Commit 59733b03 authored by MagoKimbra's avatar MagoKimbra

Update

parent 002b9fbd
...@@ -16,8 +16,6 @@ ...@@ -16,8 +16,6 @@
Bed Probe and Delta geometry Autocalibration G30 A Bed Probe and Delta geometry Autocalibration G30 A
* G31 - Dock Z Probe sled (if enabled) * G31 - Dock Z Probe sled (if enabled)
* G32 - Undock Z Probe sled (if enabled) * G32 - Undock Z Probe sled (if enabled)
* G60 - Store in memory the actual position
* G61 - Move X Y Z to position in memory
* G90 - Use Absolute Coordinates * G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates * G91 - Use Relative Coordinates
* G92 - Set current position to cordinates given * G92 - Set current position to cordinates given
...@@ -91,6 +89,12 @@ ...@@ -91,6 +89,12 @@
* M302 - Allow cold extrudes * M302 - Allow cold extrudes
* M303 - PID relay autotune S[temperature] sets the target temperature. (default target temperature = 150C) * M303 - PID relay autotune S[temperature] sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D * M304 - Set bed PID parameters P I and D
* M331 - Save current position coordinates (all axes, for active extruder).
* S<SLOT> - specifies memory slot # (0-based) to save into (default 0).
* M332 - Apply/restore saved coordinates to the active extruder.
* X Y Z E - Value to add at stored coordinates.
* F<speed> - Set Feedrate.
* S<SLOT> - specifies memory slot # (0-based) to restore from (default 0).
* M350 - Set microstepping mode. * M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly. * M351 - Toggle MS1 MS2 pins directly.
* M400 - Finish all moves * M400 - Finish all moves
......
...@@ -6,6 +6,16 @@ ...@@ -6,6 +6,16 @@
* Add Acceleration retraction for extruder. * Add Acceleration retraction for extruder.
* Add EJerk for extruder * Add EJerk for extruder
* Remove limit for virtual extruder to 4. Now width MKR4 or NPr2 is possible have infinite extruder... * Remove limit for virtual extruder to 4. Now width MKR4 or NPr2 is possible have infinite extruder...
* Add M92 T* E (Set step per unit for any extruder)
* Add M203 T* E (Set max feedrate for any extruder)
* Add M204 T* R (Set acc retraction for any extruder)
* Add M205 T* E (Set E Jerk for any extruder)
* Add M331 Save current position coordinates (all axes, for active extruder).
S<SLOT> - specifies memory slot # (0-based) to save into (default 0).
* Add M332 Apply/restore saved coordinates to the active extruder.
X Y Z E - Value to add at stored coordinates.
F<speed> - Set Feedrate.
S<SLOT> - specifies memory slot # (0-based) to save into (default 0).
### Version 4.1.2 ### Version 4.1.2
* Serial message function standardized for a better code style * Serial message function standardized for a better code style
......
...@@ -381,6 +381,10 @@ ...@@ -381,6 +381,10 @@
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25
// Defines the number of memory slots for saving/restoring position (M331/M332)
// The values should not be less than 1
#define NUM_POSITON_SLOTS 2
const unsigned int dropsegments = 5; // everything with less than this number of steps will be ignored as move and joined with the next movement const unsigned int dropsegments = 5; // everything with less than this number of steps will be ignored as move and joined with the next movement
// Control heater 0 and heater 1 in parallel. // Control heater 0 and heater 1 in parallel.
......
...@@ -262,7 +262,6 @@ extern float home_offset[3]; ...@@ -262,7 +262,6 @@ extern float home_offset[3];
extern float min_pos[3]; extern float min_pos[3];
extern float max_pos[3]; extern float max_pos[3];
extern bool axis_known_position[3]; extern bool axis_known_position[3];
extern float lastpos[4];
extern float zprobe_zoffset; extern float zprobe_zoffset;
// Lifetime stats // Lifetime stats
......
...@@ -92,8 +92,6 @@ ...@@ -92,8 +92,6 @@
* G30 - Single Z Probe, probes bed at current XY location. - Bed Probe and Delta geometry Autocalibration * G30 - Single Z Probe, probes bed at current XY location. - Bed Probe and Delta geometry Autocalibration
* G31 - Dock sled (Z_PROBE_SLED only) * G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only)
* G60 - Store in memory actual position
* G61 - Move X Y Z to position in memory
* G90 - Use Absolute Coordinates * G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates * G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given * G92 - Set current position to coordinates given
...@@ -181,6 +179,12 @@ ...@@ -181,6 +179,12 @@
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C) * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D * M304 - Set bed PID parameters P I and D
* M331 - Save current position coordinates (all axes, for active extruder).
* S<SLOT> - specifies memory slot # (0-based) to save into (default 0).
* M332 - Apply/restore saved coordinates to the active extruder.
* X Y Z E - Value to add at stored coordinates.
* F<speed> - Set Feedrate.
* S<SLOT> - specifies memory slot # (0-based) to restore from (default 0).
* M350 - Set microstepping mode. * M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly. * M351 - Toggle MS1 MS2 pins directly.
* M380 - Activate solenoid on active extruder * M380 - Activate solenoid on active extruder
...@@ -235,9 +239,11 @@ uint8_t debugLevel = DEBUG_INFO|DEBUG_ERRORS; ...@@ -235,9 +239,11 @@ uint8_t debugLevel = DEBUG_INFO|DEBUG_ERRORS;
static float feedrate = 1500.0, saved_feedrate; static float feedrate = 1500.0, saved_feedrate;
float current_position[NUM_AXIS] = { 0.0 }; float current_position[NUM_AXIS] = { 0.0 };
float destination[NUM_AXIS] = { 0.0 }; float destination[NUM_AXIS] = { 0.0 };
float lastpos[NUM_AXIS] = { 0.0 };
bool axis_known_position[3] = { false }; bool axis_known_position[3] = { false };
bool pos_saved = false;
float stored_position[NUM_POSITON_SLOTS][NUM_AXIS];
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0; static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
static char *current_command, *current_command_args; static char *current_command, *current_command_args;
...@@ -562,7 +568,7 @@ bool enqueuecommand(const char *cmd) { ...@@ -562,7 +568,7 @@ bool enqueuecommand(const char *cmd) {
SET_OUTPUT(EXP_VOLTAGE_LEVEL_PIN); SET_OUTPUT(EXP_VOLTAGE_LEVEL_PIN);
WRITE(EXP_VOLTAGE_LEVEL_PIN,UI_VOLTAGE_LEVEL); WRITE(EXP_VOLTAGE_LEVEL_PIN,UI_VOLTAGE_LEVEL);
ExternalDac::begin(); //initialize ExternalDac ExternalDac::begin(); //initialize ExternalDac
lcd_buzz(10,10); buzz(10,10);
} }
#endif #endif
...@@ -3639,38 +3645,6 @@ inline void gcode_G28() { ...@@ -3639,38 +3645,6 @@ inline void gcode_G28() {
} }
#endif // DELTA && Z_PROBE_ENDSTOP #endif // DELTA && Z_PROBE_ENDSTOP
// G60: Store in memory actual position
inline void gcode_G60() {
memcpy(lastpos, current_position, sizeof(lastpos));
//ECHO_SMV(DB, " Lastpos X: ", lastpos[X_AXIS]);
//ECHO_MV(" Lastpos Y: ", lastpos[Y_AXIS]);
//ECHO_MV(" Lastpos Z: ", lastpos[Z_AXIS]);
//ECHO_EMV(" Lastpos E: ", lastpos[E_AXIS]);
}
// G61: move to X Y Z in memory
inline void gcode_G61() {
for(int8_t i = 0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) {
destination[i] = (float)code_value() + lastpos[i];
}
else {
destination[i] = current_position[i];
}
}
//ECHO_SMV(DB, " Move to X: ", destination[X_AXIS]);
//ECHO_MV(" Move to Y: ", destination[Y_AXIS]);
//ECHO_MV(" Move to Z: ", destination[Z_AXIS]);
//ECHO_EMV(" Move to E: ", destination[E_AXIS]);
if(code_seen('F')) {
float next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
//finish moves
prepare_move();
}
/** /**
* G92: Set current position to given X Y Z E * G92: Set current position to given X Y Z E
*/ */
...@@ -5091,7 +5065,7 @@ inline void gcode_M226() { ...@@ -5091,7 +5065,7 @@ inline void gcode_M226() {
} }
#endif // NUM_SERVOS > 0 #endif // NUM_SERVOS > 0
#if HAS_LCD_BUZZ #if HAS_BUZZER
/** /**
* M300: Play beep sound S<frequency Hz> P<duration ms> * M300: Play beep sound S<frequency Hz> P<duration ms>
...@@ -5100,10 +5074,10 @@ inline void gcode_M226() { ...@@ -5100,10 +5074,10 @@ inline void gcode_M226() {
uint16_t beepS = code_seen('S') ? code_value_short() : 100; uint16_t beepS = code_seen('S') ? code_value_short() : 100;
uint32_t beepP = code_seen('P') ? code_value_long() : 1000; uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
if (beepP > 5000) beepP = 5000; // limit to 5 seconds if (beepP > 5000) beepP = 5000; // limit to 5 seconds
lcd_buzz(beepP, beepS); buzz(beepP, beepS);
} }
#endif // HAS_LCD_BUZZ #endif // HAS_BUZZER
#ifdef PIDTEMP #ifdef PIDTEMP
...@@ -5175,6 +5149,73 @@ inline void gcode_M226() { ...@@ -5175,6 +5149,73 @@ inline void gcode_M226() {
} }
#endif // PIDTEMPBED #endif // PIDTEMPBED
/**
* M331: save current position
* S<slot> specifies memory slot # (0-based) to save into (default 0)
*/
inline void gcode_M331() {
int slot = 0;
if (code_seen('S')) slot = code_value();
if (slot < 0 || slot >= NUM_POSITON_SLOTS) {
ECHO_LMV(ER, MSG_INVALID_POS_SLOT, (int)NUM_POSITON_SLOTS);
return;
}
memcpy(stored_position[slot], current_position, sizeof(*stored_position));
pos_saved = true;
ECHO_SM(DB, MSG_SAVED_POS);
ECHO_MV(" S", slot);
ECHO_MV("<-X:", stored_position[slot][X_AXIS]);
ECHO_MV(" Y:", stored_position[slot][Y_AXIS]);
ECHO_MV(" Z:", stored_position[slot][Z_AXIS]);
ECHO_EMV(" E:", stored_position[slot][E_AXIS]);
}
/**
* M332: Apply/restore saved coordinates to the active extruder.
* X Y Z E - Value to add at stored coordinates.
* F<speed> - Set Feedrate.
* S<slot> specifies memory slot # (0-based) to save into (default 0).
*/
inline void gcode_M332() {
if (!pos_saved) return;
bool make_move = false;
int slot = 0;
if (code_seen('S')) slot = code_value();
if (slot < 0 || slot >= NUM_POSITON_SLOTS) {
ECHO_LMV(ER, MSG_INVALID_POS_SLOT, (int)NUM_POSITON_SLOTS);
return;
}
ECHO_SM(DB, MSG_RESTORING_POS);
ECHO_MV(" S", slot);
ECHO_M("->");
if (code_seen('F')) {
float next_feedrate = code_value();
if (next_feedrate > 0.0) feedrate = next_feedrate;
}
for(int8_t i = 0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) {
destination[i] = (float)code_value() + stored_position[slot][i];
}
else {
destination[i] = current_position[i];
}
ECHO_MV(" ", axis_codes[i]);
ECHO_MV(":", destination[i]);
}
ECHO_E;
//finish moves
prepare_move();
st_synchronize();
}
#if HAS_MICROSTEPS #if HAS_MICROSTEPS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() { inline void gcode_M350() {
...@@ -5450,7 +5491,7 @@ inline void gcode_M428() { ...@@ -5450,7 +5491,7 @@ inline void gcode_M428() {
else { else {
ECHO_LM(ER, MSG_ERR_M428_TOO_FAR); ECHO_LM(ER, MSG_ERR_M428_TOO_FAR);
LCD_ALERTMESSAGEPGM("Err: Too far!"); LCD_ALERTMESSAGEPGM("Err: Too far!");
#if HAS_LCD_BUZZ #if HAS_BUZZER
enqueuecommands_P(PSTR("M300 S40 P200")); enqueuecommands_P(PSTR("M300 S40 P200"));
#endif #endif
err = true; err = true;
...@@ -5469,7 +5510,7 @@ inline void gcode_M428() { ...@@ -5469,7 +5510,7 @@ inline void gcode_M428() {
#endif #endif
ECHO_LM(DB, "Offset applied."); ECHO_LM(DB, "Offset applied.");
LCD_ALERTMESSAGEPGM("Offset applied."); LCD_ALERTMESSAGEPGM("Offset applied.");
#if HAS_LCD_BUZZ #if HAS_BUZZER
enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200")); enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
#endif #endif
} }
...@@ -5528,7 +5569,7 @@ inline void gcode_M503() { ...@@ -5528,7 +5569,7 @@ inline void gcode_M503() {
* *
*/ */
inline void gcode_M600() { inline void gcode_M600() {
float target[NUM_AXIS], fr60 = feedrate / 60; float lastpos[NUM_AXIS], target[NUM_AXIS], fr60 = feedrate / 60;
filament_changing = true; filament_changing = true;
for (int i = 0; i < NUM_AXIS; i++) for (int i = 0; i < NUM_AXIS; i++)
target[i] = lastpos[i] = current_position[i]; target[i] = lastpos[i] = current_position[i];
...@@ -5605,7 +5646,7 @@ inline void gcode_M503() { ...@@ -5605,7 +5646,7 @@ inline void gcode_M503() {
LCD_ALERTMESSAGEPGM("Zzzz Zzzz Zzzz"); LCD_ALERTMESSAGEPGM("Zzzz Zzzz Zzzz");
} }
if (beep) { if (beep) {
for(int8_t i = 0; i < 3; i++) lcd_buzz(100, 1000); for(int8_t i = 0; i < 3; i++) buzz(100, 1000);
last_set = millis(); last_set = millis();
beep = false; beep = false;
++cnt; ++cnt;
...@@ -6215,9 +6256,9 @@ void process_next_command() { ...@@ -6215,9 +6256,9 @@ void process_next_command() {
#endif // DELTA && Z_PROBE_ENDSTOP #endif // DELTA && Z_PROBE_ENDSTOP
case 60: // G60 Store in memory actual position case 60: // G60 Store in memory actual position
gcode_G60(); break; gcode_M331(); break;
case 61: // G61 move to X Y Z in memory case 61: // G61 move to X Y Z in memory
gcode_G61(); break; gcode_M332(); break;
case 90: // G90 case 90: // G90
relative_mode = false; break; relative_mode = false; break;
case 91: // G91 case 91: // G91
...@@ -6436,10 +6477,10 @@ void process_next_command() { ...@@ -6436,10 +6477,10 @@ void process_next_command() {
gcode_M280(); break; gcode_M280(); break;
#endif // NUM_SERVOS > 0 #endif // NUM_SERVOS > 0
#if HAS_LCD_BUZZ #if HAS_BUZZER
case 300: // M300 - Play beep tone case 300: // M300 - Play beep tone
gcode_M300(); break; gcode_M300(); break;
#endif // HAS_LCD_BUZZ #endif // HAS_BUZZER
#ifdef PIDTEMP #ifdef PIDTEMP
case 301: // M301 case 301: // M301
...@@ -6461,13 +6502,16 @@ void process_next_command() { ...@@ -6461,13 +6502,16 @@ void process_next_command() {
gcode_M304(); break; gcode_M304(); break;
#endif // PIDTEMPBED #endif // PIDTEMPBED
case 331: // M331 Saved Coordinated
gcode_M331(); break;
case 332: // M332 Restored Coordinates
gcode_M332(); break;
#if HAS_MICROSTEPS #if HAS_MICROSTEPS
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350(); gcode_M350(); break;
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
gcode_M351(); gcode_M351(); break;
break;
#endif // HAS_MICROSTEPS #endif // HAS_MICROSTEPS
#ifdef SCARA #ifdef SCARA
......
...@@ -4,648 +4,641 @@ ...@@ -4,648 +4,641 @@
*/ */
#ifndef CONDITIONALS_H #ifndef CONDITIONALS_H
#ifndef CONFIGURATION_LCD // Get the LCD defines which are needed first #ifndef CONFIGURATION_LCD // Get the LCD defines which are needed first
#define CONFIGURATION_LCD #define CONFIGURATION_LCD
#define PIN_EXISTS(PN) (defined(PN##_PIN) && PN##_PIN >= 0) #define PIN_EXISTS(PN) (defined(PN##_PIN) && PN##_PIN >= 0)
#ifdef MAKRPANEL #ifdef MAKRPANEL
#define DOGLCD #define DOGLCD
#define SDSUPPORT #define SDSUPPORT
#define DEFAULT_LCD_CONTRAST 17 #define DEFAULT_LCD_CONTRAST 17
#define ULTIPANEL #define ULTIPANEL
#define NEWPANEL #define NEWPANEL
#endif #endif
#if defined(miniVIKI) || defined(VIKI2) || defined(ELB_FULL_GRAPHIC_CONTROLLER) #if defined(miniVIKI) || defined(VIKI2) || defined(ELB_FULL_GRAPHIC_CONTROLLER)
#define ULTRA_LCD //general LCD support, also 16x2 #define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family) #define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store. #define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI #ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95 #define DEFAULT_LCD_CONTRAST 95
#elif defined(VIKI2) #elif defined(VIKI2)
#define DEFAULT_LCD_CONTRAST 40 #define DEFAULT_LCD_CONTRAST 40
#elif defined(ELB_FULL_GRAPHIC_CONTROLLER) #elif defined(ELB_FULL_GRAPHIC_CONTROLLER)
#define DEFAULT_LCD_CONTRAST 110 #define DEFAULT_LCD_CONTRAST 110
#define U8GLIB_LM6059_AF #define U8GLIB_LM6059_AF
#endif #endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
// Generic support for SSD1306 OLED based LCDs.
#if defined(U8GLIB_SSD1306)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for I2C LCD 128x64 (Controller SSD1306 graphic Display Family)
#endif
#ifdef PANEL_ONE
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#ifdef REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
#define DOGLCD
#define U8GLIB_ST7920
#define REPRAP_DISCOUNT_SMART_CONTROLLER
#endif
#if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define ULTIPANEL
#define NEWPANEL
#endif
#ifdef RADDS_DISPLAY
#define ENCODER_PULSES_PER_STEP 2
#define ENCODER_STEPS_PER_MENU_ITEM 1
#define ULTIPANEL
#define NEWPANEL
#endif
#ifdef REPRAPWORLD_KEYPAD
#define ULTIPANEL
#define NEWPANEL
#endif
#ifdef RA_CONTROL_PANEL
#define LCD_I2C_TYPE_PCA8574
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define ULTIPANEL
#define NEWPANEL
#endif
/**
* I2C PANELS
*/
#ifdef LCD_I2C_SAINSMART_YWROBOT
// This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home )
// Make sure it is placed in the Arduino libraries directory.
#define LCD_I2C_TYPE_PCF8575
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define ULTIPANEL
#define NEWPANEL
#endif
// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
#ifdef LCD_I2C_PANELOLU2
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
// Note: The PANELOLU2 encoder click input can either be directly connected to a pin
// (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 4 #define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
// Generic support for SSD1306 OLED based LCDs.
#if defined(U8GLIB_SSD1306)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for I2C LCD 128x64 (Controller SSD1306 graphic Display Family)
#endif
#ifdef PANEL_ONE
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#ifdef REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
#define DOGLCD
#define U8GLIB_ST7920
#define REPRAP_DISCOUNT_SMART_CONTROLLER
#endif
#if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define ULTIPANEL
#define NEWPANEL
#endif #endif
#ifdef RADDS_DISPLAY #ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_PULSES_PER_STEP 2
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#define ULTIPANEL
#define NEWPANEL
#endif
#ifdef REPRAPWORLD_KEYPAD
#define ULTIPANEL
#define NEWPANEL
#endif
#ifdef RA_CONTROL_PANEL
#define LCD_I2C_TYPE_PCA8574
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define ULTIPANEL
#define NEWPANEL
#endif
/**
* I2C PANELS
*/
#ifdef LCD_I2C_SAINSMART_YWROBOT
// This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home )
// Make sure it is placed in the Arduino libraries directory.
#define LCD_I2C_TYPE_PCF8575
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define ULTIPANEL
#define NEWPANEL
#endif #endif
// PANELOLU2 LCD with status LEDs, separate encoder and click inputs #ifdef LCD_USE_I2C_BUZZER
#ifdef LCD_I2C_PANELOLU2 #define LCD_FEEDBACK_FREQUENCY_HZ 1000
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 ) #define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory. #endif
// (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
// Note: The PANELOLU2 encoder click input can either be directly connected to a pin #define ULTIPANEL
// (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). #define NEWPANEL
#define LCD_I2C_TYPE_MCP23017 #endif
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD // Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
#ifdef LCD_I2C_VIKI
#ifndef ENCODER_PULSES_PER_STEP // This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
#define ENCODER_PULSES_PER_STEP 4 // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
#endif // Note: The pause/stop/resume LCD button pin should be connected to the Arduino
// BTN_ENC pin (or set BTN_ENC to -1 if not used)
#ifndef ENCODER_STEPS_PER_MENU_ITEM #define LCD_I2C_TYPE_MCP23017
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#endif #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
#define ULTIPANEL
#ifdef LCD_USE_I2C_BUZZER #define NEWPANEL
#define LCD_FEEDBACK_FREQUENCY_HZ 1000 #endif
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
#endif // Shift register panels
// ---------------------
#define ULTIPANEL // 2 wire Non-latching LCD SR from:
#define NEWPANEL // https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
#endif
#ifdef SAV_3DLCD
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs #define SR_LCD_2W_NL // Non latching 2 wire shiftregister
#ifdef LCD_I2C_VIKI #define ULTIPANEL
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 ) #define NEWPANEL
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory. #endif
// Note: The pause/stop/resume LCD button pin should be connected to the Arduino
// BTN_ENC pin (or set BTN_ENC to -1 if not used) #ifdef ULTIPANEL
#define LCD_I2C_TYPE_MCP23017 #define NEWPANEL //enable this if you have a click-encoder panel
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander #define SDSUPPORT
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later) #define ULTRA_LCD
#define ULTIPANEL #ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define NEWPANEL #define LCD_WIDTH 22
#endif #define LCD_HEIGHT 5
#else
// Shift register panels #define LCD_WIDTH 20
// --------------------- #define LCD_HEIGHT 4
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
#ifdef SAV_3DLCD
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
#define ULTIPANEL
#define NEWPANEL
#endif #endif
#else //no panel but just LCD
#ifdef ULTIPANEL #ifdef ULTRA_LCD
#define NEWPANEL //enable this if you have a click-encoder panel #ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 22 #define LCD_WIDTH 22
#define LCD_HEIGHT 5 #define LCD_HEIGHT 5
#else #else
#define LCD_WIDTH 20 #define LCD_WIDTH 16
#define LCD_HEIGHT 4 #define LCD_HEIGHT 2
#endif
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#endif
#endif
#ifdef DOGLCD
/* Custom characters defined in font font_6x10_marlin_symbols */
// \x00 intentionally skipped to avoid problems in strings
#define LCD_STR_REFRESH "\x01"
#define LCD_STR_FOLDER "\x02"
#define LCD_STR_ARROW_RIGHT "\x03"
#define LCD_STR_UPLEVEL "\x04"
#define LCD_STR_CLOCK "\x05"
#define LCD_STR_FEEDRATE "\x06"
#define LCD_STR_BEDTEMP "\x07"
#define LCD_STR_THERMOMETER "\x08"
#define LCD_STR_DEGREE "\x09"
#define LCD_STR_SPECIAL_MAX '\x09'
// Maximum here is 0x1f because 0x20 is ' ' (space) and the normal charsets begin.
// Better stay below 0x10 because DISPLAY_CHARSET_HD44780_WESTERN begins here.
#else
/* Custom characters defined in the first 8 characters of the LCD */
#define LCD_STR_BEDTEMP "\x00" // this will have 'unexpected' results when used in a string!
#define LCD_STR_DEGREE "\x01"
#define LCD_STR_THERMOMETER "\x02"
#define LCD_STR_UPLEVEL "\x03"
#define LCD_STR_REFRESH "\x04"
#define LCD_STR_FOLDER "\x05"
#define LCD_STR_FEEDRATE "\x06"
#define LCD_STR_CLOCK "\x07"
#define LCD_STR_ARROW_RIGHT ">" /* from the default character set */
#endif
/**
* Default LCD contrast for dogm-like LCD displays
*/
#if defined(DOGLCD) && !defined(DEFAULT_LCD_CONTRAST)
#define DEFAULT_LCD_CONTRAST 32
#endif
#ifdef DOGLCD
#define HAS_LCD_CONTRAST
#ifdef U8GLIB_ST7920
#undef HAS_LCD_CONTRAST
#endif
#ifdef U8GLIB_SSD1306
#undef HAS_LCD_CONTRAST
#endif
#endif
/**
* LCD BUZZ
*/
#define HAS_LCD_BUZZ (defined(ULTRA_LCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
/**
* SPLASH_SCREEN_DURATION for no DOGLCD display
*/
#ifndef DOGLCD
#undef SPLASH_SCREEN_DURATION
#define SPLASH_SCREEN_DURATION 500
#endif
#else // CONFIGURATION_LCD
#define CONDITIONALS_H
/**
* SINGLENOZZLE
*/
#ifdef SINGLENOZZLE
#define HOTENDS 1
#undef TEMP_SENSOR_1_AS_REDUNDANT
#else
#define HOTENDS EXTRUDERS
#endif
/**
* DRIVER_EXTRUDERS
*/
#if !defined(MKR4) && !defined(NPR2)
#define DRIVER_EXTRUDERS EXTRUDERS // This defines the number of Driver extruder
#endif
#ifndef __SAM3X8E__
#ifndef AT90USB
#define HardwareSerial_h // trick to disable the standard HWserial
#endif
#endif
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "pins.h"
/**
* ENDSTOPPULLUPS
*/
#ifdef ENDSTOPPULLUPS
#define ENDSTOPPULLUP_XMAX
#define ENDSTOPPULLUP_YMAX
#define ENDSTOPPULLUP_ZMAX
#define ENDSTOPPULLUP_XMIN
#define ENDSTOPPULLUP_YMIN
#define ENDSTOPPULLUP_ZMIN
#define ENDSTOPPULLUP_EMIN
#define ENDSTOPPULLUP_ZPROBE
#endif
/**
* ENDSTOP LOGICAL
*/
#if MB(ALLIGATOR)
#define X_MIN_ENDSTOP_INVERTING !X_MIN_ENDSTOP_LOGIC
#define Y_MIN_ENDSTOP_INVERTING !Y_MIN_ENDSTOP_LOGIC
#define Z_MIN_ENDSTOP_INVERTING !Z_MIN_ENDSTOP_LOGIC
#define Z2_MIN_ENDSTOP_INVERTING !Z2_MIN_ENDSTOP_LOGIC
#define E_MIN_ENDSTOP_INVERTING !E_MIN_ENDSTOP_LOGIC
#define X_MAX_ENDSTOP_INVERTING !X_MAX_ENDSTOP_LOGIC
#define Y_MAX_ENDSTOP_INVERTING !Y_MAX_ENDSTOP_LOGIC
#define Z_MAX_ENDSTOP_INVERTING !Z_MAX_ENDSTOP_LOGIC
#define Z2_MAX_ENDSTOP_INVERTING !Z2_MAX_ENDSTOP_LOGIC
#define Z_PROBE_ENDSTOP_INVERTING !Z_PROBE_ENDSTOP_LOGIC
#else
#define X_MIN_ENDSTOP_INVERTING X_MIN_ENDSTOP_LOGIC
#define Y_MIN_ENDSTOP_INVERTING Y_MIN_ENDSTOP_LOGIC
#define Z_MIN_ENDSTOP_INVERTING Z_MIN_ENDSTOP_LOGIC
#define Z2_MIN_ENDSTOP_INVERTING Z2_MIN_ENDSTOP_LOGIC
#define E_MIN_ENDSTOP_INVERTING E_MIN_ENDSTOP_LOGIC
#define X_MAX_ENDSTOP_INVERTING X_MAX_ENDSTOP_LOGIC
#define Y_MAX_ENDSTOP_INVERTING Y_MAX_ENDSTOP_LOGIC
#define Z_MAX_ENDSTOP_INVERTING Z_MAX_ENDSTOP_LOGIC
#define Z2_MAX_ENDSTOP_INVERTING Z2_MAX_ENDSTOP_LOGIC
#define Z_PROBE_ENDSTOP_INVERTING Z_PROBE_ENDSTOP_LOGIC
#endif
/**
* Firmware Test
*/
#ifdef FIRMWARE_TEST
#undef BAUDRATE
#define BAUDRATE 115200 // Baudrate setting to 115200 because serial monitor arduino function at max 115200 baudrate.
#endif
/**
* Axis lengths
*/
#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
/**
* SCARA
*/
#ifdef SCARA
#undef SLOWDOWN
#define QUICK_HOME //SCARA needs Quickhome
#endif
/**
* DELTA
*/
#ifdef DELTA
#undef SLOWDOWN //DELTA not needs SLOWDOWN
#define AUTOLEVEL_GRID_MULTI 1/AUTOLEVEL_GRID
// DELTA must have same valour for 3 axis endstop hits
#undef Y_HOME_BUMP_MM
#undef Z_HOME_BUMP_MM
#define Y_HOME_BUMP_MM X_HOME_BUMP_MM
#define Z_HOME_BUMP_MM X_HOME_BUMP_MM
// Effective horizontal distance bridged by diagonal push rods.
#define DEFAULT_DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
#define DELTA_PROBABLE_RADIUS (PRINTER_RADIUS - 10)
#define LEFT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS
#define RIGHT_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#define FRONT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS
#define BACK_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#endif
/**
* AUTOSET LOCATIONS OF LIMIT SWITCHES
* Added by ZetaPhoenix 09-15-2012
*/
#ifdef MANUAL_HOME_POSITIONS // Use manual limit switch locations
#define X_HOME_POS MANUAL_X_HOME_POS
#define Y_HOME_POS MANUAL_Y_HOME_POS
#define Z_HOME_POS MANUAL_Z_HOME_POS
#else //!MANUAL_HOME_POSITIONS – Use home switch positions based on homing direction and travel limits
#ifdef BED_CENTER_AT_0_0
#define X_HOME_POS X_MAX_LENGTH * X_HOME_DIR * 0.5
#define Y_HOME_POS Y_MAX_LENGTH * Y_HOME_DIR * 0.5
#else
#define X_HOME_POS (X_HOME_DIR < 0 ? X_MIN_POS : X_MAX_POS)
#define Y_HOME_POS (Y_HOME_DIR < 0 ? Y_MIN_POS : Y_MAX_POS)
#endif #endif
#define Z_HOME_POS (Z_HOME_DIR < 0 ? Z_MIN_POS : Z_MAX_POS)
#endif //!MANUAL_HOME_POSITIONS
/**
* Auto Bed Leveling
*/
#ifdef ENABLE_AUTO_BED_LEVELING
// Boundaries for probing based on set limits
#define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
#define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
#define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
#define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
#endif
/**
* Sled Options
*/
#ifdef Z_PROBE_SLED
#define Z_SAFE_HOMING
#endif #endif
#endif
#ifdef DOGLCD
/* Custom characters defined in font font_6x10_marlin_symbols */
// \x00 intentionally skipped to avoid problems in strings
#define LCD_STR_REFRESH "\x01"
#define LCD_STR_FOLDER "\x02"
#define LCD_STR_ARROW_RIGHT "\x03"
#define LCD_STR_UPLEVEL "\x04"
#define LCD_STR_CLOCK "\x05"
#define LCD_STR_FEEDRATE "\x06"
#define LCD_STR_BEDTEMP "\x07"
#define LCD_STR_THERMOMETER "\x08"
#define LCD_STR_DEGREE "\x09"
#define LCD_STR_SPECIAL_MAX '\x09'
// Maximum here is 0x1f because 0x20 is ' ' (space) and the normal charsets begin.
// Better stay below 0x10 because DISPLAY_CHARSET_HD44780_WESTERN begins here.
#else
/* Custom characters defined in the first 8 characters of the LCD */
#define LCD_STR_BEDTEMP "\x00" // this will have 'unexpected' results when used in a string!
#define LCD_STR_DEGREE "\x01"
#define LCD_STR_THERMOMETER "\x02"
#define LCD_STR_UPLEVEL "\x03"
#define LCD_STR_REFRESH "\x04"
#define LCD_STR_FOLDER "\x05"
#define LCD_STR_FEEDRATE "\x06"
#define LCD_STR_CLOCK "\x07"
#define LCD_STR_ARROW_RIGHT ">" /* from the default character set */
#endif
/**
* Default LCD contrast for dogm-like LCD displays
*/
#if defined(DOGLCD) && !defined(DEFAULT_LCD_CONTRAST)
#define DEFAULT_LCD_CONTRAST 32
#endif
#ifdef DOGLCD
#define HAS_LCD_CONTRAST
#ifdef U8GLIB_ST7920
#undef HAS_LCD_CONTRAST
#endif
#ifdef U8GLIB_SSD1306
#undef HAS_LCD_CONTRAST
#endif
#endif
/**
* SPLASH_SCREEN_DURATION for no DOGLCD display
*/
#ifndef DOGLCD
#undef SPLASH_SCREEN_DURATION
#define SPLASH_SCREEN_DURATION 500
#endif
#else // CONFIGURATION_LCD
#define CONDITIONALS_H
/**
* SINGLENOZZLE
*/
#ifdef SINGLENOZZLE
#define HOTENDS 1
#undef TEMP_SENSOR_1_AS_REDUNDANT
#else
#define HOTENDS EXTRUDERS
#endif
/**
* DRIVER_EXTRUDERS
*/
#if !defined(MKR4) && !defined(NPR2)
#define DRIVER_EXTRUDERS EXTRUDERS // This defines the number of Driver extruder
#endif
#ifndef __SAM3X8E__
#ifndef AT90USB
#define HardwareSerial_h // trick to disable the standard HWserial
#endif
#endif
#include "Arduino.h"
#include "pins.h"
/**
* ENDSTOPPULLUPS
*/
#ifdef ENDSTOPPULLUPS
#define ENDSTOPPULLUP_XMAX
#define ENDSTOPPULLUP_YMAX
#define ENDSTOPPULLUP_ZMAX
#define ENDSTOPPULLUP_XMIN
#define ENDSTOPPULLUP_YMIN
#define ENDSTOPPULLUP_ZMIN
#define ENDSTOPPULLUP_EMIN
#define ENDSTOPPULLUP_ZPROBE
#endif
/**
* ENDSTOP LOGICAL
*/
#if MB(ALLIGATOR)
#define X_MIN_ENDSTOP_INVERTING !X_MIN_ENDSTOP_LOGIC
#define Y_MIN_ENDSTOP_INVERTING !Y_MIN_ENDSTOP_LOGIC
#define Z_MIN_ENDSTOP_INVERTING !Z_MIN_ENDSTOP_LOGIC
#define Z2_MIN_ENDSTOP_INVERTING !Z2_MIN_ENDSTOP_LOGIC
#define E_MIN_ENDSTOP_INVERTING !E_MIN_ENDSTOP_LOGIC
#define X_MAX_ENDSTOP_INVERTING !X_MAX_ENDSTOP_LOGIC
#define Y_MAX_ENDSTOP_INVERTING !Y_MAX_ENDSTOP_LOGIC
#define Z_MAX_ENDSTOP_INVERTING !Z_MAX_ENDSTOP_LOGIC
#define Z2_MAX_ENDSTOP_INVERTING !Z2_MAX_ENDSTOP_LOGIC
#define Z_PROBE_ENDSTOP_INVERTING !Z_PROBE_ENDSTOP_LOGIC
#else
#define X_MIN_ENDSTOP_INVERTING X_MIN_ENDSTOP_LOGIC
#define Y_MIN_ENDSTOP_INVERTING Y_MIN_ENDSTOP_LOGIC
#define Z_MIN_ENDSTOP_INVERTING Z_MIN_ENDSTOP_LOGIC
#define Z2_MIN_ENDSTOP_INVERTING Z2_MIN_ENDSTOP_LOGIC
#define E_MIN_ENDSTOP_INVERTING E_MIN_ENDSTOP_LOGIC
#define X_MAX_ENDSTOP_INVERTING X_MAX_ENDSTOP_LOGIC
#define Y_MAX_ENDSTOP_INVERTING Y_MAX_ENDSTOP_LOGIC
#define Z_MAX_ENDSTOP_INVERTING Z_MAX_ENDSTOP_LOGIC
#define Z2_MAX_ENDSTOP_INVERTING Z2_MAX_ENDSTOP_LOGIC
#define Z_PROBE_ENDSTOP_INVERTING Z_PROBE_ENDSTOP_LOGIC
#endif
/**
* Firmware Test
*/
#ifdef FIRMWARE_TEST
#undef BAUDRATE
#define BAUDRATE 115200 // Baudrate setting to 115200 because serial monitor arduino function at max 115200 baudrate.
#endif
/**
* Axis lengths
*/
#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
/**
* SCARA
*/
#ifdef SCARA
#undef SLOWDOWN
#define QUICK_HOME //SCARA needs Quickhome
#endif
/**
* DELTA
*/
#ifdef DELTA
#undef SLOWDOWN //DELTA not needs SLOWDOWN
#define AUTOLEVEL_GRID_MULTI 1/AUTOLEVEL_GRID
// DELTA must have same valour for 3 axis endstop hits
#undef Y_HOME_BUMP_MM
#undef Z_HOME_BUMP_MM
#define Y_HOME_BUMP_MM X_HOME_BUMP_MM
#define Z_HOME_BUMP_MM X_HOME_BUMP_MM
// Effective horizontal distance bridged by diagonal push rods.
#define DEFAULT_DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
#define DELTA_PROBABLE_RADIUS (PRINTER_RADIUS - 10)
#define LEFT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS
#define RIGHT_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#define FRONT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS
#define BACK_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#endif
/** /**
* Servo Leveling * AUTOSET LOCATIONS OF LIMIT SWITCHES
*/ * Added by ZetaPhoenix 09-15-2012
#define SERVO_LEVELING (NUM_SERVOS > 0 && defined(ENABLE_AUTO_BED_LEVELING)) */
#define SERVO_LEVELING_DELAY (SERVO_LEVELING && PROBE_SERVO_DEACTIVATION_DELAY > 0) #ifdef MANUAL_HOME_POSITIONS // Use manual limit switch locations
#define X_HOME_POS MANUAL_X_HOME_POS
/** #define Y_HOME_POS MANUAL_Y_HOME_POS
* MAX_STEP_FREQUENCY differs for TOSHIBA OR ARDUINO DUE OR ARDUINO MEGA #define Z_HOME_POS MANUAL_Z_HOME_POS
*/ #else //!MANUAL_HOME_POSITIONS – Use home switch positions based on homing direction and travel limits
#ifdef __SAM3X8E__ #ifdef BED_CENTER_AT_0_0
#if defined(CONFIG_STEPPERS_TOSHIBA) || !defined(ENABLE_HIGH_SPEED_STEPPING) #define X_HOME_POS X_MAX_LENGTH * X_HOME_DIR * 0.5
#define MAX_STEP_FREQUENCY 150000 // Max step frequency for Toshiba Stepper Controllers #define Y_HOME_POS Y_MAX_LENGTH * Y_HOME_DIR * 0.5
#define DOUBLE_STEP_FREQUENCY MAX_STEP_FREQUENCY
#else
#define MAX_STEP_FREQUENCY 500000 // Max step frequency for the Due is approx. 330kHz
#define DOUBLE_STEP_FREQUENCY 120000 //96kHz is close to maximum for an Arduino Due
#endif
#else #else
#if defined(CONFIG_STEPPERS_TOSHIBA) || !defined(ENABLE_HIGH_SPEED_STEPPING) #define X_HOME_POS (X_HOME_DIR < 0 ? X_MIN_POS : X_MAX_POS)
#define MAX_STEP_FREQUENCY 10000 // Max step frequency for Toshiba Stepper Controllers #define Y_HOME_POS (Y_HOME_DIR < 0 ? Y_MIN_POS : Y_MAX_POS)
#define DOUBLE_STEP_FREQUENCY MAX_STEP_FREQUENCY #endif
#else #define Z_HOME_POS (Z_HOME_DIR < 0 ? Z_MIN_POS : Z_MAX_POS)
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Arduino mega #endif //!MANUAL_HOME_POSITIONS
#endif
#endif /**
* Auto Bed Leveling
// MS1 MS2 Stepper Driver Microstepping mode table */
#define MICROSTEP1 LOW,LOW #ifdef ENABLE_AUTO_BED_LEVELING
#define MICROSTEP2 HIGH,LOW // Boundaries for probing based on set limits
#define MICROSTEP4 LOW,HIGH #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
#define MICROSTEP8 HIGH,HIGH #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
#if MB(ALLIGATOR) #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
#define MICROSTEP16 LOW,LOW #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
#define MICROSTEP32 HIGH,HIGH #endif
/**
* Sled Options
*/
#ifdef Z_PROBE_SLED
#define Z_SAFE_HOMING
#endif
/**
* Servo Leveling
*/
#define SERVO_LEVELING (NUM_SERVOS > 0 && defined(ENABLE_AUTO_BED_LEVELING))
#define SERVO_LEVELING_DELAY (SERVO_LEVELING && PROBE_SERVO_DEACTIVATION_DELAY > 0)
/**
* MAX_STEP_FREQUENCY differs for TOSHIBA OR ARDUINO DUE OR ARDUINO MEGA
*/
#ifdef __SAM3X8E__
#if defined(CONFIG_STEPPERS_TOSHIBA) || !defined(ENABLE_HIGH_SPEED_STEPPING)
#define MAX_STEP_FREQUENCY 150000 // Max step frequency for Toshiba Stepper Controllers
#define DOUBLE_STEP_FREQUENCY MAX_STEP_FREQUENCY
#else #else
#define MICROSTEP16 HIGH,HIGH #define MAX_STEP_FREQUENCY 500000 // Max step frequency for the Due is approx. 330kHz
#endif #define DOUBLE_STEP_FREQUENCY 120000 //96kHz is close to maximum for an Arduino Due
/**
* Advance calculated values
*/
#ifdef ADVANCE
#define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * M_PI)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS + active_extruder] / EXTRUSION_AREA)
#endif #endif
#else
#ifdef ULTIPANEL #if defined(CONFIG_STEPPERS_TOSHIBA) || !defined(ENABLE_HIGH_SPEED_STEPPING)
#undef SDCARDDETECTINVERTED #define MAX_STEP_FREQUENCY 10000 // Max step frequency for Toshiba Stepper Controllers
#endif #define DOUBLE_STEP_FREQUENCY MAX_STEP_FREQUENCY
// Power Signal Control Definitions
// By default use Normal definition
#ifndef POWER_SUPPLY
#define POWER_SUPPLY 0
#endif
#if (POWER_SUPPLY == 1) // 1 = ATX
#define PS_ON_AWAKE LOW
#define PS_ON_ASLEEP HIGH
#elif (POWER_SUPPLY == 2) // 2 = X-Box 360 203W
#define PS_ON_AWAKE HIGH
#define PS_ON_ASLEEP LOW
#endif
#define HAS_POWER_SWITCH (POWER_SUPPLY > 0 && PIN_EXISTS(PS_ON))
/**
* Temp Sensor defines
*/
#if TEMP_SENSOR_0 == -2
#define HEATER_0_USES_MAX6675
#elif TEMP_SENSOR_0 == -1
#define HEATER_0_USES_AD595
#elif TEMP_SENSOR_0 == 0
#undef HEATER_0_MINTEMP
#undef HEATER_0_MAXTEMP
#elif TEMP_SENSOR_0 > 0
#define THERMISTORHEATER_0 TEMP_SENSOR_0
#define HEATER_0_USES_THERMISTOR
#endif
#if TEMP_SENSOR_1 == -1
#define HEATER_1_USES_AD595
#elif TEMP_SENSOR_1 == 0
#undef HEATER_1_MINTEMP
#undef HEATER_1_MAXTEMP
#elif TEMP_SENSOR_1 > 0
#define THERMISTORHEATER_1 TEMP_SENSOR_1
#define HEATER_1_USES_THERMISTOR
#endif
#if TEMP_SENSOR_2 == -1
#define HEATER_2_USES_AD595
#elif TEMP_SENSOR_2 == 0
#undef HEATER_2_MINTEMP
#undef HEATER_2_MAXTEMP
#elif TEMP_SENSOR_2 > 0
#define THERMISTORHEATER_2 TEMP_SENSOR_2
#define HEATER_2_USES_THERMISTOR
#endif
#if TEMP_SENSOR_3 == -1
#define HEATER_3_USES_AD595
#elif TEMP_SENSOR_3 == 0
#undef HEATER_3_MINTEMP
#undef HEATER_3_MAXTEMP
#elif TEMP_SENSOR_3 > 0
#define THERMISTORHEATER_3 TEMP_SENSOR_3
#define HEATER_3_USES_THERMISTOR
#endif
#if TEMP_SENSOR_BED == -1
#define BED_USES_AD595
#elif TEMP_SENSOR_BED == 0
#undef BED_MINTEMP
#undef BED_MAXTEMP
#undef THERMAL_PROTECTION_BED
#undef THERMAL_PROTECTION_BED_PERIOD
#elif TEMP_SENSOR_BED > 0
#define THERMISTORBED TEMP_SENSOR_BED
#define BED_USES_THERMISTOR
#endif
/**
* ARRAY_BY_EXTRUDERS based on EXTRUDERS
*/
#if EXTRUDERS > 3
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
#elif EXTRUDERS > 2
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
#elif EXTRUDERS > 1
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
#else
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
#endif
/**
* ARRAY_BY_HOTENDS based on HOTENDS
*/
#if HOTENDS > 3
#define ARRAY_BY_HOTENDS(v1, v2, v3, v4) { v1, v2, v3, v4 }
#elif HOTENDS > 2
#define ARRAY_BY_HOTENDS(v1, v2, v3, v4) { v1, v2, v3 }
#elif HOTENDS > 1
#define ARRAY_BY_HOTENDS(v1, v2, v3, v4) { v1, v2 }
#else
#define ARRAY_BY_HOTENDS(v1, v2, v3, v4) { v1 }
#endif
/**
* Shorthand for pin tests, used wherever needed
*/
#define HAS_TEMP_0 (PIN_EXISTS(TEMP_0) && TEMP_SENSOR_0 != 0 && TEMP_SENSOR_0 != -2)
#define HAS_TEMP_1 (PIN_EXISTS(TEMP_1) && TEMP_SENSOR_1 != 0)
#define HAS_TEMP_2 (PIN_EXISTS(TEMP_2) && TEMP_SENSOR_2 != 0)
#define HAS_TEMP_3 (PIN_EXISTS(TEMP_3) && TEMP_SENSOR_3 != 0)
#define HAS_TEMP_BED (PIN_EXISTS(TEMP_BED) && TEMP_SENSOR_BED != 0)
#define HAS_HEATER_0 (PIN_EXISTS(HEATER_0))
#define HAS_HEATER_1 (PIN_EXISTS(HEATER_1))
#define HAS_HEATER_2 (PIN_EXISTS(HEATER_2))
#define HAS_HEATER_3 (PIN_EXISTS(HEATER_3))
#define HAS_HEATER_BED (PIN_EXISTS(HEATER_BED))
#define HAS_AUTO_FAN_0 (PIN_EXISTS(EXTRUDER_0_AUTO_FAN))
#define HAS_AUTO_FAN_1 (PIN_EXISTS(EXTRUDER_1_AUTO_FAN))
#define HAS_AUTO_FAN_2 (PIN_EXISTS(EXTRUDER_2_AUTO_FAN))
#define HAS_AUTO_FAN_3 (PIN_EXISTS(EXTRUDER_3_AUTO_FAN))
#define HAS_AUTO_FAN (HAS_AUTO_FAN_0 || HAS_AUTO_FAN_1 || HAS_AUTO_FAN_2 || HAS_AUTO_FAN_3)
#define HAS_FAN (PIN_EXISTS(FAN))
#define HAS_CONTROLLERFAN (PIN_EXISTS(CONTROLLERFAN))
#define HAS_SERVO_0 (PIN_EXISTS(SERVO0))
#define HAS_SERVO_1 (PIN_EXISTS(SERVO1))
#define HAS_SERVO_2 (PIN_EXISTS(SERVO2))
#define HAS_SERVO_3 (PIN_EXISTS(SERVO3))
#define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && PIN_EXISTS(FILWIDTH))
#define HAS_POWER_CONSUMPTION_SENSOR (defined(POWER_CONSUMPTION) && PIN_EXISTS(POWER_CONSUMPTION))
#define HAS_FILRUNOUT (defined(FILAMENT_RUNOUT_SENSOR) && PIN_EXISTS(FILRUNOUT))
#define HAS_HOME (PIN_EXISTS(HOME))
#define HAS_KILL (PIN_EXISTS(KILL))
#define HAS_SUICIDE (PIN_EXISTS(SUICIDE))
#define HAS_PHOTOGRAPH (PIN_EXISTS(PHOTOGRAPH))
#define HAS_X_MIN (PIN_EXISTS(X_MIN))
#define HAS_X_MAX (PIN_EXISTS(X_MAX))
#define HAS_Y_MIN (PIN_EXISTS(Y_MIN))
#define HAS_Y_MAX (PIN_EXISTS(Y_MAX))
#define HAS_Z_MIN (PIN_EXISTS(Z_MIN))
#define HAS_Z_MAX (PIN_EXISTS(Z_MAX))
#define HAS_Z2_MIN (PIN_EXISTS(Z2_MIN))
#define HAS_Z2_MAX (PIN_EXISTS(Z2_MAX))
#define HAS_Z_PROBE (PIN_EXISTS(Z_PROBE))
#define HAS_E_MIN (PIN_EXISTS(E_MIN))
#define HAS_SOLENOID_1 (PIN_EXISTS(SOL1))
#define HAS_SOLENOID_2 (PIN_EXISTS(SOL2))
#define HAS_SOLENOID_3 (PIN_EXISTS(SOL3))
#define HAS_MICROSTEPS (PIN_EXISTS(X_MS1))
#define HAS_MICROSTEPS_E0 (PIN_EXISTS(E0_MS1))
#define HAS_MICROSTEPS_E1 (PIN_EXISTS(E1_MS1))
#define HAS_MICROSTEPS_E2 (PIN_EXISTS(E2_MS1))
#define HAS_X_ENABLE (PIN_EXISTS(X_ENABLE))
#define HAS_X2_ENABLE (PIN_EXISTS(X2_ENABLE))
#define HAS_Y_ENABLE (PIN_EXISTS(Y_ENABLE))
#define HAS_Y2_ENABLE (PIN_EXISTS(Y2_ENABLE))
#define HAS_Z_ENABLE (PIN_EXISTS(Z_ENABLE))
#define HAS_Z2_ENABLE (PIN_EXISTS(Z2_ENABLE))
#define HAS_E0_ENABLE (PIN_EXISTS(E0_ENABLE))
#define HAS_E1_ENABLE (PIN_EXISTS(E1_ENABLE))
#define HAS_E2_ENABLE (PIN_EXISTS(E2_ENABLE))
#define HAS_E3_ENABLE (PIN_EXISTS(E3_ENABLE))
#define HAS_X_DIR (PIN_EXISTS(X_DIR))
#define HAS_X2_DIR (PIN_EXISTS(X2_DIR))
#define HAS_Y_DIR (PIN_EXISTS(Y_DIR))
#define HAS_Y2_DIR (PIN_EXISTS(Y2_DIR))
#define HAS_Z_DIR (PIN_EXISTS(Z_DIR))
#define HAS_Z2_DIR (PIN_EXISTS(Z2_DIR))
#define HAS_E0_DIR (PIN_EXISTS(E0_DIR))
#define HAS_E1_DIR (PIN_EXISTS(E1_DIR))
#define HAS_E2_DIR (PIN_EXISTS(E2_DIR))
#define HAS_E3_DIR (PIN_EXISTS(E3_DIR))
#define HAS_X_STEP (PIN_EXISTS(X_STEP))
#define HAS_X2_STEP (PIN_EXISTS(X2_STEP))
#define HAS_Y_STEP (PIN_EXISTS(Y_STEP))
#define HAS_Y2_STEP (PIN_EXISTS(Y2_STEP))
#define HAS_Z_STEP (PIN_EXISTS(Z_STEP))
#define HAS_Z2_STEP (PIN_EXISTS(Z2_STEP))
#define HAS_E0_STEP (PIN_EXISTS(E0_STEP))
#define HAS_E1_STEP (PIN_EXISTS(E1_STEP))
#define HAS_E2_STEP (PIN_EXISTS(E2_STEP))
#define HAS_E3_STEP (PIN_EXISTS(E3_STEP))
#define HAS_E0E1 (PIN_EXISTS(E0E1_CHOICE))
#define HAS_E0E2 (PIN_EXISTS(E0E2_CHOICE))
#define HAS_E0E3 (PIN_EXISTS(E0E3_CHOICE))
#define HAS_E0E4 (PIN_EXISTS(E0E4_CHOICE))
#define HAS_E1E3 (PIN_EXISTS(E1E3_CHOICE))
#define HAS_BTN_BACK (PIN_EXISTS(BTN_BACK))
/**
* Shorthand for filament sensor and power sensor for ultralcd.cpp, dogm_lcd_implementation.h, ultralcd_implementation_hitachi_HD44780.h
*/
#define HAS_LCD_FILAMENT_SENSOR (HAS_FILAMENT_SENSOR && defined(FILAMENT_LCD_DISPLAY))
#define HAS_LCD_POWER_SENSOR (HAS_POWER_CONSUMPTION_SENSOR && defined(POWER_CONSUMPTION_LCD_DISPLAY))
/**
* Helper Macros for heaters and extruder fan
*/
#ifdef INVERTED_HEATER_PINS
#define WRITE_HEATER(pin,value) WRITE(pin,!value)
#else #else
#define WRITE_HEATER(pin,value) WRITE(pin,value) #define MAX_STEP_FREQUENCY 40000 // Max step frequency for Arduino mega
#endif #endif
#define WRITE_HEATER_0P(v) WRITE_HEATER(HEATER_0_PIN, v) #endif
#if HOTENDS > 1 || defined(HEATERS_PARALLEL)
#define WRITE_HEATER_1(v) WRITE_HEATER(HEATER_1_PIN, v) // MS1 MS2 Stepper Driver Microstepping mode table
#if HOTENDS > 2 #define MICROSTEP1 LOW,LOW
#define WRITE_HEATER_2(v) WRITE_HEATER(HEATER_2_PIN, v) #define MICROSTEP2 HIGH,LOW
#if HOTENDS > 3 #define MICROSTEP4 LOW,HIGH
#define WRITE_HEATER_3(v) WRITE_HEATER(HEATER_3_PIN, v) #define MICROSTEP8 HIGH,HIGH
#endif #if MB(ALLIGATOR)
#define MICROSTEP16 LOW,LOW
#define MICROSTEP32 HIGH,HIGH
#else
#define MICROSTEP16 HIGH,HIGH
#endif
/**
* Advance calculated values
*/
#ifdef ADVANCE
#define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * M_PI)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS + active_extruder] / EXTRUSION_AREA)
#endif
#if defined(ULTIPANEL) && !defined(ELB_FULL_GRAPHIC_CONTROLLER)
#undef SDCARDDETECTINVERTED
#endif
// Power Signal Control Definitions
// By default use Normal definition
#ifndef POWER_SUPPLY
#define POWER_SUPPLY 0
#endif
#if (POWER_SUPPLY == 1) // 1 = ATX
#define PS_ON_AWAKE LOW
#define PS_ON_ASLEEP HIGH
#elif (POWER_SUPPLY == 2) // 2 = X-Box 360 203W
#define PS_ON_AWAKE HIGH
#define PS_ON_ASLEEP LOW
#endif
#define HAS_POWER_SWITCH (POWER_SUPPLY > 0 && PIN_EXISTS(PS_ON))
/**
* Temp Sensor defines
*/
#if TEMP_SENSOR_0 == -2
#define HEATER_0_USES_MAX6675
#elif TEMP_SENSOR_0 == -1
#define HEATER_0_USES_AD595
#elif TEMP_SENSOR_0 == 0
#undef HEATER_0_MINTEMP
#undef HEATER_0_MAXTEMP
#elif TEMP_SENSOR_0 > 0
#define THERMISTORHEATER_0 TEMP_SENSOR_0
#define HEATER_0_USES_THERMISTOR
#endif
#if TEMP_SENSOR_1 == -1
#define HEATER_1_USES_AD595
#elif TEMP_SENSOR_1 == 0
#undef HEATER_1_MINTEMP
#undef HEATER_1_MAXTEMP
#elif TEMP_SENSOR_1 > 0
#define THERMISTORHEATER_1 TEMP_SENSOR_1
#define HEATER_1_USES_THERMISTOR
#endif
#if TEMP_SENSOR_2 == -1
#define HEATER_2_USES_AD595
#elif TEMP_SENSOR_2 == 0
#undef HEATER_2_MINTEMP
#undef HEATER_2_MAXTEMP
#elif TEMP_SENSOR_2 > 0
#define THERMISTORHEATER_2 TEMP_SENSOR_2
#define HEATER_2_USES_THERMISTOR
#endif
#if TEMP_SENSOR_3 == -1
#define HEATER_3_USES_AD595
#elif TEMP_SENSOR_3 == 0
#undef HEATER_3_MINTEMP
#undef HEATER_3_MAXTEMP
#elif TEMP_SENSOR_3 > 0
#define THERMISTORHEATER_3 TEMP_SENSOR_3
#define HEATER_3_USES_THERMISTOR
#endif
#if TEMP_SENSOR_BED == -1
#define BED_USES_AD595
#elif TEMP_SENSOR_BED == 0
#undef BED_MINTEMP
#undef BED_MAXTEMP
#elif TEMP_SENSOR_BED > 0
#define THERMISTORBED TEMP_SENSOR_BED
#define BED_USES_THERMISTOR
#endif
/**
* ARRAY_BY_EXTRUDERS based on EXTRUDERS
*/
#if EXTRUDERS > 3
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
#elif EXTRUDERS > 2
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
#elif EXTRUDERS > 1
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
#else
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
#endif
/**
* ARRAY_BY_HOTENDS based on HOTENDS
*/
#if HOTENDS > 3
#define ARRAY_BY_HOTENDS(v1, v2, v3, v4) { v1, v2, v3, v4 }
#elif HOTENDS > 2
#define ARRAY_BY_HOTENDS(v1, v2, v3, v4) { v1, v2, v3 }
#elif HOTENDS > 1
#define ARRAY_BY_HOTENDS(v1, v2, v3, v4) { v1, v2 }
#else
#define ARRAY_BY_HOTENDS(v1, v2, v3, v4) { v1 }
#endif
/**
* Shorthand for pin tests, used wherever needed
*/
#define HAS_TEMP_0 (PIN_EXISTS(TEMP_0) && TEMP_SENSOR_0 != 0 && TEMP_SENSOR_0 != -2)
#define HAS_TEMP_1 (PIN_EXISTS(TEMP_1) && TEMP_SENSOR_1 != 0)
#define HAS_TEMP_2 (PIN_EXISTS(TEMP_2) && TEMP_SENSOR_2 != 0)
#define HAS_TEMP_3 (PIN_EXISTS(TEMP_3) && TEMP_SENSOR_3 != 0)
#define HAS_TEMP_BED (PIN_EXISTS(TEMP_BED) && TEMP_SENSOR_BED != 0)
#define HAS_HEATER_0 (PIN_EXISTS(HEATER_0))
#define HAS_HEATER_1 (PIN_EXISTS(HEATER_1))
#define HAS_HEATER_2 (PIN_EXISTS(HEATER_2))
#define HAS_HEATER_3 (PIN_EXISTS(HEATER_3))
#define HAS_HEATER_BED (PIN_EXISTS(HEATER_BED))
#define HAS_AUTO_FAN_0 (PIN_EXISTS(EXTRUDER_0_AUTO_FAN))
#define HAS_AUTO_FAN_1 (PIN_EXISTS(EXTRUDER_1_AUTO_FAN))
#define HAS_AUTO_FAN_2 (PIN_EXISTS(EXTRUDER_2_AUTO_FAN))
#define HAS_AUTO_FAN_3 (PIN_EXISTS(EXTRUDER_3_AUTO_FAN))
#define HAS_AUTO_FAN (HAS_AUTO_FAN_0 || HAS_AUTO_FAN_1 || HAS_AUTO_FAN_2 || HAS_AUTO_FAN_3)
#define HAS_FAN (PIN_EXISTS(FAN))
#define HAS_CONTROLLERFAN (PIN_EXISTS(CONTROLLERFAN))
#define HAS_SERVO_0 (PIN_EXISTS(SERVO0))
#define HAS_SERVO_1 (PIN_EXISTS(SERVO1))
#define HAS_SERVO_2 (PIN_EXISTS(SERVO2))
#define HAS_SERVO_3 (PIN_EXISTS(SERVO3))
#define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && PIN_EXISTS(FILWIDTH))
#define HAS_POWER_CONSUMPTION_SENSOR (defined(POWER_CONSUMPTION) && PIN_EXISTS(POWER_CONSUMPTION))
#define HAS_FILRUNOUT (defined(FILAMENT_RUNOUT_SENSOR) && PIN_EXISTS(FILRUNOUT))
#define HAS_HOME (PIN_EXISTS(HOME))
#define HAS_KILL (PIN_EXISTS(KILL))
#define HAS_SUICIDE (PIN_EXISTS(SUICIDE))
#define HAS_PHOTOGRAPH (PIN_EXISTS(PHOTOGRAPH))
#define HAS_X_MIN (PIN_EXISTS(X_MIN))
#define HAS_X_MAX (PIN_EXISTS(X_MAX))
#define HAS_Y_MIN (PIN_EXISTS(Y_MIN))
#define HAS_Y_MAX (PIN_EXISTS(Y_MAX))
#define HAS_Z_MIN (PIN_EXISTS(Z_MIN))
#define HAS_Z_MAX (PIN_EXISTS(Z_MAX))
#define HAS_Z2_MIN (PIN_EXISTS(Z2_MIN))
#define HAS_Z2_MAX (PIN_EXISTS(Z2_MAX))
#define HAS_Z_PROBE (PIN_EXISTS(Z_PROBE))
#define HAS_E_MIN (PIN_EXISTS(E_MIN))
#define HAS_SOLENOID_1 (PIN_EXISTS(SOL1))
#define HAS_SOLENOID_2 (PIN_EXISTS(SOL2))
#define HAS_SOLENOID_3 (PIN_EXISTS(SOL3))
#define HAS_MICROSTEPS (PIN_EXISTS(X_MS1))
#define HAS_MICROSTEPS_E0 (PIN_EXISTS(E0_MS1))
#define HAS_MICROSTEPS_E1 (PIN_EXISTS(E1_MS1))
#define HAS_MICROSTEPS_E2 (PIN_EXISTS(E2_MS1))
#define HAS_X_ENABLE (PIN_EXISTS(X_ENABLE))
#define HAS_X2_ENABLE (PIN_EXISTS(X2_ENABLE))
#define HAS_Y_ENABLE (PIN_EXISTS(Y_ENABLE))
#define HAS_Y2_ENABLE (PIN_EXISTS(Y2_ENABLE))
#define HAS_Z_ENABLE (PIN_EXISTS(Z_ENABLE))
#define HAS_Z2_ENABLE (PIN_EXISTS(Z2_ENABLE))
#define HAS_E0_ENABLE (PIN_EXISTS(E0_ENABLE))
#define HAS_E1_ENABLE (PIN_EXISTS(E1_ENABLE))
#define HAS_E2_ENABLE (PIN_EXISTS(E2_ENABLE))
#define HAS_E3_ENABLE (PIN_EXISTS(E3_ENABLE))
#define HAS_X_DIR (PIN_EXISTS(X_DIR))
#define HAS_X2_DIR (PIN_EXISTS(X2_DIR))
#define HAS_Y_DIR (PIN_EXISTS(Y_DIR))
#define HAS_Y2_DIR (PIN_EXISTS(Y2_DIR))
#define HAS_Z_DIR (PIN_EXISTS(Z_DIR))
#define HAS_Z2_DIR (PIN_EXISTS(Z2_DIR))
#define HAS_E0_DIR (PIN_EXISTS(E0_DIR))
#define HAS_E1_DIR (PIN_EXISTS(E1_DIR))
#define HAS_E2_DIR (PIN_EXISTS(E2_DIR))
#define HAS_E3_DIR (PIN_EXISTS(E3_DIR))
#define HAS_X_STEP (PIN_EXISTS(X_STEP))
#define HAS_X2_STEP (PIN_EXISTS(X2_STEP))
#define HAS_Y_STEP (PIN_EXISTS(Y_STEP))
#define HAS_Y2_STEP (PIN_EXISTS(Y2_STEP))
#define HAS_Z_STEP (PIN_EXISTS(Z_STEP))
#define HAS_Z2_STEP (PIN_EXISTS(Z2_STEP))
#define HAS_E0_STEP (PIN_EXISTS(E0_STEP))
#define HAS_E1_STEP (PIN_EXISTS(E1_STEP))
#define HAS_E2_STEP (PIN_EXISTS(E2_STEP))
#define HAS_E3_STEP (PIN_EXISTS(E3_STEP))
#define HAS_E0E1 (PIN_EXISTS(E0E1_CHOICE))
#define HAS_E0E2 (PIN_EXISTS(E0E2_CHOICE))
#define HAS_E0E3 (PIN_EXISTS(E0E3_CHOICE))
#define HAS_E0E4 (PIN_EXISTS(E0E4_CHOICE))
#define HAS_E1E3 (PIN_EXISTS(E1E3_CHOICE))
#define HAS_BTN_BACK (PIN_EXISTS(BTN_BACK))
/**
* Shorthand for filament sensor and power sensor for ultralcd.cpp, dogm_lcd_implementation.h, ultralcd_implementation_hitachi_HD44780.h
*/
#define HAS_LCD_FILAMENT_SENSOR (HAS_FILAMENT_SENSOR && defined(FILAMENT_LCD_DISPLAY))
#define HAS_LCD_POWER_SENSOR (HAS_POWER_CONSUMPTION_SENSOR && defined(POWER_CONSUMPTION_LCD_DISPLAY))
/**
* Helper Macros for heaters and extruder fan
*/
#ifdef INVERTED_HEATER_PINS
#define WRITE_HEATER(pin,value) WRITE(pin,!value)
#else
#define WRITE_HEATER(pin,value) WRITE(pin,value)
#endif
#define WRITE_HEATER_0P(v) WRITE_HEATER(HEATER_0_PIN, v)
#if HOTENDS > 1 || defined(HEATERS_PARALLEL)
#define WRITE_HEATER_1(v) WRITE_HEATER(HEATER_1_PIN, v)
#if HOTENDS > 2
#define WRITE_HEATER_2(v) WRITE_HEATER(HEATER_2_PIN, v)
#if HOTENDS > 3
#define WRITE_HEATER_3(v) WRITE_HEATER(HEATER_3_PIN, v)
#endif #endif
#endif #endif
#ifdef HEATERS_PARALLEL #endif
#define WRITE_HEATER_0(v) { WRITE_HEATER_0P(v); WRITE_HEATER_1(v); } #ifdef HEATERS_PARALLEL
#else #define WRITE_HEATER_0(v) { WRITE_HEATER_0P(v); WRITE_HEATER_1(v); }
#define WRITE_HEATER_0(v) WRITE_HEATER_0P(v) #else
#endif #define WRITE_HEATER_0(v) WRITE_HEATER_0P(v)
#if HAS_HEATER_BED #endif
#define WRITE_HEATER_BED(v) WRITE_HEATER(HEATER_BED_PIN, v) #if HAS_HEATER_BED
#endif #define WRITE_HEATER_BED(v) WRITE_HEATER(HEATER_BED_PIN, v)
#if HAS_FAN #endif
#define WRITE_FAN(v) WRITE(FAN_PIN, v) #if HAS_FAN
#endif #define WRITE_FAN(v) WRITE(FAN_PIN, v)
#endif
#endif //CONFIGURATION_LCD
/**
* LCD BUZZ
*/
#define HAS_BUZZER ((defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
#endif //CONFIGURATION_LCD
#endif //CONDITIONALS_H #endif //CONDITIONALS_H
...@@ -77,9 +77,9 @@ ...@@ -77,9 +77,9 @@
#define MSG_PID_P "PID-P" #define MSG_PID_P "PID-P"
#define MSG_PID_I "PID-I" #define MSG_PID_I "PID-I"
#define MSG_PID_D "PID-D" #define MSG_PID_D "PID-D"
#define MSG_E2 " E2" #define MSG_H1 " H1"
#define MSG_E3 " E3" #define MSG_H2 " H2"
#define MSG_E4 " E4" #define MSG_H3 " H3"
#define MSG_ACC "Accel" #define MSG_ACC "Accel"
#define MSG_VXY_JERK "Vxy-jerk" #define MSG_VXY_JERK "Vxy-jerk"
#define MSG_VZ_JERK "Vz-jerk" #define MSG_VZ_JERK "Vz-jerk"
...@@ -176,13 +176,18 @@ ...@@ -176,13 +176,18 @@
#define MSG_YSCALE "Y Scale" #define MSG_YSCALE "Y Scale"
#endif #endif
// Extra
#define MSG_LASER "Laser Preset" #define MSG_LASER "Laser Preset"
#define MSG_CONFIG "Configuration" #define MSG_CONFIG "Configuration"
#define MSG_E_BOWDEN_LENGTH "Extrude " STRINGIFY(BOWDEN_LENGTH) "mm" #define MSG_E_BOWDEN_LENGTH "Extrude " STRINGIFY(BOWDEN_LENGTH) "mm"
#define MSG_R_BOWDEN_LENGTH "Retract " STRINGIFY(BOWDEN_LENGTH) "mm" #define MSG_R_BOWDEN_LENGTH "Retract " STRINGIFY(BOWDEN_LENGTH) "mm"
#define MSG_PURGE_XMM "Purge " STRINGIFY(LCD_PURGE_LENGTH) "mm" #define MSG_PURGE_XMM "Purge " STRINGIFY(LCD_PURGE_LENGTH) "mm"
#define MSG_RETRACT_XMM "Retract " STRINGIFY(LCD_RETRACT_LENGTH) "mm" #define MSG_RETRACT_XMM "Retract " STRINGIFY(LCD_RETRACT_LENGTH) "mm"
#define MSG_SAVED_POS "Saved position"
#define MSG_RESTORING_POS "Restoring position"
#define MSG_INVALID_POS_SLOT "Invalid slot, total slots: "
// Firmware Test
#ifdef FIRMWARE_TEST #ifdef FIRMWARE_TEST
#define MSG_FWTEST_YES "Put the Y command to go next" #define MSG_FWTEST_YES "Put the Y command to go next"
#define MSG_FWTEST_NO "Put the N command to go next" #define MSG_FWTEST_NO "Put the N command to go next"
......
...@@ -77,9 +77,9 @@ ...@@ -77,9 +77,9 @@
#define MSG_PID_P "PID-P" #define MSG_PID_P "PID-P"
#define MSG_PID_I "PID-I" #define MSG_PID_I "PID-I"
#define MSG_PID_D "PID-D" #define MSG_PID_D "PID-D"
#define MSG_E2 " E2" #define MSG_H1 " H1"
#define MSG_E3 " E3" #define MSG_H2 " H2"
#define MSG_E4 " E4" #define MSG_H3 " H3"
#define MSG_ACC "Accel" #define MSG_ACC "Accel"
#define MSG_VXY_JERK "Vxy-jerk" #define MSG_VXY_JERK "Vxy-jerk"
#define MSG_VZ_JERK "Vz-jerk" #define MSG_VZ_JERK "Vz-jerk"
...@@ -176,13 +176,18 @@ ...@@ -176,13 +176,18 @@
#define MSG_YSCALE "Y Scale" #define MSG_YSCALE "Y Scale"
#endif #endif
// Extra
#define MSG_LASER "Laser Preset" #define MSG_LASER "Laser Preset"
#define MSG_CONFIG "Configurazione" #define MSG_CONFIG "Configurazione"
#define MSG_E_BOWDEN_LENGTH "Extrude " STRINGIFY(BOWDEN_LENGTH) "mm" #define MSG_E_BOWDEN_LENGTH "Extrude " STRINGIFY(BOWDEN_LENGTH) "mm"
#define MSG_R_BOWDEN_LENGTH "Retract " STRINGIFY(BOWDEN_LENGTH) "mm" #define MSG_R_BOWDEN_LENGTH "Retract " STRINGIFY(BOWDEN_LENGTH) "mm"
#define MSG_PURGE_XMM "Purge " STRINGIFY(LCD_PURGE_LENGTH) "mm" #define MSG_PURGE_XMM "Purge " STRINGIFY(LCD_PURGE_LENGTH) "mm"
#define MSG_RETRACT_XMM "Retract " STRINGIFY(LCD_RETRACT_LENGTH) "mm" #define MSG_RETRACT_XMM "Retract " STRINGIFY(LCD_RETRACT_LENGTH) "mm"
#define MSG_SAVED_POS "Posizione Salvata"
#define MSG_RESTORING_POS "Restoring position"
#define MSG_INVALID_POS_SLOT "Invalid slot, total slots: "
// Firmware Test
#ifdef FIRMWARE_TEST #ifdef FIRMWARE_TEST
#define MSG_FWTEST_YES "Dai il comando Y per andare avanti" #define MSG_FWTEST_YES "Dai il comando Y per andare avanti"
#define MSG_FWTEST_NO "Dai il comando N per andare avanti" #define MSG_FWTEST_NO "Dai il comando N per andare avanti"
......
...@@ -36,7 +36,6 @@ ...@@ -36,7 +36,6 @@
#if defined(PIDTEMPBED) || defined(PIDTEMP) #if defined(PIDTEMPBED) || defined(PIDTEMP)
#define PID_dT ((OVERSAMPLENR * 14.0)/(F_CPU / 64.0 / 256.0)) #define PID_dT ((OVERSAMPLENR * 14.0)/(F_CPU / 64.0 / 256.0))
#define RECI_PID_dT ( 1 / PID_dT )
#endif #endif
//=========================================================================== //===========================================================================
...@@ -375,17 +374,14 @@ int getHeaterPower(int heater) { ...@@ -375,17 +374,14 @@ int getHeaterPower(int heater) {
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
void setExtruderAutoFanState(int pin, bool state) void setExtruderAutoFanState(int pin, bool state) {
{
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0; unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
// this idiom allows both digital and PWM fan outputs (see M42 handling). // this idiom allows both digital and PWM fan outputs (see M42 handling).
pinMode(pin, OUTPUT);
digitalWrite(pin, newFanSpeed); digitalWrite(pin, newFanSpeed);
analogWrite(pin, newFanSpeed); analogWrite(pin, newFanSpeed);
} }
void checkExtruderAutoFans() void checkExtruderAutoFans() {
{
uint8_t fanState = 0; uint8_t fanState = 0;
// which fan pins need to be turned on? // which fan pins need to be turned on?
...@@ -448,7 +444,7 @@ void checkExtruderAutoFans() ...@@ -448,7 +444,7 @@ void checkExtruderAutoFans()
#endif #endif
} }
#endif // any extruder auto fan pins set #endif // HAS_AUTO_FAN
// //
// Temperature Error Handlers // Temperature Error Handlers
...@@ -740,7 +736,7 @@ static float analog2temp(int raw, uint8_t e) { ...@@ -740,7 +736,7 @@ static float analog2temp(int raw, uint8_t e) {
return celsius; return celsius;
} }
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
} }
// Derived from RepRap FiveD extruder::getTemperature() // Derived from RepRap FiveD extruder::getTemperature()
...@@ -765,7 +761,7 @@ static float analog2tempBed(int raw) { ...@@ -765,7 +761,7 @@ static float analog2tempBed(int raw) {
return celsius; return celsius;
#elif defined BED_USES_AD595 #elif defined BED_USES_AD595
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
#else #else
return 0; return 0;
#endif #endif
...@@ -944,6 +940,20 @@ void tp_init() { ...@@ -944,6 +940,20 @@ void tp_init() {
#if HAS_FILAMENT_SENSOR #if HAS_FILAMENT_SENSOR
ANALOG_SELECT(FILWIDTH_PIN); ANALOG_SELECT(FILWIDTH_PIN);
#endif #endif
#if HAS_AUTO_FAN_0
pinMode(EXTRUDER_0_AUTO_FAN_PIN, OUTPUT);
#endif
#if HAS_AUTO_FAN_1 && (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
pinMode(EXTRUDER_1_AUTO_FAN_PIN, OUTPUT);
#endif
#if HAS_AUTO_FAN_2 && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
pinMode(EXTRUDER_2_AUTO_FAN_PIN, OUTPUT);
#endif
#if HAS_AUTO_FAN_3 && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
pinMode(EXTRUDER_3_AUTO_FAN_PIN, OUTPUT);
#endif
#if HAS_POWER_CONSUMPTION_SENSOR #if HAS_POWER_CONSUMPTION_SENSOR
ANALOG_SELECT(POWER_CONSUMPTION_PIN); ANALOG_SELECT(POWER_CONSUMPTION_PIN);
#endif #endif
...@@ -979,7 +989,6 @@ void tp_init() { ...@@ -979,7 +989,6 @@ void tp_init() {
#ifdef HEATER_0_MAXTEMP #ifdef HEATER_0_MAXTEMP
TEMP_MAX_ROUTINE(0); TEMP_MAX_ROUTINE(0);
#endif #endif
#if HOTENDS > 1 #if HOTENDS > 1
#ifdef HEATER_1_MINTEMP #ifdef HEATER_1_MINTEMP
TEMP_MIN_ROUTINE(1); TEMP_MIN_ROUTINE(1);
......
...@@ -520,16 +520,16 @@ static void lcd_tune_menu() { ...@@ -520,16 +520,16 @@ static void lcd_tune_menu() {
MENU_ITEM(back, MSG_MAIN, lcd_main_menu); MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999); MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999);
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 0", &target_temperature[0], 0, HEATER_0_MAXTEMP + LCD_MAX_TEMP_OFFSET);
#endif #endif
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[1], 0, HEATER_1_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 1", &target_temperature[1], 0, HEATER_1_MAXTEMP + LCD_MAX_TEMP_OFFSET);
#endif #endif
#if TEMP_SENSOR_2 != 0 #if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[2], 0, HEATER_2_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[2], 0, HEATER_2_MAXTEMP + LCD_MAX_TEMP_OFFSET);
#endif #endif
#if TEMP_SENSOR_3 != 0 #if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 4", &target_temperature[3], 0, HEATER_3_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[3], 0, HEATER_3_MAXTEMP + LCD_MAX_TEMP_OFFSET);
#endif #endif
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP + LCD_MAX_TEMP_OFFSET);
...@@ -641,15 +641,15 @@ void lcd_preheat_gum0() { _lcd_preheat(0, gumPreheatHotendTemp, gumPreheatHPBTem ...@@ -641,15 +641,15 @@ void lcd_preheat_gum0() { _lcd_preheat(0, gumPreheatHotendTemp, gumPreheatHPBTem
static void lcd_preheat_pla_menu() { static void lcd_preheat_pla_menu() {
START_MENU(lcd_prepare_menu); START_MENU(lcd_prepare_menu);
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu); MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_PLA " 1", lcd_preheat_pla0); MENU_ITEM(function, MSG_PREHEAT_PLA " 0", lcd_preheat_pla0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat #if TEMP_SENSOR_1 != 0 //2 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA " 2", lcd_preheat_pla1); MENU_ITEM(function, MSG_PREHEAT_PLA " 1", lcd_preheat_pla1);
#endif //2 extruder preheat #endif //2 extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat #if TEMP_SENSOR_2 != 0 //3 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA " 3", lcd_preheat_pla2); MENU_ITEM(function, MSG_PREHEAT_PLA " 2", lcd_preheat_pla2);
#endif //3 extruder preheat #endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat #if TEMP_SENSOR_3 != 0 //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA " 4", lcd_preheat_pla3); MENU_ITEM(function, MSG_PREHEAT_PLA " 3", lcd_preheat_pla3);
#endif //4 extruder preheat #endif //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_ALL, lcd_preheat_pla0123); MENU_ITEM(function, MSG_PREHEAT_PLA_ALL, lcd_preheat_pla0123);
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
...@@ -661,15 +661,15 @@ void lcd_preheat_gum0() { _lcd_preheat(0, gumPreheatHotendTemp, gumPreheatHPBTem ...@@ -661,15 +661,15 @@ void lcd_preheat_gum0() { _lcd_preheat(0, gumPreheatHotendTemp, gumPreheatHPBTem
static void lcd_preheat_abs_menu() { static void lcd_preheat_abs_menu() {
START_MENU(lcd_prepare_menu); START_MENU(lcd_prepare_menu);
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu); MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_ABS " 1", lcd_preheat_abs0); MENU_ITEM(function, MSG_PREHEAT_ABS " 0", lcd_preheat_abs0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat #if TEMP_SENSOR_1 != 0 //2 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS " 2", lcd_preheat_abs1); MENU_ITEM(function, MSG_PREHEAT_ABS " 1", lcd_preheat_abs1);
#endif //2 extruder preheat #endif //2 extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat #if TEMP_SENSOR_2 != 0 //3 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS " 3", lcd_preheat_abs2); MENU_ITEM(function, MSG_PREHEAT_ABS " 2", lcd_preheat_abs2);
#endif //3 extruder preheat #endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat #if TEMP_SENSOR_3 != 0 //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS " 4", lcd_preheat_abs3); MENU_ITEM(function, MSG_PREHEAT_ABS " 3", lcd_preheat_abs3);
#endif //4 extruder preheat #endif //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_ALL, lcd_preheat_abs0123); MENU_ITEM(function, MSG_PREHEAT_ABS_ALL, lcd_preheat_abs0123);
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
...@@ -681,15 +681,15 @@ void lcd_preheat_gum0() { _lcd_preheat(0, gumPreheatHotendTemp, gumPreheatHPBTem ...@@ -681,15 +681,15 @@ void lcd_preheat_gum0() { _lcd_preheat(0, gumPreheatHotendTemp, gumPreheatHPBTem
static void lcd_preheat_gum_menu() { static void lcd_preheat_gum_menu() {
START_MENU(lcd_prepare_menu); START_MENU(lcd_prepare_menu);
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu); MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_GUM " 1", lcd_preheat_gum0); MENU_ITEM(function, MSG_PREHEAT_GUM " 0", lcd_preheat_gum0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat #if TEMP_SENSOR_1 != 0 //2 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_GUM " 2", lcd_preheat_gum1); MENU_ITEM(function, MSG_PREHEAT_GUM " 1", lcd_preheat_gum1);
#endif //2 extruder preheat #endif //2 extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat #if TEMP_SENSOR_2 != 0 //3 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_GUM " 3", lcd_preheat_gum2); MENU_ITEM(function, MSG_PREHEAT_GUM " 2", lcd_preheat_gum2);
#endif //3 extruder preheat #endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat #if TEMP_SENSOR_3 != 0 //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_GUM " 4", lcd_preheat_gum3); MENU_ITEM(function, MSG_PREHEAT_GUM " 3", lcd_preheat_gum3);
#endif //all extruder preheat #endif //all extruder preheat
MENU_ITEM(function, MSG_PREHEAT_GUM_ALL, lcd_preheat_gum0123); MENU_ITEM(function, MSG_PREHEAT_GUM_ALL, lcd_preheat_gum0123);
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
...@@ -967,17 +967,17 @@ static void lcd_control_menu() { ...@@ -967,17 +967,17 @@ static void lcd_control_menu() {
PID_PARAM(Kd, e) = scalePID_d(raw_Kd); PID_PARAM(Kd, e) = scalePID_d(raw_Kd);
updatePID(); updatePID();
} }
void copy_and_scalePID_i_E1() { copy_and_scalePID_i(0); } void copy_and_scalePID_i_H0() { copy_and_scalePID_i(0); }
void copy_and_scalePID_d_E1() { copy_and_scalePID_d(0); } void copy_and_scalePID_d_H0() { copy_and_scalePID_d(0); }
#if HOTENDS > 1 #if HOTENDS > 1
void copy_and_scalePID_i_E2() { copy_and_scalePID_i(1); } void copy_and_scalePID_i_H1() { copy_and_scalePID_i(1); }
void copy_and_scalePID_d_E2() { copy_and_scalePID_d(1); } void copy_and_scalePID_d_H1() { copy_and_scalePID_d(1); }
#if HOTENDS > 2 #if HOTENDS > 2
void copy_and_scalePID_i_E3() { copy_and_scalePID_i(2); } void copy_and_scalePID_i_H2() { copy_and_scalePID_i(2); }
void copy_and_scalePID_d_E3() { copy_and_scalePID_d(2); } void copy_and_scalePID_d_H2() { copy_and_scalePID_d(2); }
#if HOTENDS > 3 #if HOTENDS > 3
void copy_and_scalePID_i_E4() { copy_and_scalePID_i(3); } void copy_and_scalePID_i_H3() { copy_and_scalePID_i(3); }
void copy_and_scalePID_d_E4() { copy_and_scalePID_d(3); } void copy_and_scalePID_d_H4() { copy_and_scalePID_d(3); }
#endif //HOTENDS > 3 #endif //HOTENDS > 3
#endif //HOTENDS > 2 #endif //HOTENDS > 2
#endif //HOTENDS > 1 #endif //HOTENDS > 1
...@@ -1001,19 +1001,19 @@ static void lcd_control_temperature_menu() { ...@@ -1001,19 +1001,19 @@ static void lcd_control_temperature_menu() {
// Nozzle, Nozzle 2, Nozzle 3, Nozzle 4 // Nozzle, Nozzle 2, Nozzle 3, Nozzle 4
// //
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 0", &target_temperature[0], 0, HEATER_0_MAXTEMP + LCD_MAX_TEMP_OFFSET);
#endif #endif
#if HOTENDS > 1 #if HOTENDS > 1
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[1], 0, HEATER_1_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 1", &target_temperature[1], 0, HEATER_1_MAXTEMP + LCD_MAX_TEMP_OFFSET);
#endif #endif
#if HOTENDS > 2 #if HOTENDS > 2
#if TEMP_SENSOR_2 != 0 #if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[2], 0, HEATER_2_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[2], 0, HEATER_2_MAXTEMP + LCD_MAX_TEMP_OFFSET);
#endif #endif
#if HOTENDS > 3 #if HOTENDS > 3
#if TEMP_SENSOR_3 != 0 #if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 4", &target_temperature[3], 0, HEATER_3_MAXTEMP + LCD_MAX_TEMP_OFFSET); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[3], 0, HEATER_3_MAXTEMP + LCD_MAX_TEMP_OFFSET);
#endif #endif
#endif //HOTENDS > 3 #endif //HOTENDS > 3
#endif //HOTENDS > 2 #endif //HOTENDS > 2
...@@ -1053,32 +1053,32 @@ static void lcd_control_temperature_menu() { ...@@ -1053,32 +1053,32 @@ static void lcd_control_temperature_menu() {
raw_Kd = unscalePID_d(PID_PARAM(Kd,0)); raw_Kd = unscalePID_d(PID_PARAM(Kd,0));
MENU_ITEM_EDIT(float52, MSG_PID_P, &PID_PARAM(Kp,0), 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P, &PID_PARAM(Kp,0), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E1); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_H0);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d_E1); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d_H0);
#if HOTENDS > 1 #if HOTENDS > 1
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(PID_PARAM(Ki,1)); raw_Ki = unscalePID_i(PID_PARAM(Ki,1));
raw_Kd = unscalePID_d(PID_PARAM(Kd,1)); raw_Kd = unscalePID_d(PID_PARAM(Kd,1));
MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E2, &PID_PARAM(Kp,1), 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P MSG_H1, &PID_PARAM(Kp,1), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E2, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E2); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_H1, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_H1);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E2, &raw_Kd, 1, 9990, copy_and_scalePID_d_E2); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_H1, &raw_Kd, 1, 9990, copy_and_scalePID_d_H1);
#if HOTENDS > 2 #if HOTENDS > 2
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(PID_PARAM(Ki,2)); raw_Ki = unscalePID_i(PID_PARAM(Ki,2));
raw_Kd = unscalePID_d(PID_PARAM(Kd,2)); raw_Kd = unscalePID_d(PID_PARAM(Kd,2));
MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E3, &PID_PARAM(Kp,2), 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P MSG_H2, &PID_PARAM(Kp,2), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E3, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E3); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_H2, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_H2);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E3, &raw_Kd, 1, 9990, copy_and_scalePID_d_E3); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_H2, &raw_Kd, 1, 9990, copy_and_scalePID_d_H2);
#if HOTENDS > 3 #if HOTENDS > 3
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(PID_PARAM(Ki,3)); raw_Ki = unscalePID_i(PID_PARAM(Ki,3));
raw_Kd = unscalePID_d(PID_PARAM(Kd,3)); raw_Kd = unscalePID_d(PID_PARAM(Kd,3));
MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E4, &PID_PARAM(Kp,3), 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P MSG_H3, &PID_PARAM(Kp,3), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E4, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E4); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_H3, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_H3);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E4, &raw_Kd, 1, 9990, copy_and_scalePID_d_E4); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_H3, &raw_Kd, 1, 9990, copy_and_scalePID_d_H3);
#endif //HOTENDS > 3 #endif //HOTENDS > 3
#endif //HOTENDS > 2 #endif //HOTENDS > 2
#endif //HOTENDS > 1 #endif //HOTENDS > 1
...@@ -1223,8 +1223,8 @@ static void lcd_control_motion_menu() { ...@@ -1223,8 +1223,8 @@ static void lcd_control_motion_menu() {
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &abort_on_endstop_hit); MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &abort_on_endstop_hit);
#endif #endif
#ifdef SCARA #ifdef SCARA
MENU_ITEM_EDIT(float52, MSG_XSCALE, &axis_scaling[X_AXIS],0.5,2); MENU_ITEM_EDIT(float74, MSG_XSCALE, &axis_scaling[X_AXIS],0.5,2);
MENU_ITEM_EDIT(float52, MSG_YSCALE, &axis_scaling[Y_AXIS],0.5,2); MENU_ITEM_EDIT(float74, MSG_YSCALE, &axis_scaling[Y_AXIS],0.5,2);
#endif #endif
END_MENU(); END_MENU();
} }
...@@ -1241,13 +1241,13 @@ static void lcd_control_volumetric_menu() { ...@@ -1241,13 +1241,13 @@ static void lcd_control_volumetric_menu() {
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers); MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers);
if (volumetric_enabled) { if (volumetric_enabled) {
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER " 1", &filament_size[0], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER " 0", &filament_size[0], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER " 2", &filament_size[1], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER " 1", &filament_size[1], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers);
#if EXTRUDERS > 2 #if EXTRUDERS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER " 3", &filament_size[2], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER " 2", &filament_size[2], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers);
#if EXTRUDERS > 3 #if EXTRUDERS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER " 4", &filament_size[3], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER " 3", &filament_size[3], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers);
#endif //EXTRUDERS > 3 #endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2 #endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1 #endif //EXTRUDERS > 1
...@@ -1474,7 +1474,7 @@ void lcd_quick_feedback() { ...@@ -1474,7 +1474,7 @@ void lcd_quick_feedback() {
#ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS #ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS (1000/6) #define LCD_FEEDBACK_FREQUENCY_DURATION_MS (1000/6)
#endif #endif
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#elif defined(BEEPER) && BEEPER >= 0 #elif defined(BEEPER) && BEEPER >= 0
#ifndef LCD_FEEDBACK_FREQUENCY_HZ #ifndef LCD_FEEDBACK_FREQUENCY_HZ
#define LCD_FEEDBACK_FREQUENCY_HZ 5000 #define LCD_FEEDBACK_FREQUENCY_HZ 5000
...@@ -1482,7 +1482,7 @@ void lcd_quick_feedback() { ...@@ -1482,7 +1482,7 @@ void lcd_quick_feedback() {
#ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS #ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2 #define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
#endif #endif
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#else #else
#ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS #ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2 #define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
...@@ -1913,7 +1913,12 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; } ...@@ -1913,7 +1913,12 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#endif #endif
} }
void lcd_buzz(long duration, uint16_t freq) { bool lcd_clicked() { return LCD_CLICKED; }
#endif // ULTIPANEL
#if HAS_BUZZER
void buzz(long duration, uint16_t freq) {
if (freq > 0) { if (freq > 0) {
#ifdef LCD_USE_I2C_BUZZER #ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration, freq); lcd.buzz(duration, freq);
...@@ -1929,10 +1934,7 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; } ...@@ -1929,10 +1934,7 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
delay(duration); delay(duration);
} }
} }
#endif
bool lcd_clicked() { return LCD_CLICKED; }
#endif // ULTIPANEL
/*********************************/ /*********************************/
/** Number to string conversion **/ /** Number to string conversion **/
......
...@@ -59,8 +59,6 @@ ...@@ -59,8 +59,6 @@
#if HAS_LCD_FILAMENT_SENSOR || HAS_LCD_POWER_SENSOR #if HAS_LCD_FILAMENT_SENSOR || HAS_LCD_POWER_SENSOR
extern millis_t previous_lcd_status_ms; extern millis_t previous_lcd_status_ms;
#endif #endif
void lcd_buzz(long duration,uint16_t freq);
void lcd_quick_feedback(); // Audible feedback for a button click - could also be visual void lcd_quick_feedback(); // Audible feedback for a button click - could also be visual
bool lcd_clicked(); bool lcd_clicked();
...@@ -117,7 +115,6 @@ ...@@ -117,7 +115,6 @@
FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {} FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {}
FORCE_INLINE void lcd_buttons_update() {} FORCE_INLINE void lcd_buttons_update() {}
FORCE_INLINE void lcd_reset_alert_level() {} FORCE_INLINE void lcd_reset_alert_level() {}
FORCE_INLINE void lcd_buzz(long duration, uint16_t freq) {}
FORCE_INLINE bool lcd_detected(void) { return true; } FORCE_INLINE bool lcd_detected(void) { return true; }
#define LCD_MESSAGEPGM(x) do{}while(0) #define LCD_MESSAGEPGM(x) do{}while(0)
...@@ -125,6 +122,10 @@ ...@@ -125,6 +122,10 @@
#endif //ULTRA_LCD #endif //ULTRA_LCD
#if HAS_BUZZER
void buzz(long duration,uint16_t freq);
#endif
char *itostr2(const uint8_t &x); char *itostr2(const uint8_t &x);
char *itostr31(const int &xx); char *itostr31(const int &xx);
char *itostr3(const int &xx); char *itostr3(const int &xx);
......
...@@ -546,31 +546,46 @@ static void lcd_implementation_status_screen() { ...@@ -546,31 +546,46 @@ static void lcd_implementation_status_screen() {
#if HOTENDS > 1 && TEMP_SENSOR_BED != 0 #if HOTENDS > 1 && TEMP_SENSOR_BED != 0
// If we both have a 2nd extruder and a heated bed, // If we both have a 2nd hotend and a heated bed,
// show the heated bed temp on the left, // show the heated bed temp on the left,
// since the first line is filled with extruder temps // since the first line is filled with hotend temps
LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]); LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]);
#else #else
lcd.print('X');
if (axis_known_position[X_AXIS])
#ifdef DELTA
lcd.print(ftostr30(current_position[X_AXIS]));
#else
lcd.print(ftostr3(current_position[X_AXIS]));
#endif
else
lcd_printPGM(PSTR("---"));
#ifdef DELTA #ifdef DELTA
lcd.print('X');
lcd.print(ftostr30(current_position[X_AXIS]));
lcd_printPGM(PSTR(" Y")); lcd_printPGM(PSTR(" Y"));
lcd.print(ftostr30(current_position[Y_AXIS])); if (axis_known_position[Y_AXIS])
lcd.print(ftostr30(current_position[Y_AXIS]));
else
#else #else
lcd.print('X');
lcd.print(ftostr3(current_position[X_AXIS]));
lcd_printPGM(PSTR(" Y")); lcd_printPGM(PSTR(" Y"));
lcd.print(ftostr3(current_position[Y_AXIS])); if (axis_known_position[Y_AXIS])
lcd.print(ftostr3(current_position[Y_AXIS]));
else
#endif // DELTA #endif // DELTA
lcd_printPGM(PSTR("---"));
#endif // HOTENDS > 1 || TEMP_SENSOR_BED != 0 #endif // HOTENDS > 1 || TEMP_SENSOR_BED != 0
#endif // LCD_WIDTH >= 20 #endif // LCD_WIDTH >= 20
lcd.setCursor(LCD_WIDTH - 8, 1); lcd.setCursor(LCD_WIDTH - 8, 1);
lcd.print('Z'); lcd.print('Z');
lcd.print(ftostr32sp(current_position[Z_AXIS] + 0.00001)); if (axis_known_position[Z_AXIS])
lcd.print(ftostr32sp(current_position[Z_AXIS] + 0.00001));
else
lcd_printPGM(PSTR("---.--"));
#endif // LCD_HEIGHT > 2 #endif // LCD_HEIGHT > 2
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment