGM(PSTR(MSG_LP_INTRO));
currentMenu = lcd_level_bed;
ChangeScreen=false;
}
break;
case 1:
{
lcd.setCursor(0, 1);
lcd_printPGM(PSTR(MSG_LP_1));
currentMenu = lcd_level_bed;
ChangeScreen=false;
}
break;
case 2:
{
lcd.setCursor(0, 1);
lcd_printPGM(PSTR(MSG_LP_2));
currentMenu = lcd_level_bed;
ChangeScreen=false;
}
break;
case 3:
{
lcd.setCursor(0, 1);
lcd_printPGM(PSTR(MSG_LP_3));
currentMenu = lcd_level_bed;
ChangeScreen=false;
}
break;
case 4:
{
lcd.setCursor(0, 1);
lcd_printPGM(PSTR(MSG_LP_4));
currentMenu = lcd_level_bed;
ChangeScreen=false;
}
break;
case 5:
{
lcd.setCursor(0, 1);
lcd_printPGM(PSTR(MSG_LP_5));
currentMenu = lcd_level_bed;
ChangeScreen=false;
}
break;
case 6:
{
lcd.setCursor(2, 2);
lcd_printPGM(PSTR(MSG_LP_6));
ChangeScreen=false;
delay(1200);
encoderPosition = 0;
lcd.clear();
currentMenu = lcd_status_screen;
lcd_status_screen();
pageShowInfo=0;
}
break;
}
}
}
static void lcd_prepare_menu() { static void lcd_prepare_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu); MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
...@@ -662,7 +760,7 @@ static void lcd_prepare_menu() { ...@@ -662,7 +760,7 @@ static void lcd_prepare_menu() {
MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84")); MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28")); MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
#ifndef DELTA #ifndef DELTA
MENU_ITEM(gcode, MSG_BED_SETTING, PSTR("G28 M")); MENU_ITEM(function, MSG_BED_SETTING, config_lcd_level_bed);
#endif #endif
MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets); MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets);
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0")); //MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
...@@ -1531,7 +1629,7 @@ void lcd_buttons_update() { ...@@ -1531,7 +1629,7 @@ void lcd_buttons_update() {
WRITE(SHIFT_LD, HIGH); WRITE(SHIFT_LD, HIGH);
for(int8_t i = 0; i < 8; i++) { for(int8_t i = 0; i < 8; i++) {
newbutton_reprapworld_keypad >>= 1; newbutton_reprapworld_keypad >>= 1;
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7); if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= BIT(7);
WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW); WRITE(SHIFT_CLK, LOW);
} }
...@@ -1544,7 +1642,7 @@ void lcd_buttons_update() { ...@@ -1544,7 +1642,7 @@ void lcd_buttons_update() {
unsigned char tmp_buttons = 0; unsigned char tmp_buttons = 0;
for(int8_t i=0; i<8; i++) { for(int8_t i=0; i<8; i++) {
newbutton >>= 1; newbutton >>= 1;
if (READ(SHIFT_OUT)) newbutton |= (1 << 7); if (READ(SHIFT_OUT)) newbutton |= BIT(7);
WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW); WRITE(SHIFT_CLK, LOW);
} }
......
...@@ -19,6 +19,11 @@ ...@@ -19,6 +19,11 @@
void lcd_setcontrast(uint8_t value); void lcd_setcontrast(uint8_t value);
#endif #endif
void set_pageShowInfo(int value);
void set_ChangeScreen(boolean state);
void config_lcd_level_bed(void);
void lcd_level_bed(void);
static unsigned char blink = 0; // Variable for visualization of fan rotation in GLCD static unsigned char blink = 0; // Variable for visualization of fan rotation in GLCD
#define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x)) #define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x))
......
...@@ -24,13 +24,13 @@ ...@@ -24,13 +24,13 @@
#define BLEN_B 1 #define BLEN_B 1
#define BLEN_A 0 #define BLEN_A 0
#define EN_B (1<<BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2 #define EN_B BIT(BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#if defined(BTN_ENC) && BTN_ENC > -1 #if defined(BTN_ENC) && BTN_ENC > -1
// encoder click is directly connected // encoder click is directly connected
#define BLEN_C 2 #define BLEN_C 2
#define EN_C (1<<BLEN_C) #define EN_C BIT(BLEN_C)
#endif #endif
// //
...@@ -85,14 +85,14 @@ ...@@ -85,14 +85,14 @@
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values #define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F3 BIT((BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F2 BIT((BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F1 BIT((BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_UP BIT((BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_RIGHT BIT((BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT((BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_DOWN BIT((BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_LEFT BIT((BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1)) #define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN) #define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
...@@ -113,12 +113,12 @@ ...@@ -113,12 +113,12 @@
#define BL_ST 2 #define BL_ST 2
//automatic, do not change //automatic, do not change
#define B_LE (1<<BL_LE) #define B_LE BIT(BL_LE)
#define B_UP (1<<BL_UP) #define B_UP BIT(BL_UP)
#define B_MI (1<<BL_MI) #define B_MI BIT(BL_MI)
#define B_DW (1<<BL_DW) #define B_DW BIT(BL_DW)
#define B_RI (1<<BL_RI) #define B_RI BIT(BL_RI)
#define B_ST (1<<BL_ST) #define B_ST BIT(BL_ST)
#define LCD_CLICKED (buttons&(B_MI|B_ST)) #define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif #endif
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment