Commit 1a6d824d authored by MagoKimbra's avatar MagoKimbra

Add documentation

parent 284598c1
===============================================
Instructions for configuring Bed Auto Leveling
===============================================
There are two options for this feature. You may choose to use a servo mounted on the X carriage or you may use a sled that mounts on the X axis and can be docked when not in use.
See the section for each option below for specifics about installation and configuration. Also included are instructions that apply to both options.
Note for RAMPS users:
---------------------
By default, RAMPS have no power on servo bus (if you happen to have a multimeter, check the voltage on servo power pins).
In order to get the servo working, you need to supply 5V to 5V pin.. You can do it using your power supply (if it has a 5V output) or jumping the "Vcc" from Arduino to the 5V RAMPS rail.
These 2 pins are located just between the Reset Button and the yellow fuses... There are marks in the board showing 5V and VCC.. just connect them..
If jumping the arduino Vcc do RAMPS 5V rail, take care to not use a power hungry servo, otherwise you will cause a blackout in the arduino board ;-)
Instructions for Both Options
-----------------------------
Uncomment the "ENABLE_AUTO_BED_LEVELING" define (commented by default)
The following options define the probing positions. These are good starting values.
I recommend to keep a better clearance from borders in the first run and then make the probes as close as possible to borders:
* \#define LEFT_PROBE_BED_POSITION 30
* \#define RIGHT_PROBE_BED_POSITION 140
* \#define BACK_PROBE_BED_POSITION 140
* \#define FRONT_PROBE_BED_POSITION 30
A few more options:
* \#define XY_TRAVEL_SPEED 6000
X and Y axis travel speed between probes, in mm/min.
Bear in mind that really fast moves may render step skipping. 6000 mm/min (100mm/s) is a good value.
* \#define Z_RAISE_BEFORE_PROBING 10
* \#define Z_RAISE_BETWEEN_PROBINGS 10
The Z axis is lifted when traveling to the first probe point by Z_RAISE_BEFORE_PROBING value
and then lifted when traveling from first to second and second to third point by Z_RAISE_BETWEEN_PROBINGS.
All values are in mm as usual.
Servo Option Notes
------------------
You will probably need a swivel Z-MIN endstop in the extruder. A rc servo do a great job.
Check the system working here: http://www.youtube.com/watch?v=3IKMeOYz-1Q (Enable English subtitles)
Teasing ;-) video: http://www.youtube.com/watch?v=x8eqSQNAyro
In order to get the servo working, you need to enable:
* \#define NUM_SERVOS 1 // Servo index starts with 0 for M280 command
* \#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
* \#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 165,60} // X,Y,Z Axis Extend and Retract angles
The first define tells firmware how many servos you have.
The second tells what axis this servo will be attached to. In the example above, we have a servo in Z axis.
The third one tells the angle in 2 situations: Probing (165º) and resting (60º). Check this with command M280 P0 S{angle} (example: M280 P0 S60 moves the servo to 60º)
Next you need to define the Z endstop (probe) offset from hotend.
My preferred method:
* a) Make a small mark in the bed with a marker/felt-tip pen.
* b) Place the hotend tip as *exactly* as possible on the mark, touching the bed. Raise the hotend 0.1mm (a regular paper thickness) and zero all axis (G92 X0 Y0 Z0);
* d) Raise the hotend 10mm (or more) for probe clearance, lower the Z probe (Z-Endstop) with M401 and place it just on that mark by moving X, Y and Z;
* e) Lower the Z in 0.1mm steps, with the probe always touching the mark (it may be necessary to adjust X and Y as well) until you hear the "click" meaning the mechanical endstop was trigged. You can confirm with M119;
* f) Now you have the probe in the same place as your hotend tip was before. Perform a M114 and write down the values, for example: X:24.3 Y:-31.4 Z:5.1;
* g) You can raise the z probe with M402 command;
* h) Fill the defines bellow multiplying the values by "-1" (just change the signal)
* \#define X_PROBE_OFFSET_FROM_EXTRUDER -24.3
* \#define Y_PROBE_OFFSET_FROM_EXTRUDER 31.4
* \#define Z_PROBE_OFFSET_FROM_EXTRUDER -5.1
Sled Option Notes
-----------------
The sled option uses an electromagnet to attach and detach to/from the X carriage. See http://www.thingiverse.com/thing:396692 for more details on how to print and install this feature. It uses the same connections as the servo option.
To use the sled option, you must define two additional things in Configuration.h:
* \#define Z_PROBE_SLED
* \#define SLED_DOCKING_OFFSET 5
Uncomment the Z_PROBE_SLED to define to enable the sled (commented out by default).
Uncomment the SLED_DOCKING_OFFSET to set the extra distance the X axis must travel to dock the sled. This value can be found by moving the X axis to its maximum position then measure the distance to the right X end and subtract the width of the sled (23mm if you printed the sled from Thingiverse).
Next you need to define the Z endstop (probe) offset from hotend.
My preferred method:
* a) Home the X and Y axes.
* b) Move the X axis to about the center of the print bed. Make a mark on the print bed.
* c) Move the Y axis to the maximum position. Make another mark.
* d) Home the X axis and use a straight edge to make a line between the two points.
* e) Repeat (b)-(d) reversing the X and Y. When you are done you will have two lines on the print bed. We will use these to measure the offset for the Z probe endstop.
* f) Move the nozzle so that it is positioned on the center point of the two lines. You can use fine movement of 0.1mm to get it as close as possible. Note the position of X and Y.
* g) Zero the Z axis with the G92 Z0 command.
* h) Raise the Z axis about 20mmm.
* i) Use the G32 command to retrieve the sled.
* j) Now more the X and Y axis to the position recorded in (f).
* k) Lower the Z axis in 0.1mm steps until you hear the "click" meaning the mechanical endstop was trigged. You can confirm with the M119 command. Note the position of the Z axis.
* l) Make a mark on the print bed where the endstop lever has touched the print bed. Raise the Z-axis about 30mm to give yourself some room.
* m) Now measure the distance from the center point to the endstop impact site along the X and Y axis using the lines drawn previously.
* n) Fill in the values below. If the endstop mark is in front of the line running left-to-right, use positive values. If it is behind, use negative values. For the Z axis use the value from (k) and subtract 0.1mm.
For example, suppose you measured the endstop position and it was 20mm to the right of the line running front-to-back, 10mm toward the front of the line running left-to-right, and the value from (k) was 2.85. The values for the defines would be:
* \#define X_PROBE_OFFSET_FROM_EXTRUDER 20
* \#define Y_PROBE_OFFSET_FROM_EXTRUDER 10
* \#define Z_PROBE_OFFSET_FROM_EXTRUDER 2.75
That's it.. enjoy never having to calibrate your Z endstop neither leveling your bed by hand anymore ;-)
\ No newline at end of file
# Configuring and compilation
1. Install the latest non-beta arduino software IDE/toolset: http://www.arduino.cc/en/Main/Software
2. Download the MarlinKimbra firmware
https://github.com/MagoKimbra/MarlinKimbra
Use the "Download Zip" button on the right.
3. Some boards require special files and/or libraries from the ArduinoAddons directory. Take a look at the dedicated [README](/ArduinoAddons/README.md) for details.
4. Start the arduino IDE.
5. Select Tools -> Board -> Arduino Mega 2560 or your microcontroller
6. Select the correct serial port in Tools ->Serial Port
7. Open MarlinKimbra.pde or .ino
8. Click the Verify/Compile button
9. Click the Upload button. If all goes well the firmware is uploading
\ No newline at end of file
# Features
* Interrupt based movement with real linear acceleration
* High steprate
* Look ahead (Keep the speed high when possible. High cornering speed)
* Interrupt based temperature protection
* preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
* Full endstop support
* SD Card support
* SD Card folders (works in pronterface)
* SD Card autostart support
* LCD support (ideally 20x4)
* LCD menu system for autonomous SD card printing, controlled by an click-encoder.
* EEPROM storage of e.g. max-velocity, max-acceleration, and similar variables
* many small but handy things originating from bkubicek's fork.
* Arc support
* Temperature oversampling
* Dynamic Temperature setpointing aka "AutoTemp"
* Support for QTMarlin, a very beta GUI for PID-tuning and velocity-acceleration testing. https://github.com/bkubicek/QTMarlin
* Endstop trigger reporting to the host software.
* Updated sdcardlib
* Heater power reporting. Useful for PID monitoring.
* PID tuning
* Cartesian kinematics
* CoreXY kinematics (www.corexy.com/theory.html)
* Delta kinematics
* SCARA kinematics
* One firmware for all printers, see configurations.h.
* Dual X-carriage support for multiple extruder systems
* Configurable serial port to support connection of wireless adaptors.
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature
* RC Servo Support, specify angle or duration for continuous rotation servos.
* Manual procedure for bed setting with LCD
* Bed Auto Leveling for cartesian and delta printer
* Z probe repetability test
* Setting step for unit and feedrate for extruders
* Setting PID for any extruder
* Real-time filament diameter measurement and control
* MKR4 suppport for 4 extruder but only two driver
* Singlenozzle support
* NPr2 support, multiextruder by NicolaP http://www.3dmakerlab.it/extruder-npr2.html
* Laserbeam support
* Firmware test
* Support for a filament diameter sensor, which adjusts extrusion volume
The default baudrate is 250000. This baudrate has less jitter and hence errors than the usual 115200 baud, but is less supported by drivers and host-environments.
## Differences and additions to the already good Sprinter firmware
### Look-ahead
Marlin has look-ahead. While sprinter has to break and re-accelerate at each corner,
lookahead will only decelerate and accelerate to a velocity,
so that the change in vectorial velocity magnitude is less than the xy_jerk_velocity.
This is only possible, if some future moves are already processed, hence the name.
It leads to less over-deposition at corners, especially at flat angles.
### Arc support
Slic3r can find curves that, although broken into segments, were ment to describe an arc.
Marlin is able to print those arcs. The advantage is the firmware can choose the resolution,
and can perform the arc with nearly constant velocity, resulting in a nice finish.
Also, less serial communication is needed.
### Temperature Oversampling
To reduce noise and make the PID-differential term more useful, 16 ADC conversion results are averaged.
### AutoTemp
If your gcode contains a wide spread of extruder velocities, or you realtime change the building speed, the temperature should be changed accordingly.
Usually, higher speed requires higher temperature.
This can now be performed by the AutoTemp function
By calling M109 S<mintemp> B<maxtemp> F<factor> you enter the autotemp mode.
You can leave it by calling M109 without any F.
If active, the maximal extruder stepper rate of all buffered moves will be calculated, and named "maxerate" [steps/sec].
The wanted temperature then will be set to t=tempmin+factor*maxerate, while being limited between tempmin and tempmax.
If the target temperature is set manually or by gcode to a value less then tempmin, it will be kept without change.
Ideally, your gcode can be completely free of temperature controls, apart from a M109 S T F in the start.gcode, and a M109 S0 in the end.gcode.
### EEPROM
If you know your PID values, the acceleration and max-velocities of your unique machine, you can set them, and finally store them in the EEPROM.
After each reboot, it will magically load them from EEPROM, independent what your Configuration.h says.
### LCD Menu
If your hardware supports it, you can build yourself a LCD-CardReader+Click+encoder combination. It will enable you to realtime tune temperatures,
accelerations, velocities, flow rates, select and print files from the SD card, preheat, disable the steppers, and do other fancy stuff.
One working hardware is documented here: http://www.thingiverse.com/thing:12663
Also, with just a 20x4 or 16x2 display, useful data is shown.
### SD card directories
If you have an SD card reader attached to your controller, also folders work now. Listing the files in pronterface will show "/path/subpath/file.g".
You can write to file in a subfolder by specifying a similar text using small letters in the path.
Also, backup copies of various operating systems are hidden, as well as files not ending with ".g".
### Autostart
If you place a file auto[0-9].g into the root of the sd card, it will be automatically executed if you boot the printer. The same file will be executed by selecting "Autostart" from the menu.
First *0 will be performed, than *1 and so on. That way, you can heat up or even print automatically without user interaction.
### Endstop trigger reporting
If an endstop is hit while moving towards the endstop, the location at which the firmware thinks that the endstop was triggered is outputed on the serial port.
This is useful, because the user gets a warning message.
However, also tools like QTMarlin can use this for finding acceptable combinations of velocity+acceleration.
### Coding paradigm
Not relevant from a user side, but Marlin was split into thematic junks, and has tried to partially enforced private variables.
This is intended to make it clearer, what interacts which what, and leads to a higher level of modularization.
We think that this is a useful prestep for porting this firmware to e.g. an ARM platform in the future.
A lot of RAM (with enabled LCD ~2200 bytes) was saved by storing char []="some message" in Program memory.
In the serial communication, a #define based level of abstraction was enforced, so that it is clear that
some transfer is information (usually beginning with "echo:"), an error "error:", or just normal protocol,
necessary for backwards compatibility.
### Interrupt based temperature measurements
An interrupt is used to manage ADC conversions, and enforce checking for critical temperatures.
This leads to less blocking in the heater management routine.
### Different printer one firmware
I put in a single firmware all the firmware that I found online for the various printers, especially the one for Delta, I standardized the firmware. There are 4 files one for each type of printer, just edit the file in question and say configuration.h the printer you want to use ...
* \#define CARTESIAN
* \#define COREXY
* \#define DELTA
* \#define SCARA
### Different axis step per unit for all extruder
* \#define DEFAULT_AXIS_STEPS_PER_UNIT {80,80,3200,625,625,625,625} // X, Y, Z, E0, E1, E2, E3 default steps per unit
### Different feedrate for all extruder
* \#define DEFAULT_MAX_FEEDRATE {300,300,2,100,100,100,100} // X, Y, Z, E0, E1, E2, E3 (mm/sec)
### Different acceleration for all extruder
* #define DEFAULT_MAX_ACCELERATION {3000,3000,50,1000,1000,1000,1000} // X, Y, Z, E0, E1, E2, E3 maximum start speed for accelerated moves.
### Different PID for all hotend
* \#define DEFAULT_Kp {41.51,50,0,0} // Kp for E0, E1, E2, E3
* \#define DEFAULT_Ki {7.28,15,0,0} // Ki for E0, E1, E2, E3
* \#define DEFAULT_Kd {59.17,90,0,0} // Kd for E0, E1, E2, E3
### Add Feedrate for retraction
* \#define DEFAULT_RETRACTION_MAX_FEEDRATE {150,150,150,150} // E0, E1, E2, E3 (mm/sec)
### Singlenozzle
If have one hotend and more extruder define SINGLENOZZLE for unique temperature.
* \// Uncomment below to enable SINGLENOZZLE (One Hotend)
* \//#define SINGLENOZZLE //This is used for singlenozzled multiple extrusion configuration
### MKR4 System
The system MKR4 allows two extruders for each driver on the motherboard. So with two drivers available you get to have 4 extruders. This is due to the relays controlled by the same motherboard with the pins. Look at the bottom of the file pins.h to set the right pin. This system allows the use of flux channeler to print in color. See http://www.immaginaecrea.it/index.php/blog-wordpress/post/150-flusso-canalizzatore-a-4-vie-la-stampa-3d-a-4-colori-e-gia-realta-per-lambiente-reprap-prima-parte
### NPr2 System
soon
http://www.3dmakerlab.it/extruder-npr2.html
### Debug Dryrun Repetier
In dry run mode, the firmware will ignore all commands to set temperature or extrude. That way you can send a file without using any filament. This is handy if your printer loses steps during print and you are doing some research on when and why. If you seem to have troubles with your extruder, check if you have that option enabled!
### Laserbeam Support
Support for laserbeam.
M3 Sxxx put output LASER_TTL_PIN in PWM
M4 switch on Laser, put high LASER_PWR_PIN
M5 switch off Laser, put low LASER_PWR_PIN
Setting LASER_TTL_PIN and LASER_PWR_PIN in pins.h
### G30 Autocalibartion for DELTA
G30 This command is used to perform reporting and autocalibration of a delta printer and has several options, as follows: G30 Probe bed and produce a report of the current state of the printer, e.g.:
* Z-Tower Endstop Offsets
* -0.0125 X:-3.05 Y:-1.83 Z:-2.69
* -0.0000 -0.0000 Tower Position Adjust
* -0.0625 A:-0.04 B:0.05 C:-0.01
* -0.0375 -0.0250 I:0.25 J:-1.25 K:-0.37 -0.0250
* Delta Radius: 109.5965
* Diag Rod: 224.5935 This option does not change any settings, but is useful when manually calibrating a printer, using the M666 command to change values.
G30 Xnn Ynn Probe bed at specified X,Y point and show z-height and delta carriage positions, e.g.: Bed Z-Height at X:30.00 Y:30.00 = 0.0000 Carriage Positions: [176.40, 207.77, 209.52].
G30 A Start auto-calibration. This will attempt to calibrate the printer, adjusting all parameters automatically, and will repeat the bed probing sequence show above several times adjusting each time until calibration is complete. It is recommended that you use M502 to load default values and then M500 to save them prior to starting the auto-calibration.
### M666 for all printers
For not DELTA:
M666 Pzzz adjust Z-Probe Offset if you have Auto bed level.
M666 L view value in memory for Z-Probe Offset.
For DELTA:
M666 L List all current configuration values , e.g.:
Current Delta geometry values:
* X (Endstop Adj): -3.05
* Y (Endstop Adj): -1.83
* Z (Endstop Adj): -2.69
* P (Z-Probe Offset): X0.00 Y10.00 Z-5.60
* A (Tower A Position Correction): -0.04
* B (Tower B Position Correction): 0.05
* C (Tower C Position Correction): -0.02
* I (Tower A Radius Correction): 0.25
* J (Tower B Radius Correction): -1.25
* K (Tower C Radius Correction): -0.37
* R (Delta Radius): 109.60
* D (Diagonal Rod Length): 224.59
* H (Z-Height): 255.73
All of these values can also be adjusted using the M666 command, e.g. to set the delta radius to 200mm, use:
* M666 R200
Or to change the Z-Height to 350.5 mm:
* M666 H350.5
Commands can also be combined, e.g. to set endstop values:
* M666 X-2.04 Y-1.02 Z-1.52
All of these values can be saved/loaded to/from EEPROM using standard M500/M501 G-Code commands (to save the settings at any time just type M500). This makes manual configuration of a printer much easier as there is no longer a requirement to edit the configuration.h file and re-upload firmware for each time a change needs to be made.
Configuration_delta.h now includes the following additional parameters:
Set start and end locations used to deploy the Z-Probe:
* \#define Z_PROBE_DEPLOY_START_LOCATION {20, 96, 30, 0}
* \#define Z_PROBE_DEPLOY_END_LOCATION {5, 96, 30, 0}
* \#define Z_PROBE_RETRACT_START_LOCATION {49, 84, 20, 0}
* \#define Z_PROBE_RETRACT_END_LOCATION {49, 84, 1, 0}
Set precision for autocalibration G30 function – calibration will complete when this value is reached – all probed point have to be at 0 +/- 0.015mm (for 0.03 setting below)
* \#define AUTOCALIBRATION_PRECISION 0.03 // mm
Set distance to probe bed at for G30 function
* \#define BED_DIAMETER 170 // mm
### Firmware test tools
Test firmware uncomment
* \#define FIRMWARE_TEST in configuration.h
Use baudrate 115200 and use Arduino serial monitor.
\ No newline at end of file
Filament Sensor
---------------
Supports the use of a real time filament diameter sensor that measures the diameter of the filament going into the extruder and then adjusts the extrusion rate to compensate for filament that does not match what is defined in the g-code. The diameter can also be displayed on the LCD screen. This potentially eliminates the need to measure filament diameter when changing spools of filament. Gcode becomes independent of the filament diameter. Can also compensate for changing diameter.
For examples of these sensors, see: http://www.thingiverse.com/thing:454584, https://www.youmagine.com/designs/filament-diameter-sensor, http://diy3dprinting.blogspot.com/2014/01/diy-filament-diameter-sensor.html. Any sensor which produces a voltage equivalent to the diameter in mm (i.e. 1v = 1mm) can be used. This provides a very simple interface and may encourage more innovation in this area.
4 new Mcodes are defined to set relevant parameters: M404, M405, M406, M407 - see above.
Implements a delay buffer to handle the transit delay between where the filament is measured and when it gets to the extruder.
\ No newline at end of file
# Implemented G Codes
## G Codes
* G0 -> G1
* G1 - Coordinated Movement X Y Z E F(feedrate)
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell Sseconds or Pmilliseconds, delay in Second or Millisecond
* G10 - retract filament according to settings of M207
* G11 - retract recover filament according to settings of M208
* G28 - X0 Y0 Z0 Home all Axis. G28 M for bed manual setting with LCD.
* G29 - Detailed Z-Probe, probes the bed at 4 points. You must de at the home position for this to work correctly.
G29 Fyyy Lxxx Rxxx Byyy for probe in this 4 points.
* G30 - Single Z Probe, probes bed at current XY location.
Bed Probe and Delta geometry Autocalibration G30 A
* G31 - Dock Z Probe sled (if enabled)
* G32 - Undock Z Probe sled (if enabled)
* G60 - Memory actual position
* G61 - Move X Y Z to position in memory
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to cordinates given
## M Codes
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 - Same as M0
* M3 - Sxxx Put output in laser beam control
* M4 - Turn on laser beam
* M5 - Turn off laser beam
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file (M23 filename.g)
* M24 - Start/resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes (M26 S12345)
* M27 - Report SD print status
* M28 - Start SD write (M28 filename.g)
* M29 - Stop SD write
* M30 - Delete file from SD (M30 filename.g)
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print (Can be used when printing from SD card)
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
* M49 - Z probe repetability test
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute (default)
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
* M84 - Disable steppers until next move, or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter Sseconds. To disable set zero (default)
* M92 - Set axis_steps_per_unit - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* M111 - Debug Dryrun Repetier
* M112 - Emergency stop
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - display message
* M119 - Output Endstop status to serial port
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed target temp
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 Dmillimeters- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
* M206 - set additional homeing offset
* M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
* M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
* M209 - S1=true/0=false enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - set hotend offset (in mm): Textruder_number Xoffset_on_X Yoffset_on_Y
* M220 Sfactor in percent- set speed factor override percentage
* M221 Sfactor in percent- set extrude factor override percentage
* M240 - Trigger a camera to take a photograph
* M280 - Position an RC Servo Pindex Sangle/microseconds, ommit S to report back current angle
* M299 - Turn on/off beep sound temperature
* M300 - Play beepsound Sfrequency Hz Pduration ms
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes
* M303 - PID relay autotune Stemperature sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D
* M400 - Finish all moves
* M401 - Lower z-probe if present
* M402 - Raise z-probe if present
* M404 - Ndia in mm Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
* M405 - Turn on Filament Sensor extrusion control. Optional Ddelay in cm to set delay in centimeters between sensor and extruder
* M406 - Turn off Filament Sensor extrusion control
* M407 - Displays measured filament diameter
* M500 - stores paramters in EEPROM
* M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - print the current settings (from memory not from eeprom)
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M605 - Set dual x-carriage movement mode: Smode [ X<duplication x-offset> Rduplication temp offset ]
* M666 - Set z probe offset or Endstop and delta geometry adjustment
* M907 - Set digital trimpot motor current using axis codes.
* M908 - Control digital trimpot directly.
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
\ No newline at end of file
# Supported Hardware
__Please note:__ We need more feedback from users weather their board is actually working!
Supported boards are listed under: [/MarlinKimbra/boards.h]
##### RAMPS
http://reprap.org/wiki/RAMPS
```
#define BOARD_RAMPS_OLD 3 // MEGA/RAMPS up to 1.2
#define BOARD_RAMPS_13_EFB 33 // RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
#define BOARD_RAMPS_13_EEB 34 // RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
#define BOARD_RAMPS_13_EFF 35 // RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
#define BOARD_RAMPS_13_EEF 36 // RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Fan)
```
##### Generation 3 Electronics
http://reprap.org/wiki/Generation_3_Electronics
```
#define BOARD_GEN3_PLUS 9 // Gen3+
#define BOARD_GEN3_MONOLITHIC 22 // Gen3 Monolithic Electronics
```
##### Generation 6 Electronics
http://reprap.org/wiki/Generation_6_Electronics
```
#define BOARD_GEN6 5 // Gen6
#define BOARD_GEN6_DELUXE 51 // Gen6 deluxe
```
##### Generation 7 Electronics
http://reprap.org/wiki/Generation_7_Electronics
```
#define BOARD_GEN7_CUSTOM 10 // Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"
#define BOARD_GEN7_12 11 // Gen7 v1.1, v1.2
#define BOARD_GEN7_13 12 // Gen7 v1.3
#define BOARD_GEN7_14 13 // Gen7 v1.4
```
```
#define BOARD_CHEAPTRONIC 2 // Cheaptronic v1.0
#define BOARD_SETHI 20 // Sethi 3D_1
```
##### Sanguinololu
http://reprap.org/wiki/Sanguinololu
```
#define BOARD_SANGUINOLOLU_11 6 // Sanguinololu < 1.2
#define BOARD_SANGUINOLOLU_12 62 // Sanguinololu 1.2 and above
```
##### Melzi
http://reprap.org/wiki/Melzi
```
#define BOARD_MELZI 63 // Melzi
#define BOARD_MELZI_1284 66 // Melzi with ATmega1284 (MaKr3d version)
```
##### RUMBA
http://reprap.org/wiki/RUMBA
```
#define BOARD_RUMBA 80 // Rumba
```
##### Azteeg
- http://reprap.org/wiki/Azteeg_X1
- http://reprap.org/wiki/Azteeg_X3
```
#define BOARD_AZTEEG_X1 65 // Azteeg X1
#define BOARD_AZTEEG_X3 67 // Azteeg X3
#define BOARD_AZTEEG_X3_PRO 68 // Azteeg X3 Pro
```
#### Others
```
#define BOARD_DUEMILANOVE_328P 4 // Duemilanove w/ ATMega328P pin assignment
#define BOARD_STB_11 64 // STB V1.1
#define BOARD_ULTIMAKER 7 // Ultimaker
#define BOARD_ULTIMAKER_OLD 71 // Ultimaker (Older electronics. Pre 1.5.4. This is rare)
#define BOARD_ULTIMAIN_2 72 // Ultimainboard 2.x (Uses TEMP_SENSOR 20)
#define BOARD_3DRAG 77 // 3Drag Controller
#define BOARD_TEENSYLU 8 // Teensylu
#define BOARD_PRINTRBOARD 81 // Printrboard (AT90USB1286)
#define BOARD_BRAINWAVE 82 // Brainwave (AT90USB646)
#define BOARD_SAV_MKI 83 // SAV Mk-I (AT90USB1286)
#define BOARD_TEENSY2 84 // Teensy++2.0 (AT90USB1286) - CLI compile: DEFINES=AT90USBxx_TEENSYPP_ASSIGNMENTS HARDWARE_MOTHERBOARD=84 make
#define BOARD_MEGATRONICS 70 // Megatronics
#define BOARD_MEGATRONICS_2 701 // Megatronics v2.0
#define BOARD_MEGATRONICS_1 702 // Minitronics v1.0
#define BOARD_OMCA_A 90 // Alpha OMCA board
#define BOARD_OMCA 91 // Final OMCA board
#define BOARD_RAMBO 301 // Rambo
#define BOARD_ELEFU_3 21 // Elefu Ra Board (v3)
#define BOARD_5DPRINT 88 // 5DPrint D8 Driver Board
#define BOARD_LEAPFROG 999 // Leapfrog
```
MarlinKimbra 3D Printer Firmware # MarlinKimbra 3D Printer Firmware
==========================
Marlin has a GPL license because I believe in open development. * [Configuration & Compilation](/Documentation/Compilation.md)
Please do not use this code in products (3D printers, CNC etc) that are closed source or are crippled by a patent. * Supported
* [Features](/Documentation/Features.md)
* [Hardware](/Documentation/Hardware.md)
* [GCodes](/Documentation/GCodes.md)
* Notes
* [Auto Bed Leveling](/Documentation/BedLeveling.md)
* [Filament Sensor](/Documentation/FilamentSensor.md)
## Configurator Tool Online
Configurator Tool Online
==========================
http://marlinkimbra.it http://marlinkimbra.it
Quick Information
========================== ## Quick Information
This version of Marlin was made to accommodate some requests made by the community RepRap Italy. This version of Marlin was made to accommodate some requests made by the community RepRap Italy.
The new features are: The new features are:
A single Marlin for all types of printers; Cartesian, Delta, SCARA, CoreXY. A single Marlin for all types of printers; Cartesian, Delta, SCARA, CoreXY.
...@@ -20,450 +28,3 @@ Adding commands to facilitate purging of hotend. ...@@ -20,450 +28,3 @@ Adding commands to facilitate purging of hotend.
Step per unit varied for each extruder as well as the feedrate. Step per unit varied for each extruder as well as the feedrate.
The addition of a different feedrate for retraction. The addition of a different feedrate for retraction.
Adding Debug Dryrun used by repetier. Adding Debug Dryrun used by repetier.
\ No newline at end of file
Features:
==========================
* Interrupt based movement with real linear acceleration
* High steprate
* Look ahead (Keep the speed high when possible. High cornering speed)
* Interrupt based temperature protection
* preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
* Full endstop support
* SD Card support
* SD Card folders (works in pronterface)
* SD Card autostart support
* LCD support (ideally 20x4)
* LCD menu system for autonomous SD card printing, controlled by an click-encoder.
* EEPROM storage of e.g. max-velocity, max-acceleration, and similar variables
* many small but handy things originating from bkubicek's fork.
* Arc support
* Temperature oversampling
* Dynamic Temperature setpointing aka "AutoTemp"
* Support for QTMarlin, a very beta GUI for PID-tuning and velocity-acceleration testing. https://github.com/bkubicek/QTMarlin
* Endstop trigger reporting to the host software.
* Updated sdcardlib
* Heater power reporting. Useful for PID monitoring.
* PID tuning
* Cartesian kinematics
* CoreXY kinematics (www.corexy.com/theory.html)
* Delta kinematics
* SCARA kinematics
* One firmware for all printers, see configurations.h.
* Dual X-carriage support for multiple extruder systems
* Configurable serial port to support connection of wireless adaptors.
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature
* RC Servo Support, specify angle or duration for continuous rotation servos.
* Manual procedure for bed setting with LCD
* Bed Auto Leveling for cartesian and delta printer
* Z probe repetability test
* Setting step for unit and feedrate for extruders
* Setting PID for any extruder
* Real-time filament diameter measurement and control
* MKR4 suppport for 4 extruder but only two driver
* Singlenozzle support
* NPr2 support, multiextruder by NicolaP http://www.3dmakerlab.it/extruder-npr2.html
* Laserbeam support
* Firmware test
The default baudrate is 250000. This baudrate has less jitter and hence errors than the usual 115200 baud, but is less supported by drivers and host-environments.
Differences and additions to the already good Marlin firmware:
================================================================
Different printer one firmware
-----------------
I put in a single firmware all the firmware that I found online for the various printers, especially the one for Delta, I standardized the firmware. There are 4 files one for each type of printer, just edit the file in question and say configuration.h the printer you want to use ...
* \#define CARTESIAN
* \#define COREXY
* \#define DELTA
* \#define SCARA
Different axis step per unit for all extruder
-----------------
* \#define DEFAULT_AXIS_STEPS_PER_UNIT {80,80,3200,625,625,625,625} // X, Y, Z, E0, E1, E2, E3 default steps per unit
Different feedrate for all extruder
-----------------
* \#define DEFAULT_MAX_FEEDRATE {300,300,2,100,100,100,100} // X, Y, Z, E0, E1, E2, E3 (mm/sec)
Different acceleration for all extruder
-----------------
* #define DEFAULT_MAX_ACCELERATION {3000,3000,50,1000,1000,1000,1000} // X, Y, Z, E0, E1, E2, E3 maximum start speed for accelerated moves.
Different PID for all hotend
-----------------
* \#define DEFAULT_Kp {41.51,50,0,0} // Kp for E0, E1, E2, E3
* \#define DEFAULT_Ki {7.28,15,0,0} // Ki for E0, E1, E2, E3
* \#define DEFAULT_Kd {59.17,90,0,0} // Kd for E0, E1, E2, E3
Add Feedrate for retraction
-----------------
* \#define DEFAULT_RETRACTION_MAX_FEEDRATE {150,150,150,150} // E0, E1, E2, E3 (mm/sec)
Singlenozzle
-----------------
If have one hotend and more extruder define SINGLENOZZLE for unique temperature.
* \// Uncomment below to enable SINGLENOZZLE (One Hotend)
* \//#define SINGLENOZZLE //This is used for singlenozzled multiple extrusion configuration
MKR4 System
-----------------
The system MKR4 allows two extruders for each driver on the motherboard. So with two drivers available you get to have 4 extruders. This is due to the relays controlled by the same motherboard with the pins. Look at the bottom of the file pins.h to set the right pin. This system allows the use of flux channeler to print in color. See http://www.immaginaecrea.it/index.php/blog-wordpress/post/150-flusso-canalizzatore-a-4-vie-la-stampa-3d-a-4-colori-e-gia-realta-per-lambiente-reprap-prima-parte
NPr2 System
-----------------
soon
http://www.3dmakerlab.it/extruder-npr2.html
Debug Dryrun Repetier
-----------------
In dry run mode, the firmware will ignore all commands to set temperature or extrude. That way you can send a file without using any filament. This is handy if your printer loses steps during print and you are doing some research on when and why. If you seem to have troubles with your extruder, check if you have that option enabled!
Laserbeam Support
-----------------
Support for laserbeam.
M3 Sxxx put output LASER_TTL_PIN in PWM
M4 switch on Laser, put high LASER_PWR_PIN
M5 switch off Laser, put low LASER_PWR_PIN
Setting LASER_TTL_PIN and LASER_PWR_PIN in pins.h
G30 Autocalibartion for DELTA
-----------------
G30 This command is used to perform reporting and autocalibration of a delta printer and has several options, as follows: G30 Probe bed and produce a report of the current state of the printer, e.g.:
* Z-Tower Endstop Offsets
* -0.0125 X:-3.05 Y:-1.83 Z:-2.69
* -0.0000 -0.0000 Tower Position Adjust
* -0.0625 A:-0.04 B:0.05 C:-0.01
* -0.0375 -0.0250 I:0.25 J:-1.25 K:-0.37 -0.0250
* Delta Radius: 109.5965
* Diag Rod: 224.5935 This option does not change any settings, but is useful when manually calibrating a printer, using the M666 command to change values.
G30 Xnn Ynn Probe bed at specified X,Y point and show z-height and delta carriage positions, e.g.: Bed Z-Height at X:30.00 Y:30.00 = 0.0000 Carriage Positions: [176.40, 207.77, 209.52].
G30 A Start auto-calibration. This will attempt to calibrate the printer, adjusting all parameters automatically, and will repeat the bed probing sequence show above several times adjusting each time until calibration is complete. It is recommended that you use M502 to load default values and then M500 to save them prior to starting the auto-calibration.
M666 for all printers
-----------------
For not DELTA:
M666 Pzzz adjust Z-Probe Offset if you have Auto bed level.
M666 L view value in memory for Z-Probe Offset.
For DELTA:
M666 L List all current configuration values , e.g.:
Current Delta geometry values:
* X (Endstop Adj): -3.05
* Y (Endstop Adj): -1.83
* Z (Endstop Adj): -2.69
* P (Z-Probe Offset): X0.00 Y10.00 Z-5.60
* A (Tower A Position Correction): -0.04
* B (Tower B Position Correction): 0.05
* C (Tower C Position Correction): -0.02
* I (Tower A Radius Correction): 0.25
* J (Tower B Radius Correction): -1.25
* K (Tower C Radius Correction): -0.37
* R (Delta Radius): 109.60
* D (Diagonal Rod Length): 224.59
* H (Z-Height): 255.73
All of these values can also be adjusted using the M666 command, e.g. to set the delta radius to 200mm, use:
* M666 R200
Or to change the Z-Height to 350.5 mm:
* M666 H350.5
Commands can also be combined, e.g. to set endstop values:
* M666 X-2.04 Y-1.02 Z-1.52
All of these values can be saved/loaded to/from EEPROM using standard M500/M501 G-Code commands (to save the settings at any time just type M500). This makes manual configuration of a printer much easier as there is no longer a requirement to edit the configuration.h file and re-upload firmware for each time a change needs to be made.
Configuration_delta.h now includes the following additional parameters:
Set start and end locations used to deploy the Z-Probe:
* \#define Z_PROBE_DEPLOY_START_LOCATION {20, 96, 30, 0}
* \#define Z_PROBE_DEPLOY_END_LOCATION {5, 96, 30, 0}
* \#define Z_PROBE_RETRACT_START_LOCATION {49, 84, 20, 0}
* \#define Z_PROBE_RETRACT_END_LOCATION {49, 84, 1, 0}
Set precision for autocalibration G30 function – calibration will complete when this value is reached – all probed point have to be at 0 +/- 0.015mm (for 0.03 setting below)
* \#define AUTOCALIBRATION_PRECISION 0.03 // mm
Set distance to probe bed at for G30 function
* \#define BED_DIAMETER 170 // mm
Firmware test tools
-----------------
Test firmware uncomment
* \#define FIRMWARE_TEST in configuration.h
Use baudrate 115200 and use Arduino serial monitor.
Implemented G Codes:
====================
* G0 -> G1
* G1 - Coordinated Movement X Y Z E F(feedrate)
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell Sseconds or Pmilliseconds, delay in Second or Millisecond
* G10 - retract filament according to settings of M207
* G11 - retract recover filament according to settings of M208
* G28 - X0 Y0 Z0 Home all Axis. G28 M for bed manual setting with LCD.
* G29 - Detailed Z-Probe, probes the bed at 4 points. You must de at the home position for this to work correctly.
G29 Fyyy Lxxx Rxxx Byyy for probe in this 4 points.
* G30 - Single Z Probe, probes bed at current XY location.
Bed Probe and Delta geometry Autocalibration G30 A
* G31 - Dock Z Probe sled (if enabled)
* G32 - Undock Z Probe sled (if enabled)
* G60 - Memory actual position
* G61 - Move X Y Z to position in memory
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to cordinates given
M Codes
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 - Same as M0
* M3 - Sxxx Put output in laser beam control
* M4 - Turn on laser beam
* M5 - Turn off laser beam
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file (M23 filename.g)
* M24 - Start/resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes (M26 S12345)
* M27 - Report SD print status
* M28 - Start SD write (M28 filename.g)
* M29 - Stop SD write
* M30 - Delete file from SD (M30 filename.g)
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print (Can be used when printing from SD card)
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
* M49 - Z probe repetability test
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute (default)
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
* M84 - Disable steppers until next move, or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter Sseconds. To disable set zero (default)
* M92 - Set axis_steps_per_unit - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* M111 - Debug Dryrun Repetier
* M112 - Emergency stop
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - display message
* M119 - Output Endstop status to serial port
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed target temp
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 Dmillimeters- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
* M206 - set additional homeing offset
* M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
* M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
* M209 - S1=true/0=false enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - set hotend offset (in mm): Textruder_number Xoffset_on_X Yoffset_on_Y
* M220 Sfactor in percent- set speed factor override percentage
* M221 Sfactor in percent- set extrude factor override percentage
* M240 - Trigger a camera to take a photograph
* M280 - Position an RC Servo Pindex Sangle/microseconds, ommit S to report back current angle
* M299 - Turn on/off beep sound temperature
* M300 - Play beepsound Sfrequency Hz Pduration ms
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes
* M303 - PID relay autotune Stemperature sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D
* M400 - Finish all moves
* M401 - Lower z-probe if present
* M402 - Raise z-probe if present
* M404 - Ndia in mm Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
* M405 - Turn on Filament Sensor extrusion control. Optional Ddelay in cm to set delay in centimeters between sensor and extruder
* M406 - Turn off Filament Sensor extrusion control
* M407 - Displays measured filament diameter
* M500 - stores paramters in EEPROM
* M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - print the current settings (from memory not from eeprom)
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M605 - Set dual x-carriage movement mode: Smode [ X<duplication x-offset> Rduplication temp offset ]
* M666 - Set z probe offset or Endstop and delta geometry adjustment
* M907 - Set digital trimpot motor current using axis codes.
* M908 - Control digital trimpot directly.
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
Configuring and compilation:
============================
Install the arduino software IDE/toolset v23 (Some configurations also work with 1.x.x)
http://www.arduino.cc/en/Main/Software
Download the MarlinKimbra firmware
https://github.com/MagoKimbra/MarlinKimbra
Use the "Download Zip" button on the right.
For gen6/gen7 and sanguinololu the Sanguino directory in the Marlin dir needs to be copied to the arduino environment.
copy ArduinoAddons\Arduino_x.x.x\sanguino <arduino home>\hardware\Sanguino
Start the arduino IDE.
Select Tools -> Board -> Arduino Mega 2560 or your microcontroller
Select the correct serial port in Tools ->Serial Port
Open Marlin.pde
Click the Verify/Compile button
Click the Upload button
If all goes well the firmware is uploading
That's ok. Enjoy Silky Smooth Printing.
===============================================
Instructions for configuring Bed Auto Leveling
===============================================
There are two options for this feature. You may choose to use a servo mounted on the X carriage or you may use a sled that mounts on the X axis and can be docked when not in use.
See the section for each option below for specifics about installation and configuration. Also included are instructions that apply to both options.
Note for RAMPS users:
---------------------
By default, RAMPS have no power on servo bus (if you happen to have a multimeter, check the voltage on servo power pins).
In order to get the servo working, you need to supply 5V to 5V pin.. You can do it using your power supply (if it has a 5V output) or jumping the "Vcc" from Arduino to the 5V RAMPS rail.
These 2 pins are located just between the Reset Button and the yellow fuses... There are marks in the board showing 5V and VCC.. just connect them..
If jumping the arduino Vcc do RAMPS 5V rail, take care to not use a power hungry servo, otherwise you will cause a blackout in the arduino board ;-)
Instructions for Both Options
-----------------------------
Uncomment the "ENABLE_AUTO_BED_LEVELING" define (commented by default)
The following options define the probing positions. These are good starting values.
I recommend to keep a better clearance from borders in the first run and then make the probes as close as possible to borders:
* \#define LEFT_PROBE_BED_POSITION 30
* \#define RIGHT_PROBE_BED_POSITION 140
* \#define BACK_PROBE_BED_POSITION 140
* \#define FRONT_PROBE_BED_POSITION 30
A few more options:
* \#define XY_TRAVEL_SPEED 6000
X and Y axis travel speed between probes, in mm/min.
Bear in mind that really fast moves may render step skipping. 6000 mm/min (100mm/s) is a good value.
* \#define Z_RAISE_BEFORE_PROBING 10
* \#define Z_RAISE_BETWEEN_PROBINGS 10
The Z axis is lifted when traveling to the first probe point by Z_RAISE_BEFORE_PROBING value
and then lifted when traveling from first to second and second to third point by Z_RAISE_BETWEEN_PROBINGS.
All values are in mm as usual.
Servo Option Notes
------------------
You will probably need a swivel Z-MIN endstop in the extruder. A rc servo do a great job.
Check the system working here: http://www.youtube.com/watch?v=3IKMeOYz-1Q (Enable English subtitles)
Teasing ;-) video: http://www.youtube.com/watch?v=x8eqSQNAyro
In order to get the servo working, you need to enable:
* \#define NUM_SERVOS 1 // Servo index starts with 0 for M280 command
* \#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
* \#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 165,60} // X,Y,Z Axis Extend and Retract angles
The first define tells firmware how many servos you have.
The second tells what axis this servo will be attached to. In the example above, we have a servo in Z axis.
The third one tells the angle in 2 situations: Probing (165º) and resting (60º). Check this with command M280 P0 S{angle} (example: M280 P0 S60 moves the servo to 60º)
Next you need to define the Z endstop (probe) offset from hotend.
My preferred method:
* a) Make a small mark in the bed with a marker/felt-tip pen.
* b) Place the hotend tip as *exactly* as possible on the mark, touching the bed. Raise the hotend 0.1mm (a regular paper thickness) and zero all axis (G92 X0 Y0 Z0);
* d) Raise the hotend 10mm (or more) for probe clearance, lower the Z probe (Z-Endstop) with M401 and place it just on that mark by moving X, Y and Z;
* e) Lower the Z in 0.1mm steps, with the probe always touching the mark (it may be necessary to adjust X and Y as well) until you hear the "click" meaning the mechanical endstop was trigged. You can confirm with M119;
* f) Now you have the probe in the same place as your hotend tip was before. Perform a M114 and write down the values, for example: X:24.3 Y:-31.4 Z:5.1;
* g) You can raise the z probe with M402 command;
* h) Fill the defines bellow multiplying the values by "-1" (just change the signal)
* \#define X_PROBE_OFFSET_FROM_EXTRUDER -24.3
* \#define Y_PROBE_OFFSET_FROM_EXTRUDER 31.4
* \#define Z_PROBE_OFFSET_FROM_EXTRUDER -5.1
Sled Option Notes
-----------------
The sled option uses an electromagnet to attach and detach to/from the X carriage. See http://www.thingiverse.com/thing:396692 for more details on how to print and install this feature. It uses the same connections as the servo option.
To use the sled option, you must define two additional things in Configuration.h:
* \#define Z_PROBE_SLED
* \#define SLED_DOCKING_OFFSET 5
Uncomment the Z_PROBE_SLED to define to enable the sled (commented out by default).
Uncomment the SLED_DOCKING_OFFSET to set the extra distance the X axis must travel to dock the sled. This value can be found by moving the X axis to its maximum position then measure the distance to the right X end and subtract the width of the sled (23mm if you printed the sled from Thingiverse).
Next you need to define the Z endstop (probe) offset from hotend.
My preferred method:
* a) Home the X and Y axes.
* b) Move the X axis to about the center of the print bed. Make a mark on the print bed.
* c) Move the Y axis to the maximum position. Make another mark.
* d) Home the X axis and use a straight edge to make a line between the two points.
* e) Repeat (b)-(d) reversing the X and Y. When you are done you will have two lines on the print bed. We will use these to measure the offset for the Z probe endstop.
* f) Move the nozzle so that it is positioned on the center point of the two lines. You can use fine movement of 0.1mm to get it as close as possible. Note the position of X and Y.
* g) Zero the Z axis with the G92 Z0 command.
* h) Raise the Z axis about 20mmm.
* i) Use the G32 command to retrieve the sled.
* j) Now more the X and Y axis to the position recorded in (f).
* k) Lower the Z axis in 0.1mm steps until you hear the "click" meaning the mechanical endstop was trigged. You can confirm with the M119 command. Note the position of the Z axis.
* l) Make a mark on the print bed where the endstop lever has touched the print bed. Raise the Z-axis about 30mm to give yourself some room.
* m) Now measure the distance from the center point to the endstop impact site along the X and Y axis using the lines drawn previously.
* n) Fill in the values below. If the endstop mark is in front of the line running left-to-right, use positive values. If it is behind, use negative values. For the Z axis use the value from (k) and subtract 0.1mm.
For example, suppose you measured the endstop position and it was 20mm to the right of the line running front-to-back, 10mm toward the front of the line running left-to-right, and the value from (k) was 2.85. The values for the defines would be:
* \#define X_PROBE_OFFSET_FROM_EXTRUDER 20
* \#define Y_PROBE_OFFSET_FROM_EXTRUDER 10
* \#define Z_PROBE_OFFSET_FROM_EXTRUDER 2.75
That's it.. enjoy never having to calibrate your Z endstop neither leveling your bed by hand anymore ;-)
Filament Sensor
---------------
Supports the use of a real time filament diameter sensor that measures the diameter of the filament going into the extruder and then adjusts the extrusion rate to compensate for filament that does not match what is defined in the g-code. The diameter can also be displayed on the LCD screen. This potentially eliminates the need to measure filament diameter when changing spools of filament. Gcode becomes independent of the filament diameter. Can also compensate for changing diameter.
For examples of these sensors, see: http://www.thingiverse.com/thing:454584, https://www.youmagine.com/designs/filament-diameter-sensor, http://diy3dprinting.blogspot.com/2014/01/diy-filament-diameter-sensor.html. Any sensor which produces a voltage equivalent to the diameter in mm (i.e. 1v = 1mm) can be used. This provides a very simple interface and may encourage more innovation in this area.
4 new Mcodes are defined to set relevant parameters: M404, M405, M406, M407 - see above.
Implements a delay buffer to handle the transit delay between where the filament is measured and when it gets to the extruder.
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment