#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define K1 0.95 // Smoothing factor within the PID
#define MAX_OVERSHOOT_PID_AUTOTUNE 20 // Max valor for overshoot autotune
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
//#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result.
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
// If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_FUNCTIONAL_RANGE 10 // degC
#define PID_INTEGRAL_DRIVE_MAX PID_MAX // Limit for the integral term
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
// Uncomment this to enable PID on the cooler. It uses the same frequency PWM as the extruder
// if you use a software PWM or the frequency you select if using an hardware PWM
// If your PID_dT is the default, you use a software PWM, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W cooler.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPCOOLER
// Enable fast PWM for cooler
//#define FAST_PWM_COOLER
//#define COOLER_LIMIT_SWITCHING
#define COOLER_HYSTERESIS 2 //only disable heating if T<target-COOLER_HYSTERESIS and enable heating if T<target+COOLER_HYSTERESIS (works only if COOLER_LIMIT_SWITCHING is enabled)
#define COOLER_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
// This sets the max power delivered to the bed.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPCOOLER)
#define MAX_COOLER_POWER 255 // limits duty cycle to bed; 255=full current
#define PID_COOLER_INTEGRAL_DRIVE_MAX MAX_COOLER_POWER // limit for the integral term
// 120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
// from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_coolerKp 10.00
#define DEFAULT_coolerKi .023
#define DEFAULT_coolerKd 305.4
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
//#define PID_COOLER_DEBUG // Sends debug data to the serial port.
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//#define BED_LIMIT_SWITCHING
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS (works only if BED_LIMIT_SWITCHING is enabled)
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
// This sets the max power delivered to the bed.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#define PID_BED_INTEGRAL_DRIVE_MAX MAX_BED_POWER // limit for the integral term
// 120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
// from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
//#define PID_BED_DEBUG // Sends debug data to the serial port.
// Laser control is used by the Muve1 3D printer and the Buildlog.net laser cutter
//
//// The following define selects how to control the laser. Please choose the one that matches your setup.
// The following define selects how to control the laser.
// Please choose the one that matches your setup.
// 1 = Single pin control - LOW when off, HIGH when on, PWM to adjust intensity
// 2 = Two pin control - A firing pin for which LOW = off, HIGH = on, and a seperate intensity pin which carries a constant PWM signal and adjusts duty cycle to control intensity
// mUVe, buildlog.net and K40 chinese machines uses 2, AMRI ablative uses 1, AMRI SLS uses 2
#define LASER_CONTROL 2
#define LASER_CONTROL 1
/// The following define to use the new HakanBasted laser_pulse method to fire laser. It should be more efficient, but it's less tested.
// The following define to use the new HakanBasted laser_pulse method to fire laser. It should be more efficient, but it's less tested.
// Thanks for it to HakanBastedt that has implemented it for Marlin at https://github.com/HakanBastedt/Marlin
// Uncomment to enable it *USE AT YOUR OWN RISK*, it should work but it's *NOT WELL TESTED YET*
//#define LASER_PULSE_METHOD
...
...
@@ -27,50 +24,32 @@
// At least some CO2-drivers need it, not sure about laserdiode drivers.
#define LASER_REMAP_INTENSITY 7
// Uncomment the following if your laser firing pin (not the PWM pin) for two pin control requires a HIGH signal to fire rather than a low (eg Red Sail M300 RS 3040)
/// #define HIGH_TO_FIRE
// #define HIGH_TO_FIRE
//// The following defines select which G codes tell the laser to fire. It's OK to uncomment more than one.
// The following defines select which G codes tell the laser to fire. It's OK to uncomment more than one.
#define LASER_FIRE_G1 10 // fire the laser on a G1 move, extinguish when the move ends
#define LASER_FIRE_SPINDLE 11 // fire the laser on M3, extinguish on M5
#define LASER_FIRE_E 12 // fire the laser when the E axis moves
//// Raster mode enables the laser to etch bitmap data at high speeds. Increases command buffer size substantially.
// Raster mode enables the laser to etch bitmap data at high speeds. Increases command buffer size substantially.
#define LASER_RASTER
#define LASER_MAX_RASTER_LINE 68 // maximum number of base64 encoded pixels per raster gcode command
#define LASER_MAX_RASTER_LINE 68 // Maximum number of base64 encoded pixels per raster gcode command
#define LASER_RASTER_ASPECT_RATIO 1 // pixels aren't square on most displays, 1.33 == 4:3 aspect ratio.
#define LASER_RASTER_MM_PER_PULSE 0.2 //Can be overridden by providing an R value in M649 command : M649 S17 B2 D0 R0.1 F4000
#define LASER_RASTER_MM_PER_PULSE 0.2 //Can be overridden by providing an R value in M649 command : M649 S17 B2 D0 R0.1 F4000
//// Uncomment the following if the laser cutter is equipped with a peripheral relay board
//// to control power to an exhaust fan, cooler pump, laser power supply, etc.
// Uncomment the following if the laser cutter is equipped with a peripheral relay board
// to control power to an exhaust fan, cooler pump, laser power supply, etc.
//#define LASER_PERIPHERALS
//#define LASER_PERIPHERALS_TIMEOUT 30000 // Number of milliseconds to wait for status signal from peripheral control board
//// Uncomment the following line to enable cubic bezier curve movement with the G5 code
// Uncomment the following line to enable cubic bezier curve movement with the G5 code
// #define G5_BEZIER
// Uncomment these options for the mUVe 1 3D printer
// #define CUSTOM_MENDEL_NAME "mUVe1 Printer"
// #define LASER_WATTS 0.05
// #define LASER_DIAMETER 0.1 // milimeters
// #define LASER_PWM 8000 // hertz
// #define MUVE_Z_PEEL // The mUVe 1 uses a special peel maneuver between each layer, it requires independent control of each Z motor
// Uncomment these options for the Buildlog.net laser cutter, and other similar models
#define CUSTOM_MENDEL_NAME "Laser Cutter"
#define LASER_WATTS 40.0
#define LASER_DIAMETER 0.1 // milimeters
#define LASER_PWM 50000 // hertz
#define LASER_FOCAL_HEIGHT 74.50 // z axis position at which the laser is focused
//Uncomment for AMRI Ablative or SLS
//#define CUSTOM_MENDEL_NAME "Laser Cutter"
//#define LASER_WATTS 40.0
//#define LASER_DIAMETER 0.1 // milimeters
//#define LASER_PWM 25000 // hertz
//#define LASER_FOCAL_HEIGHT 74.50 // z axis position at which the laser is focused
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define K1 0.95 // Smoothing factor within the PID
#define MAX_OVERSHOOT_PID_AUTOTUNE 20 // Max valor for overshoot autotune
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
//#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result.
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
// If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_FUNCTIONAL_RANGE 10 // degC
#define PID_INTEGRAL_DRIVE_MAX PID_MAX // Limit for the integral term
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//#define BED_LIMIT_SWITCHING
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS (works only if BED_LIMIT_SWITCHING is enabled)
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
// This sets the max power delivered to the bed.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#define PID_BED_INTEGRAL_DRIVE_MAX MAX_BED_POWER // limit for the integral term
// 120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
// from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi 0.1
#define DEFAULT_bedKd 300.0
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
//#define PID_BED_DEBUG // Sends debug data to the serial port.
// Uncomment this to enable PID on the chamber. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use chamber PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPCHAMBER
//#define CHAMBER_LIMIT_SWITCHING
#define CHAMBER_HYSTERESIS 2 //only disable heating if T>target+CHAMBER_HYSTERESIS and enable heating if T>target-CHAMBER_HYSTERESIS (works only if CHAMBER_LIMIT_SWITCHING is enabled)
#define CHAMBER_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
// This sets the max power delivered to the chamber.
// all forms of chamber control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the chamber,
// so you shouldn't use it unless you are OK with PWM on your chamber. (see the comment on enabling PIDTEMPCHAMBER)
#define MAX_CHAMBER_POWER 255 // limits duty cycle to chamber; 255=full current
#define PID_CHAMBER_INTEGRAL_DRIVE_MAX MAX_CHAMBER_POWER // limit for the integral term
// 120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
// from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_chamberKp 10.00
#define DEFAULT_chamberKi 0.1
#define DEFAULT_chamberKd 300.0
// FIND YOUR OWN: "M303 E-2 C8 S90" to run autotune on the chamber at 90 degreesC for 8 cycles.
//#define PID_CHAMBER_DEBUG // Sends debug data to the serial port.
// Uncomment this to enable PID on the cooler. It uses the same frequency PWM as the extruder
// if you use a software PWM or the frequency you select if using an hardware PWM
// If your PID_dT is the default, you use a software PWM, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W cooler.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use cooler PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPCOOLER
// Enable fast PWM for cooler
//#define FAST_PWM_COOLER
//#define COOLER_LIMIT_SWITCHING
#define COOLER_HYSTERESIS 2 //only disable heating if T<target-COOLER_HYSTERESIS and enable heating if T<target+COOLER_HYSTERESIS (works only if COOLER_LIMIT_SWITCHING is enabled)
#define COOLER_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
// This sets the max power delivered to the cooler.
// all forms of cooler control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the cooler,
// so you shouldn't use it unless you are OK with PWM on your cooler. (see the comment on enabling PIDTEMPCOOLER)
#define MAX_COOLER_POWER 255 // limits duty cycle to cooler; 255=full current
#define PID_COOLER_INTEGRAL_DRIVE_MAX MAX_COOLER_POWER // limit for the integral term
// 120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
// from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_coolerKp 10.00
#define DEFAULT_coolerKi .023
#define DEFAULT_coolerKd 305.4
// FIND YOUR OWN: "M303 E-3 C8 S90" to run autotune on the cooler at 90 degreesC for 8 cycles.
//#define PID_COOLER_DEBUG // Sends debug data to the serial port.
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* M109 - Sxxx Wait for hotend current temp to reach target temp. Waits only when heating
* Rxxx Wait for hotend current temp to reach target temp. Waits when heating and cooling
* IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
* M110 - Set the current line number
* M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
* M111 - Set debug flags with S<mask>.
* M112 - Emergency stop
* M114 - Output current position to serial port
* M115 - Capabilities string
...
...
@@ -119,15 +119,20 @@
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed or cooler target temp
* M140 - Set hot bed target temp
* M141 - Set hot chamber target temp
* M142 - Set cooler target temp
* M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
* M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
* M163 - Set a single proportion for a mixing extruder. Requires COLOR_MIXING_EXTRUDER.
* M164 - Save the mix as a virtual extruder. Requires COLOR_MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
* M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires COLOR_MIXING_EXTRUDER.
* M190 - Sxxx Wait for bed or cooler current temp to reach target temp. Waits only when heating Waits only when heating bed or cooling cooler
* Rxxx Wait for bed or cooler current temp to reach target temp. Waits when heating and cooling
* C parameter select Cooler, omitting it selec bed.
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M191 - Sxxx Wait for chamber current temp to reach target temp. Waits only when heating
* Rxxx Wait for chamber current temp to reach target temp. Waits when heating and cooling
* M192 - Sxxx Wait for cooler current temp to reach target temp. Waits only when heating
* Rxxx Wait for cooler current temp to reach target temp. Waits when heating and cooling
* M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
...
...
@@ -140,8 +145,8 @@
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
* M220 - Set speed factor override percentage: S<factor in percent>
* M221 - Set extrude factor override percentage: S<factor in percent>
* M222 - Set density extrusion percentage for purge: S<factor in percent>
* M221 - T<extruder> S<factor in percent> - set extrude factor override percentage
* M222 - T<extruder> S<factor in percent> - set density extrude factor percentage for purge
* M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
* M240 - Trigger a camera to take a photograph
* M250 - Set LCD contrast C<contrast value> (value 0..63)
...
...
@@ -150,7 +155,9 @@
* M301 - Set PID parameters P I D and C
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
* M303 - PID relay autotune S<temperature> sets the target temperature (default target temperature = 150C). H<hotend> C<cycles> U<Apply result>
* M304 - Set bed PID parameters P I and D or cooling if C parameter
* M304 - Set hot bed PID parameters P I and D
* M305 - Set hot chamber PID parameters P I and D
* M306 - Set cooler PID parameters P I and D
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
* M380 - Activate solenoid on active extruder
...
...
@@ -175,8 +182,6 @@
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
* M649 - laser set options
* M650 - mUVe peel set peel distance
* M651 - mUVe peel run peel move
* M666 - Set z probe offset or Endstop and delta geometry adjustment
* M906 - Set motor currents XYZ T0-4 E
* M907 - Set digital trimpot motor current using axis codes.
laser.ppm=1/laser.raster_mm_per_pulse;//number of pulses per millimetre
laser.ppm=1/laser.raster_mm_per_pulse;// number of pulses per millimetre
laser.duration=(1000000/(feedrate/60))/laser.ppm;// (1 second in microseconds / (time to move 1mm in microseconds)) / (pulses per mm) = Duration of pulse, taking into account feedrate as speed and ppm