Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
M
MarlinKimbra
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
machinery
MarlinKimbra
Commits
191024a3
Commit
191024a3
authored
Feb 05, 2016
by
MagoKimbra
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update 4.2.5
parent
b68b56b6
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
0 additions
and
1515 deletions
+0
-1515
L6470.cpp
Arduino/libraries/L6470/L6470.cpp
+0
-723
L6470.h
Arduino/libraries/L6470/L6470.h
+0
-286
keywords.txt
Arduino/libraries/L6470/keywords.txt
+0
-53
LiquidCrystal.cpp
Arduino/libraries/LiquidCrystal/LiquidCrystal.cpp
+0
-310
LiquidCrystal.h
Arduino/libraries/LiquidCrystal/LiquidCrystal.h
+0
-106
keywords.txt
Arduino/libraries/LiquidCrystal/keywords.txt
+0
-37
No files found.
Arduino/libraries/L6470/L6470.cpp
deleted
100644 → 0
View file @
b68b56b6
////////////////////////////////////////////////////////////
//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012
//Released as MIT license
////////////////////////////////////////////////////////////
#include <Arduino.h>
#include "L6470.h"
#include <SPI.h>
#define ENABLE_RESET_PIN 0
#define K_VALUE 100
L6470
::
L6470
(
int
SSPin
){
_SSPin
=
SSPin
;
// Serial.begin(9600);
}
void
L6470
::
init
(
int
k_value
){
// This is the generic initialization function to set up the Arduino to
// communicate with the dSPIN chip.
// set up the input/output pins for the application.
pinMode
(
SLAVE_SELECT_PIN
,
OUTPUT
);
// The SPI peripheral REQUIRES the hardware SS pin-
// pin 10- to be an output. This is in here just
// in case some future user makes something other
// than pin 10 the SS pin.
pinMode
(
_SSPin
,
OUTPUT
);
digitalWrite
(
_SSPin
,
HIGH
);
pinMode
(
MOSI
,
OUTPUT
);
pinMode
(
MISO
,
INPUT
);
pinMode
(
SCK
,
OUTPUT
);
pinMode
(
BUSYN
,
INPUT
);
#if (ENABLE_RESET_PIN == 1)
pinMode
(
RESET
,
OUTPUT
);
// reset the dSPIN chip. This could also be accomplished by
// calling the "L6470::ResetDev()" function after SPI is initialized.
digitalWrite
(
RESET
,
HIGH
);
delay
(
10
);
digitalWrite
(
RESET
,
LOW
);
delay
(
10
);
digitalWrite
(
RESET
,
HIGH
);
delay
(
10
);
#endif
// initialize SPI for the dSPIN chip's needs:
// most significant bit first,
// SPI clock not to exceed 5MHz,
// SPI_MODE3 (clock idle high, latch data on rising edge of clock)
SPI
.
begin
();
SPI
.
setBitOrder
(
MSBFIRST
);
SPI
.
setClockDivider
(
SPI_CLOCK_DIV16
);
// or 2, 8, 16, 32, 64
SPI
.
setDataMode
(
SPI_MODE3
);
// First things first: let's check communications. The CONFIG register should
// power up to 0x2E88, so we can use that to check the communications.
if
(
GetParam
(
CONFIG
)
==
0x2E88
){
//Serial.println('good to go');
}
else
{
//Serial.println('Comm issue');
}
#if (ENABLE_RESET_PIN == 0)
resetDev
();
#endif
// First, let's set the step mode register:
// - SYNC_EN controls whether the BUSY/SYNC pin reflects the step
// frequency or the BUSY status of the chip. We want it to be the BUSY
// status.
// - STEP_SEL_x is the microstepping rate- we'll go full step.
// - SYNC_SEL_x is the ratio of (micro)steps to toggles on the
// BUSY/SYNC pin (when that pin is used for SYNC). Make it 1:1, despite
// not using that pin.
//SetParam(STEP_MODE, !SYNC_EN | STEP_SEL_1 | SYNC_SEL_1);
SetParam
(
KVAL_RUN
,
k_value
);
SetParam
(
KVAL_ACC
,
k_value
);
SetParam
(
KVAL_DEC
,
k_value
);
SetParam
(
KVAL_HOLD
,
k_value
);
// Set up the CONFIG register as follows:
// PWM frequency divisor = 1
// PWM frequency multiplier = 2 (62.5kHz PWM frequency)
// Slew rate is 290V/us
// Do NOT shut down bridges on overcurrent
// Disable motor voltage compensation
// Hard stop on switch low
// 16MHz internal oscillator, nothing on output
SetParam
(
CONFIG
,
CONFIG_PWM_DIV_1
|
CONFIG_PWM_MUL_2
|
CONFIG_SR_290V_us
|
CONFIG_OC_SD_DISABLE
|
CONFIG_VS_COMP_DISABLE
|
CONFIG_SW_HARD_STOP
|
CONFIG_INT_16MHZ
);
// Configure the RUN KVAL. This defines the duty cycle of the PWM of the bridges
// during running. 0xFF means that they are essentially NOT PWMed during run; this
// MAY result in more power being dissipated than you actually need for the task.
// Setting this value too low may result in failure to turn.
// There are ACC, DEC, and HOLD KVAL registers as well; you may need to play with
// those values to get acceptable performance for a given application.
//SetParam(KVAL_RUN, 0xFF);
// Calling GetStatus() clears the UVLO bit in the status register, which is set by
// default on power-up. The driver may not run without that bit cleared by this
// read operation.
getStatus
();
hardStop
();
//engage motors
}
boolean
L6470
::
isBusy
(){
int
status
=
getStatus
();
return
!
((
status
>>
1
)
&
0
b1
);
}
void
L6470
::
setMicroSteps
(
int
microSteps
){
byte
stepVal
=
0
;
for
(
stepVal
=
0
;
stepVal
<
8
;
stepVal
++
){
if
(
microSteps
==
1
)
break
;
microSteps
=
microSteps
>>
1
;
}
SetParam
(
STEP_MODE
,
!
SYNC_EN
|
stepVal
|
SYNC_SEL_1
);
}
void
L6470
::
setThresholdSpeed
(
float
thresholdSpeed
){
// Configure the FS_SPD register- this is the speed at which the driver ceases
// microstepping and goes to full stepping. FSCalc() converts a value in steps/s
// to a value suitable for this register; to disable full-step switching, you
// can pass 0x3FF to this register.
if
(
thresholdSpeed
==
0.0
){
SetParam
(
FS_SPD
,
0x3FF
);
}
else
{
SetParam
(
FS_SPD
,
FSCalc
(
thresholdSpeed
));
}
}
void
L6470
::
setCurrent
(
int
current
){}
void
L6470
::
setMaxSpeed
(
int
speed
){
// Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
// second allowed. You'll want to mess around with your desired application to see
// how far you can push it before the motor starts to slip. The ACTUAL parameter
// passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
// steps/s into an appropriate value for this function. Note that for any move or
// goto type function where no speed is specified, this value will be used.
SetParam
(
MAX_SPEED
,
MaxSpdCalc
(
speed
));
}
void
L6470
::
setMinSpeed
(
int
speed
){
// Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
// second allowed. You'll want to mess around with your desired application to see
// how far you can push it before the motor starts to slip. The ACTUAL parameter
// passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
// steps/s into an appropriate value for this function. Note that for any move or
// goto type function where no speed is specified, this value will be used.
SetParam
(
MIN_SPEED
,
MinSpdCalc
(
speed
));
}
void
L6470
::
setAcc
(
float
acceleration
){
// Configure the acceleration rate, in steps/tick/tick. There is also a DEC register;
// both of them have a function (AccCalc() and DecCalc() respectively) that convert
// from steps/s/s into the appropriate value for the register. Writing ACC to 0xfff
// sets the acceleration and deceleration to 'infinite' (or as near as the driver can
// manage). If ACC is set to 0xfff, DEC is ignored. To get infinite deceleration
// without infinite acceleration, only hard stop will work.
unsigned
long
accelerationBYTES
=
AccCalc
(
acceleration
);
SetParam
(
ACC
,
accelerationBYTES
);
}
void
L6470
::
setDec
(
float
deceleration
){
unsigned
long
decelerationBYTES
=
DecCalc
(
deceleration
);
SetParam
(
DEC
,
decelerationBYTES
);
}
long
L6470
::
getPos
(){
unsigned
long
position
=
GetParam
(
ABS_POS
);
return
convert
(
position
);
}
float
L6470
::
getSpeed
(){
/*
SPEED
The SPEED register contains the current motor speed, expressed in step/tick (format unsigned fixed point 0.28).
In order to convert the SPEED value in step/s the following formula can be used:
Equation 4
where SPEED is the integer number stored into the register and tick is 250 ns.
The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.
Note: The range effectively available to the user is limited by the MAX_SPEED parameter.
*/
return
(
float
)
GetParam
(
SPEED
);
//return (float) speed * pow(8, -22);
//return FSCalc(speed); NEEDS FIX
}
void
L6470
::
setOverCurrent
(
unsigned
int
ma_current
){
// Configure the overcurrent detection threshold.
byte
OCValue
=
floor
(
ma_current
/
375
);
if
(
OCValue
>
0x0F
)
OCValue
=
0x0F
;
SetParam
(
OCD_TH
,
OCValue
);
}
void
L6470
::
setStallCurrent
(
float
ma_current
){
byte
STHValue
=
(
byte
)
floor
(
ma_current
/
31.25
);
if
(
STHValue
>
0x80
)
STHValue
=
0x80
;
if
(
STHValue
<
0
)
STHValue
=
0
;
SetParam
(
STALL_TH
,
STHValue
);
}
void
L6470
::
SetLowSpeedOpt
(
boolean
enable
){
// Enable or disable the low-speed optimization option. If enabling,
// the other 12 bits of the register will be automatically zero.
// When disabling, the value will have to be explicitly written by
// the user with a SetParam() call. See the datasheet for further
// information about low-speed optimization.
Xfer
(
SET_PARAM
|
MIN_SPEED
);
if
(
enable
)
Param
(
0x1000
,
13
);
else
Param
(
0
,
13
);
}
void
L6470
::
run
(
byte
dir
,
float
spd
){
// RUN sets the motor spinning in a direction (defined by the constants
// FWD and REV). Maximum speed and minimum speed are defined
// by the MAX_SPEED and MIN_SPEED registers; exceeding the FS_SPD value
// will switch the device into full-step mode.
// The SpdCalc() function is provided to convert steps/s values into
// appropriate integer values for this function.
unsigned
long
speedVal
=
SpdCalc
(
spd
);
Xfer
(
RUN
|
dir
);
if
(
speedVal
>
0xFFFFF
)
speedVal
=
0xFFFFF
;
Xfer
((
byte
)(
speedVal
>>
16
));
Xfer
((
byte
)(
speedVal
>>
8
));
Xfer
((
byte
)(
speedVal
));
}
void
L6470
::
Step_Clock
(
byte
dir
){
// STEP_CLOCK puts the device in external step clocking mode. When active,
// pin 25, STCK, becomes the step clock for the device, and steps it in
// the direction (set by the FWD and REV constants) imposed by the call
// of this function. Motion commands (RUN, MOVE, etc) will cause the device
// to exit step clocking mode.
Xfer
(
STEP_CLOCK
|
dir
);
}
void
L6470
::
move
(
long
n_step
){
// MOVE will send the motor n_step steps (size based on step mode) in the
// direction imposed by dir (FWD or REV constants may be used). The motor
// will accelerate according the acceleration and deceleration curves, and
// will run at MAX_SPEED. Stepping mode will adhere to FS_SPD value, as well.
byte
dir
;
if
(
n_step
>=
0
){
dir
=
FWD
;
}
else
{
dir
=
REV
;
}
long
n_stepABS
=
abs
(
n_step
);
Xfer
(
MOVE
|
dir
);
//set direction
if
(
n_stepABS
>
0x3FFFFF
)
n_step
=
0x3FFFFF
;
Xfer
((
byte
)(
n_stepABS
>>
16
));
Xfer
((
byte
)(
n_stepABS
>>
8
));
Xfer
((
byte
)(
n_stepABS
));
}
void
L6470
::
goTo
(
long
pos
){
// GOTO operates much like MOVE, except it produces absolute motion instead
// of relative motion. The motor will be moved to the indicated position
// in the shortest possible fashion.
Xfer
(
GOTO
);
if
(
pos
>
0x3FFFFF
)
pos
=
0x3FFFFF
;
Xfer
((
byte
)(
pos
>>
16
));
Xfer
((
byte
)(
pos
>>
8
));
Xfer
((
byte
)(
pos
));
}
void
L6470
::
goTo_DIR
(
byte
dir
,
long
pos
){
// Same as GOTO, but with user constrained rotational direction.
Xfer
(
GOTO_DIR
);
if
(
pos
>
0x3FFFFF
)
pos
=
0x3FFFFF
;
Xfer
((
byte
)(
pos
>>
16
));
Xfer
((
byte
)(
pos
>>
8
));
Xfer
((
byte
)(
pos
));
}
void
L6470
::
goUntil
(
byte
act
,
byte
dir
,
unsigned
long
spd
){
// GoUntil will set the motor running with direction dir (REV or
// FWD) until a falling edge is detected on the SW pin. Depending
// on bit SW_MODE in CONFIG, either a hard stop or a soft stop is
// performed at the falling edge, and depending on the value of
// act (either RESET or COPY) the value in the ABS_POS register is
// either RESET to 0 or COPY-ed into the MARK register.
Xfer
(
GO_UNTIL
|
act
|
dir
);
if
(
spd
>
0x3FFFFF
)
spd
=
0x3FFFFF
;
Xfer
((
byte
)(
spd
>>
16
));
Xfer
((
byte
)(
spd
>>
8
));
Xfer
((
byte
)(
spd
));
}
void
L6470
::
releaseSW
(
byte
act
,
byte
dir
){
// Similar in nature to GoUntil, ReleaseSW produces motion at the
// higher of two speeds: the value in MIN_SPEED or 5 steps/s.
// The motor continues to run at this speed until a rising edge
// is detected on the switch input, then a hard stop is performed
// and the ABS_POS register is either COPY-ed into MARK or RESET to
// 0, depending on whether RESET or COPY was passed to the function
// for act.
Xfer
(
RELEASE_SW
|
act
|
dir
);
}
void
L6470
::
goHome
(){
// GoHome is equivalent to GoTo(0), but requires less time to send.
// Note that no direction is provided; motion occurs through shortest
// path. If a direction is required, use GoTo_DIR().
Xfer
(
GO_HOME
);
}
void
L6470
::
goMark
(){
// GoMark is equivalent to GoTo(MARK), but requires less time to send.
// Note that no direction is provided; motion occurs through shortest
// path. If a direction is required, use GoTo_DIR().
Xfer
(
GO_MARK
);
}
void
L6470
::
setMark
(
long
value
){
Xfer
(
MARK
);
if
(
value
>
0x3FFFFF
)
value
=
0x3FFFFF
;
if
(
value
<
-
0x3FFFFF
)
value
=
-
0x3FFFFF
;
Xfer
((
byte
)(
value
>>
16
));
Xfer
((
byte
)(
value
>>
8
));
Xfer
((
byte
)(
value
));
}
void
L6470
::
setMark
(){
long
value
=
getPos
();
Xfer
(
MARK
);
if
(
value
>
0x3FFFFF
)
value
=
0x3FFFFF
;
if
(
value
<
-
0x3FFFFF
)
value
=
-
0x3FFFFF
;
Xfer
((
byte
)(
value
>>
16
));
Xfer
((
byte
)(
value
>>
8
));
Xfer
((
byte
)(
value
));
}
void
L6470
::
setAsHome
(){
// Sets the ABS_POS register to 0, effectively declaring the current
// position to be "HOME".
Xfer
(
RESET_POS
);
}
void
L6470
::
resetDev
(){
// Reset device to power up conditions. Equivalent to toggling the STBY
// pin or cycling power.
Xfer
(
RESET_DEVICE
);
}
void
L6470
::
softStop
(){
// Bring the motor to a halt using the deceleration curve.
Xfer
(
SOFT_STOP
);
}
void
L6470
::
hardStop
(){
// Stop the motor right away. No deceleration.
Xfer
(
HARD_STOP
);
}
void
L6470
::
softFree
(){
// Decelerate the motor and disengage
Xfer
(
SOFT_HIZ
);
}
void
L6470
::
free
(){
// disengage the motor immediately with no deceleration.
Xfer
(
HARD_HIZ
);
}
int
L6470
::
getStatus
(){
// Fetch and return the 16-bit value in the STATUS register. Resets
// any warning flags and exits any error states. Using GetParam()
// to read STATUS does not clear these values.
int
temp
=
0
;
Xfer
(
GET_STATUS
);
temp
=
Xfer
(
0
)
<<
8
;
temp
|=
Xfer
(
0
);
return
temp
;
}
unsigned
long
L6470
::
AccCalc
(
float
stepsPerSecPerSec
){
// The value in the ACC register is [(steps/s/s)*(tick^2)]/(2^-40) where tick is
// 250ns (datasheet value)- 0x08A on boot.
// Multiply desired steps/s/s by .137438 to get an appropriate value for this register.
// This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
float
temp
=
stepsPerSecPerSec
*
0.137438
;
if
(
(
unsigned
long
)
long
(
temp
)
>
0x00000FFF
)
return
0x00000FFF
;
else
return
(
unsigned
long
)
long
(
temp
);
}
unsigned
long
L6470
::
DecCalc
(
float
stepsPerSecPerSec
){
// The calculation for DEC is the same as for ACC. Value is 0x08A on boot.
// This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
float
temp
=
stepsPerSecPerSec
*
0.137438
;
if
(
(
unsigned
long
)
long
(
temp
)
>
0x00000FFF
)
return
0x00000FFF
;
else
return
(
unsigned
long
)
long
(
temp
);
}
unsigned
long
L6470
::
MaxSpdCalc
(
float
stepsPerSec
){
// The value in the MAX_SPD register is [(steps/s)*(tick)]/(2^-18) where tick is
// 250ns (datasheet value)- 0x041 on boot.
// Multiply desired steps/s by .065536 to get an appropriate value for this register
// This is a 10-bit value, so we need to make sure it remains at or below 0x3FF
float
temp
=
stepsPerSec
*
.065536
;
if
(
(
unsigned
long
)
long
(
temp
)
>
0x000003FF
)
return
0x000003FF
;
else
return
(
unsigned
long
)
long
(
temp
);
}
unsigned
long
L6470
::
MinSpdCalc
(
float
stepsPerSec
){
// The value in the MIN_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
// 250ns (datasheet value)- 0x000 on boot.
// Multiply desired steps/s by 4.1943 to get an appropriate value for this register
// This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
float
temp
=
stepsPerSec
*
4.1943
;
if
(
(
unsigned
long
)
long
(
temp
)
>
0x00000FFF
)
return
0x00000FFF
;
else
return
(
unsigned
long
)
long
(
temp
);
}
unsigned
long
L6470
::
FSCalc
(
float
stepsPerSec
){
// The value in the FS_SPD register is ([(steps/s)*(tick)]/(2^-18))-0.5 where tick is
// 250ns (datasheet value)- 0x027 on boot.
// Multiply desired steps/s by .065536 and subtract .5 to get an appropriate value for this register
// This is a 10-bit value, so we need to make sure the value is at or below 0x3FF.
float
temp
=
(
stepsPerSec
*
.065536
)
-
.5
;
if
(
(
unsigned
long
)
long
(
temp
)
>
0x000003FF
)
return
0x000003FF
;
else
return
(
unsigned
long
)
long
(
temp
);
}
unsigned
long
L6470
::
IntSpdCalc
(
float
stepsPerSec
){
// The value in the INT_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
// 250ns (datasheet value)- 0x408 on boot.
// Multiply desired steps/s by 4.1943 to get an appropriate value for this register
// This is a 14-bit value, so we need to make sure the value is at or below 0x3FFF.
float
temp
=
stepsPerSec
*
4.1943
;
if
(
(
unsigned
long
)
long
(
temp
)
>
0x00003FFF
)
return
0x00003FFF
;
else
return
(
unsigned
long
)
long
(
temp
);
}
unsigned
long
L6470
::
SpdCalc
(
float
stepsPerSec
){
// When issuing RUN command, the 20-bit speed is [(steps/s)*(tick)]/(2^-28) where tick is
// 250ns (datasheet value).
// Multiply desired steps/s by 67.106 to get an appropriate value for this register
// This is a 20-bit value, so we need to make sure the value is at or below 0xFFFFF.
float
temp
=
stepsPerSec
*
67.106
;
if
(
(
unsigned
long
)
long
(
temp
)
>
0x000FFFFF
)
return
0x000FFFFF
;
else
return
(
unsigned
long
)
temp
;
}
unsigned
long
L6470
::
Param
(
unsigned
long
value
,
byte
bit_len
){
// Generalization of the subsections of the register read/write functionality.
// We want the end user to just write the value without worrying about length,
// so we pass a bit length parameter from the calling function.
unsigned
long
ret_val
=
0
;
// We'll return this to generalize this function
// for both read and write of registers.
byte
byte_len
=
bit_len
/
8
;
// How many BYTES do we have?
if
(
bit_len
%
8
>
0
)
byte_len
++
;
// Make sure not to lose any partial byte values.
// Let's make sure our value has no spurious bits set, and if the value was too
// high, max it out.
unsigned
long
mask
=
0xffffffff
>>
(
32
-
bit_len
);
if
(
value
>
mask
)
value
=
mask
;
// The following three if statements handle the various possible byte length
// transfers- it'll be no less than 1 but no more than 3 bytes of data.
// L6470::Xfer() sends a byte out through SPI and returns a byte received
// over SPI- when calling it, we typecast a shifted version of the masked
// value, then we shift the received value back by the same amount and
// store it until return time.
if
(
byte_len
==
3
)
{
ret_val
|=
long
(
Xfer
((
byte
)(
value
>>
16
)))
<<
16
;
//Serial.println(ret_val, HEX);
}
if
(
byte_len
>=
2
)
{
ret_val
|=
long
(
Xfer
((
byte
)(
value
>>
8
)))
<<
8
;
//Serial.println(ret_val, HEX);
}
if
(
byte_len
>=
1
)
{
ret_val
|=
Xfer
((
byte
)
value
);
//Serial.println(ret_val, HEX);
}
// Return the received values. Mask off any unnecessary bits, just for
// the sake of thoroughness- we don't EXPECT to see anything outside
// the bit length range but better to be safe than sorry.
return
(
ret_val
&
mask
);
}
byte
L6470
::
Xfer
(
byte
data
){
// This simple function shifts a byte out over SPI and receives a byte over
// SPI. Unusually for SPI devices, the dSPIN requires a toggling of the
// CS (slaveSelect) pin after each byte sent. That makes this function
// a bit more reasonable, because we can include more functionality in it.
byte
data_out
;
digitalWrite
(
_SSPin
,
LOW
);
// SPI.transfer() both shifts a byte out on the MOSI pin AND receives a
// byte in on the MISO pin.
data_out
=
SPI
.
transfer
(
data
);
digitalWrite
(
_SSPin
,
HIGH
);
return
data_out
;
}
void
L6470
::
SetParam
(
byte
param
,
unsigned
long
value
){
Xfer
(
SET_PARAM
|
param
);
ParamHandler
(
param
,
value
);
}
unsigned
long
L6470
::
GetParam
(
byte
param
){
// Realize the "get parameter" function, to read from the various registers in
// the dSPIN chip.
Xfer
(
GET_PARAM
|
param
);
return
ParamHandler
(
param
,
0
);
}
long
L6470
::
convert
(
unsigned
long
val
){
//convert 22bit 2s comp to signed long
int
MSB
=
val
>>
21
;
val
=
val
<<
11
;
val
=
val
>>
11
;
if
(
MSB
==
1
)
val
=
val
|
0
b11111111111000000000000000000000
;
return
val
;
}
unsigned
long
L6470
::
ParamHandler
(
byte
param
,
unsigned
long
value
){
// Much of the functionality between "get parameter" and "set parameter" is
// very similar, so we deal with that by putting all of it in one function
// here to save memory space and simplify the program.
unsigned
long
ret_val
=
0
;
// This is a temp for the value to return.
// This switch structure handles the appropriate action for each register.
// This is necessary since not all registers are of the same length, either
// bit-wise or byte-wise, so we want to make sure we mask out any spurious
// bits and do the right number of transfers. That is handled by the dSPIN_Param()
// function, in most cases, but for 1-byte or smaller transfers, we call
// Xfer() directly.
switch
(
param
)
{
// ABS_POS is the current absolute offset from home. It is a 22 bit number expressed
// in two's complement. At power up, this value is 0. It cannot be written when
// the motor is running, but at any other time, it can be updated to change the
// interpreted position of the motor.
case
ABS_POS
:
ret_val
=
Param
(
value
,
22
);
break
;
// EL_POS is the current electrical position in the step generation cycle. It can
// be set when the motor is not in motion. Value is 0 on power up.
case
EL_POS
:
ret_val
=
Param
(
value
,
9
);
break
;
// MARK is a second position other than 0 that the motor can be told to go to. As
// with ABS_POS, it is 22-bit two's complement. Value is 0 on power up.
case
MARK
:
ret_val
=
Param
(
value
,
22
);
break
;
// SPEED contains information about the current speed. It is read-only. It does
// NOT provide direction information.
case
SPEED
:
ret_val
=
Param
(
0
,
20
);
break
;
// ACC and DEC set the acceleration and deceleration rates. Set ACC to 0xFFF
// to get infinite acceleration/decelaeration- there is no way to get infinite
// deceleration w/o infinite acceleration (except the HARD STOP command).
// Cannot be written while motor is running. Both default to 0x08A on power up.
// AccCalc() and DecCalc() functions exist to convert steps/s/s values into
// 12-bit values for these two registers.
case
ACC
:
ret_val
=
Param
(
value
,
12
);
break
;
case
DEC
:
ret_val
=
Param
(
value
,
12
);
break
;
// MAX_SPEED is just what it says- any command which attempts to set the speed
// of the motor above this value will simply cause the motor to turn at this
// speed. Value is 0x041 on power up.
// MaxSpdCalc() function exists to convert steps/s value into a 10-bit value
// for this register.
case
MAX_SPEED
:
ret_val
=
Param
(
value
,
10
);
break
;
// MIN_SPEED controls two things- the activation of the low-speed optimization
// feature and the lowest speed the motor will be allowed to operate at. LSPD_OPT
// is the 13th bit, and when it is set, the minimum allowed speed is automatically
// set to zero. This value is 0 on startup.
// MinSpdCalc() function exists to convert steps/s value into a 12-bit value for this
// register. SetLowSpeedOpt() function exists to enable/disable the optimization feature.
case
MIN_SPEED
:
ret_val
=
Param
(
value
,
12
);
break
;
// FS_SPD register contains a threshold value above which microstepping is disabled
// and the dSPIN operates in full-step mode. Defaults to 0x027 on power up.
// FSCalc() function exists to convert steps/s value into 10-bit integer for this
// register.
case
FS_SPD
:
ret_val
=
Param
(
value
,
10
);
break
;
// KVAL is the maximum voltage of the PWM outputs. These 8-bit values are ratiometric
// representations: 255 for full output voltage, 128 for half, etc. Default is 0x29.
// The implications of different KVAL settings is too complex to dig into here, but
// it will usually work to max the value for RUN, ACC, and DEC. Maxing the value for
// HOLD may result in excessive power dissipation when the motor is not running.
case
KVAL_HOLD
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
case
KVAL_RUN
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
case
KVAL_ACC
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
case
KVAL_DEC
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
// INT_SPD, ST_SLP, FN_SLP_ACC and FN_SLP_DEC are all related to the back EMF
// compensation functionality. Please see the datasheet for details of this
// function- it is too complex to discuss here. Default values seem to work
// well enough.
case
INT_SPD
:
ret_val
=
Param
(
value
,
14
);
break
;
case
ST_SLP
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
case
FN_SLP_ACC
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
case
FN_SLP_DEC
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
// K_THERM is motor winding thermal drift compensation. Please see the datasheet
// for full details on operation- the default value should be okay for most users.
case
K_THERM
:
ret_val
=
Xfer
((
byte
)
value
&
0x0F
);
break
;
// ADC_OUT is a read-only register containing the result of the ADC measurements.
// This is less useful than it sounds; see the datasheet for more information.
case
ADC_OUT
:
ret_val
=
Xfer
(
0
);
break
;
// Set the overcurrent threshold. Ranges from 375mA to 6A in steps of 375mA.
// A set of defined constants is provided for the user's convenience. Default
// value is 3.375A- 0x08. This is a 4-bit value.
case
OCD_TH
:
ret_val
=
Xfer
((
byte
)
value
&
0x0F
);
break
;
// Stall current threshold. Defaults to 0x40, or 2.03A. Value is from 31.25mA to
// 4A in 31.25mA steps. This is a 7-bit value.
case
STALL_TH
:
ret_val
=
Xfer
((
byte
)
value
&
0x7F
);
break
;
// STEP_MODE controls the microstepping settings, as well as the generation of an
// output signal from the dSPIN. Bits 2:0 control the number of microsteps per
// step the part will generate. Bit 7 controls whether the BUSY/SYNC pin outputs
// a BUSY signal or a step synchronization signal. Bits 6:4 control the frequency
// of the output signal relative to the full-step frequency; see datasheet for
// that relationship as it is too complex to reproduce here.
// Most likely, only the microsteps per step value will be needed; there is a set
// of constants provided for ease of use of these values.
case
STEP_MODE
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
// ALARM_EN controls which alarms will cause the FLAG pin to fall. A set of constants
// is provided to make this easy to interpret. By default, ALL alarms will trigger the
// FLAG pin.
case
ALARM_EN
:
ret_val
=
Xfer
((
byte
)
value
);
break
;
// CONFIG contains some assorted configuration bits and fields. A fairly comprehensive
// set of reasonably self-explanatory constants is provided, but users should refer
// to the datasheet before modifying the contents of this register to be certain they
// understand the implications of their modifications. Value on boot is 0x2E88; this
// can be a useful way to verify proper start up and operation of the dSPIN chip.
case
CONFIG
:
ret_val
=
Param
(
value
,
16
);
break
;
// STATUS contains read-only information about the current condition of the chip. A
// comprehensive set of constants for masking and testing this register is provided, but
// users should refer to the datasheet to ensure that they fully understand each one of
// the bits in the register.
case
STATUS
:
// STATUS is a read-only register
ret_val
=
Param
(
0
,
16
);
break
;
default
:
ret_val
=
Xfer
((
byte
)(
value
));
break
;
}
return
ret_val
;
}
Arduino/libraries/L6470/L6470.h
deleted
100644 → 0
View file @
b68b56b6
////////////////////////////////////////////////////////////
//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012
//Released as MIT license
////////////////////////////////////////////////////////////
#ifndef L6470_h
#define L6470_h
#include <Arduino.h>
#include <SPI.h>
#define SLAVE_SELECT_PIN 38 // Wire this to the CSN pin
// #define RESET 6 // Wire this to the STBY line
#define BUSYN 7 // Wire this to the BSYN line
// constant definitions for overcurrent thresholds. Write these values to
// register dSPIN_OCD_TH to set the level at which an overcurrent even occurs.
#define OCD_TH_375mA 0x00
#define OCD_TH_750mA 0x01
#define OCD_TH_1125mA 0x02
#define OCD_TH_1500mA 0x03
#define OCD_TH_1875mA 0x04
#define OCD_TH_2250mA 0x05
#define OCD_TH_2625mA 0x06
#define OCD_TH_3000mA 0x07
#define OCD_TH_3375mA 0x08
#define OCD_TH_3750mA 0x09
#define OCD_TH_4125mA 0x0A
#define OCD_TH_4500mA 0x0B
#define OCD_TH_4875mA 0x0C
#define OCD_TH_5250mA 0x0D
#define OCD_TH_5625mA 0x0E
#define OCD_TH_6000mA 0x0F
// STEP_MODE option values.
// First comes the "microsteps per step" options...
#define STEP_MODE_STEP_SEL 0x07 // Mask for these bits only.
#define STEP_SEL_1 0x00
#define STEP_SEL_1_2 0x01
#define STEP_SEL_1_4 0x02
#define STEP_SEL_1_8 0x03
#define STEP_SEL_1_16 0x04
#define STEP_SEL_1_32 0x05
#define STEP_SEL_1_64 0x06
#define STEP_SEL_1_128 0x07
// ...next, define the SYNC_EN bit. When set, the BUSYN pin will instead
// output a clock related to the full-step frequency as defined by the
// SYNC_SEL bits below.
#define STEP_MODE_SYNC_EN 0x80 // Mask for this bit
#define SYNC_EN 0x80
// ...last, define the SYNC_SEL modes. The clock output is defined by
// the full-step frequency and the value in these bits- see the datasheet
// for a matrix describing that relationship (page 46).
#define STEP_MODE_SYNC_SEL 0x70
#define SYNC_SEL_1_2 0x00
#define SYNC_SEL_1 0x10
#define SYNC_SEL_2 0x20
#define SYNC_SEL_4 0x30
#define SYNC_SEL_8 0x40
#define SYNC_SEL_16 0x50
#define SYNC_SEL_32 0x60
#define SYNC_SEL_64 0x70
// Bit names for the ALARM_EN register.
// Each of these bits defines one potential alarm condition.
// When one of these conditions occurs and the respective bit in ALARM_EN is set,
// the FLAG pin will go low. The register must be queried to determine which event
// caused the alarm.
#define ALARM_EN_OVERCURRENT 0x01
#define ALARM_EN_THERMAL_SHUTDOWN 0x02
#define ALARM_EN_THERMAL_WARNING 0x04
#define ALARM_EN_UNDER_VOLTAGE 0x08
#define ALARM_EN_STALL_DET_A 0x10
#define ALARM_EN_STALL_DET_B 0x20
#define ALARM_EN_SW_TURN_ON 0x40
#define ALARM_EN_WRONG_NPERF_CMD 0x80
// CONFIG register renames.
// Oscillator options.
// The dSPIN needs to know what the clock frequency is because it uses that for some
// calculations during operation.
#define CONFIG_OSC_SEL 0x000F // Mask for this bit field.
#define CONFIG_INT_16MHZ 0x0000 // Internal 16MHz, no output
#define CONFIG_INT_16MHZ_OSCOUT_2MHZ 0x0008 // Default; internal 16MHz, 2MHz output
#define CONFIG_INT_16MHZ_OSCOUT_4MHZ 0x0009 // Internal 16MHz, 4MHz output
#define CONFIG_INT_16MHZ_OSCOUT_8MHZ 0x000A // Internal 16MHz, 8MHz output
#define CONFIG_INT_16MHZ_OSCOUT_16MHZ 0x000B // Internal 16MHz, 16MHz output
#define CONFIG_EXT_8MHZ_XTAL_DRIVE 0x0004 // External 8MHz crystal
#define CONFIG_EXT_16MHZ_XTAL_DRIVE 0x0005 // External 16MHz crystal
#define CONFIG_EXT_24MHZ_XTAL_DRIVE 0x0006 // External 24MHz crystal
#define CONFIG_EXT_32MHZ_XTAL_DRIVE 0x0007 // External 32MHz crystal
#define CONFIG_EXT_8MHZ_OSCOUT_INVERT 0x000C // External 8MHz crystal, output inverted
#define CONFIG_EXT_16MHZ_OSCOUT_INVERT 0x000D // External 16MHz crystal, output inverted
#define CONFIG_EXT_24MHZ_OSCOUT_INVERT 0x000E // External 24MHz crystal, output inverted
#define CONFIG_EXT_32MHZ_OSCOUT_INVERT 0x000F // External 32MHz crystal, output inverted
// Configure the functionality of the external switch input
#define CONFIG_SW_MODE 0x0010 // Mask for this bit.
#define CONFIG_SW_HARD_STOP 0x0000 // Default; hard stop motor on switch.
#define CONFIG_SW_USER 0x0010 // Tie to the GoUntil and ReleaseSW
// commands to provide jog function.
// See page 25 of datasheet.
// Configure the motor voltage compensation mode (see page 34 of datasheet)
#define CONFIG_EN_VSCOMP 0x0020 // Mask for this bit.
#define CONFIG_VS_COMP_DISABLE 0x0000 // Disable motor voltage compensation.
#define CONFIG_VS_COMP_ENABLE 0x0020 // Enable motor voltage compensation.
// Configure overcurrent detection event handling
#define CONFIG_OC_SD 0x0080 // Mask for this bit.
#define CONFIG_OC_SD_DISABLE 0x0000 // Bridges do NOT shutdown on OC detect
#define CONFIG_OC_SD_ENABLE 0x0080 // Bridges shutdown on OC detect
// Configure the slew rate of the power bridge output
#define CONFIG_POW_SR 0x0300 // Mask for this bit field.
#define CONFIG_SR_180V_us 0x0000 // 180V/us
#define CONFIG_SR_290V_us 0x0200 // 290V/us
#define CONFIG_SR_530V_us 0x0300 // 530V/us
// Integer divisors for PWM sinewave generation
// See page 32 of the datasheet for more information on this.
#define CONFIG_F_PWM_DEC 0x1C00 // mask for this bit field
#define CONFIG_PWM_MUL_0_625 (0x00)<<10
#define CONFIG_PWM_MUL_0_75 (0x01)<<10
#define CONFIG_PWM_MUL_0_875 (0x02)<<10
#define CONFIG_PWM_MUL_1 (0x03)<<10
#define CONFIG_PWM_MUL_1_25 (0x04)<<10
#define CONFIG_PWM_MUL_1_5 (0x05)<<10
#define CONFIG_PWM_MUL_1_75 (0x06)<<10
#define CONFIG_PWM_MUL_2 (0x07)<<10
// Multiplier for the PWM sinewave frequency
#define CONFIG_F_PWM_INT 0xE000 // mask for this bit field.
#define CONFIG_PWM_DIV_1 (0x00)<<13
#define CONFIG_PWM_DIV_2 (0x01)<<13
#define CONFIG_PWM_DIV_3 (0x02)<<13
#define CONFIG_PWM_DIV_4 (0x03)<<13
#define CONFIG_PWM_DIV_5 (0x04)<<13
#define CONFIG_PWM_DIV_6 (0x05)<<13
#define CONFIG_PWM_DIV_7 (0x06)<<13
// Status register bit renames- read-only bits conferring information about the
// device to the user.
#define STATUS_HIZ 0x0001 // high when bridges are in HiZ mode
#define STATUS_BUSY 0x0002 // mirrors BUSY pin
#define STATUS_SW_F 0x0004 // low when switch open, high when closed
#define STATUS_SW_EVN 0x0008 // active high, set on switch falling edge,
// cleared by reading STATUS
#define STATUS_DIR 0x0010 // Indicates current motor direction.
// High is FWD, Low is REV.
#define STATUS_NOTPERF_CMD 0x0080 // Last command not performed.
#define STATUS_WRONG_CMD 0x0100 // Last command not valid.
#define STATUS_UVLO 0x0200 // Undervoltage lockout is active
#define STATUS_TH_WRN 0x0400 // Thermal warning
#define STATUS_TH_SD 0x0800 // Thermal shutdown
#define STATUS_OCD 0x1000 // Overcurrent detected
#define STATUS_STEP_LOSS_A 0x2000 // Stall detected on A bridge
#define STATUS_STEP_LOSS_B 0x4000 // Stall detected on B bridge
#define STATUS_SCK_MOD 0x8000 // Step clock mode is active
// Status register motor status field
#define STATUS_MOT_STATUS 0x0060 // field mask
#define STATUS_MOT_STATUS_STOPPED (0x0000)<<13 // Motor stopped
#define STATUS_MOT_STATUS_ACCELERATION (0x0001)<<13 // Motor accelerating
#define STATUS_MOT_STATUS_DECELERATION (0x0002)<<13 // Motor decelerating
#define STATUS_MOT_STATUS_CONST_SPD (0x0003)<<13 // Motor at constant speed
// Register address redefines.
// See the Param_Handler() function for more info about these.
#define ABS_POS 0x01
#define EL_POS 0x02
#define MARK 0x03
#define SPEED 0x04
#define ACC 0x05
#define DEC 0x06
#define MAX_SPEED 0x07
#define MIN_SPEED 0x08
#define FS_SPD 0x15
#define KVAL_HOLD 0x09
#define KVAL_RUN 0x0A
#define KVAL_ACC 0x0B
#define KVAL_DEC 0x0C
#define INT_SPD 0x0D
#define ST_SLP 0x0E
#define FN_SLP_ACC 0x0F
#define FN_SLP_DEC 0x10
#define K_THERM 0x11
#define ADC_OUT 0x12
#define OCD_TH 0x13
#define STALL_TH 0x14
#define STEP_MODE 0x16
#define ALARM_EN 0x17
#define CONFIG 0x18
#define STATUS 0x19
//dSPIN commands
#define NOP 0x00
#define SET_PARAM 0x00
#define GET_PARAM 0x20
#define RUN 0x50
#define STEP_CLOCK 0x58
#define MOVE 0x40
#define GOTO 0x60
#define GOTO_DIR 0x68
#define GO_UNTIL 0x82
#define RELEASE_SW 0x92
#define GO_HOME 0x70
#define GO_MARK 0x78
#define RESET_POS 0xD8
#define RESET_DEVICE 0xC0
#define SOFT_STOP 0xB0
#define HARD_STOP 0xB8
#define SOFT_HIZ 0xA0
#define HARD_HIZ 0xA8
#define GET_STATUS 0xD0
/* dSPIN direction options */
#define FWD 0x01
#define REV 0x00
/* dSPIN action options */
#define ACTION_RESET 0x00
#define ACTION_COPY 0x01
class
L6470
{
public
:
L6470
(
int
SSPin
);
void
init
(
int
k_value
);
void
setMicroSteps
(
int
microSteps
);
void
setCurrent
(
int
current
);
void
setMaxSpeed
(
int
speed
);
void
setMinSpeed
(
int
speed
);
void
setAcc
(
float
acceleration
);
void
setDec
(
float
deceleration
);
void
setOverCurrent
(
unsigned
int
ma_current
);
void
setThresholdSpeed
(
float
threshold
);
void
setStallCurrent
(
float
ma_current
);
unsigned
long
ParamHandler
(
byte
param
,
unsigned
long
value
);
void
SetLowSpeedOpt
(
boolean
enable
);
void
run
(
byte
dir
,
float
spd
);
void
Step_Clock
(
byte
dir
);
void
goHome
();
void
setAsHome
();
void
goMark
();
void
move
(
long
n_step
);
void
goTo
(
long
pos
);
void
goTo_DIR
(
byte
dir
,
long
pos
);
void
goUntil
(
byte
act
,
byte
dir
,
unsigned
long
spd
);
boolean
isBusy
();
void
releaseSW
(
byte
act
,
byte
dir
);
float
getSpeed
();
long
getPos
();
void
setMark
();
void
setMark
(
long
value
);
void
resetPos
();
void
resetDev
();
void
softStop
();
void
hardStop
();
void
softFree
();
void
free
();
int
getStatus
();
void
SetParam
(
byte
param
,
unsigned
long
value
);
private
:
long
convert
(
unsigned
long
val
);
unsigned
long
GetParam
(
byte
param
);
unsigned
long
AccCalc
(
float
stepsPerSecPerSec
);
unsigned
long
DecCalc
(
float
stepsPerSecPerSec
);
unsigned
long
MaxSpdCalc
(
float
stepsPerSec
);
unsigned
long
MinSpdCalc
(
float
stepsPerSec
);
unsigned
long
FSCalc
(
float
stepsPerSec
);
unsigned
long
IntSpdCalc
(
float
stepsPerSec
);
unsigned
long
SpdCalc
(
float
stepsPerSec
);
unsigned
long
Param
(
unsigned
long
value
,
byte
bit_len
);
byte
Xfer
(
byte
data
);
int
_SSPin
;
};
#endif
Arduino/libraries/L6470/keywords.txt
deleted
100644 → 0
View file @
b68b56b6
#######################################################
# keywords.txt - keywords file for the L6470 library
#
# ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
# Library by Adam Meyer of bildr Aug 18th 2012
#
# Released as MIT license
#######################################################
#######################################
# Datatypes (KEYWORD1)
#######################################
L6470 KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
L6470 KEYWORD2
init KEYWORD2
setMicroSteps KEYWORD2
setCurrent KEYWORD2
setMaxSpeed KEYWORD2
setMinSpeed KEYWORD2
setAcc KEYWORD2
setDec KEYWORD2
setOverCurrent KEYWORD2
setThresholdSpeed KEYWORD2
setStallCurrent KEYWORD2
ParamHandler KEYWORD2
SetLowSpeedOpt KEYWORD2
run KEYWORD2
Step_Clock KEYWORD2
goHome KEYWORD2
goMark KEYWORD2
move KEYWORD2
goTo KEYWORD2
goTo_DIR KEYWORD2
goUntil KEYWORD2
isBusy KEYWORD2
releaseSW KEYWORD2
resetPos KEYWORD2
resetDev KEYWORD2
softStop KEYWORD2
hardStop KEYWORD2
softHiZ KEYWORD2
hardHiZ KEYWORD2
getStatus KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
\ No newline at end of file
Arduino/libraries/LiquidCrystal/LiquidCrystal.cpp
deleted
100644 → 0
View file @
b68b56b6
#include "LiquidCrystal.h"
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
// When the display powers up, it is configured as follows:
//
// 1. Display clear
// 2. Function set:
// DL = 1; 8-bit interface data
// N = 0; 1-line display
// F = 0; 5x8 dot character font
// 3. Display on/off control:
// D = 0; Display off
// C = 0; Cursor off
// B = 0; Blinking off
// 4. Entry mode set:
// I/D = 1; Increment by 1
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that it's in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
LiquidCrystal
::
LiquidCrystal
(
uint8_t
rs
,
uint8_t
rw
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
,
uint8_t
d4
,
uint8_t
d5
,
uint8_t
d6
,
uint8_t
d7
)
{
init
(
0
,
rs
,
rw
,
enable
,
d0
,
d1
,
d2
,
d3
,
d4
,
d5
,
d6
,
d7
);
}
LiquidCrystal
::
LiquidCrystal
(
uint8_t
rs
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
,
uint8_t
d4
,
uint8_t
d5
,
uint8_t
d6
,
uint8_t
d7
)
{
init
(
0
,
rs
,
255
,
enable
,
d0
,
d1
,
d2
,
d3
,
d4
,
d5
,
d6
,
d7
);
}
LiquidCrystal
::
LiquidCrystal
(
uint8_t
rs
,
uint8_t
rw
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
)
{
init
(
1
,
rs
,
rw
,
enable
,
d0
,
d1
,
d2
,
d3
,
0
,
0
,
0
,
0
);
}
LiquidCrystal
::
LiquidCrystal
(
uint8_t
rs
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
)
{
init
(
1
,
rs
,
255
,
enable
,
d0
,
d1
,
d2
,
d3
,
0
,
0
,
0
,
0
);
}
void
LiquidCrystal
::
init
(
uint8_t
fourbitmode
,
uint8_t
rs
,
uint8_t
rw
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
,
uint8_t
d4
,
uint8_t
d5
,
uint8_t
d6
,
uint8_t
d7
)
{
_rs_pin
=
rs
;
_rw_pin
=
rw
;
_enable_pin
=
enable
;
_data_pins
[
0
]
=
d0
;
_data_pins
[
1
]
=
d1
;
_data_pins
[
2
]
=
d2
;
_data_pins
[
3
]
=
d3
;
_data_pins
[
4
]
=
d4
;
_data_pins
[
5
]
=
d5
;
_data_pins
[
6
]
=
d6
;
_data_pins
[
7
]
=
d7
;
pinMode
(
_rs_pin
,
OUTPUT
);
// we can save 1 pin by not using RW. Indicate by passing 255 instead of pin#
if
(
_rw_pin
!=
255
)
{
pinMode
(
_rw_pin
,
OUTPUT
);
}
pinMode
(
_enable_pin
,
OUTPUT
);
if
(
fourbitmode
)
_displayfunction
=
LCD_4BITMODE
|
LCD_1LINE
|
LCD_5x8DOTS
;
else
_displayfunction
=
LCD_8BITMODE
|
LCD_1LINE
|
LCD_5x8DOTS
;
begin
(
16
,
1
);
}
void
LiquidCrystal
::
begin
(
uint8_t
cols
,
uint8_t
lines
,
uint8_t
dotsize
)
{
if
(
lines
>
1
)
{
_displayfunction
|=
LCD_2LINE
;
}
_numlines
=
lines
;
_currline
=
0
;
// for some 1 line displays you can select a 10 pixel high font
if
((
dotsize
!=
0
)
&&
(
lines
==
1
))
{
_displayfunction
|=
LCD_5x10DOTS
;
}
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
// according to datasheet, we need at least 40ms after power rises above 2.7V
// before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
delayMicroseconds
(
50000
);
// Now we pull both RS and R/W low to begin commands
digitalWrite
(
_rs_pin
,
LOW
);
digitalWrite
(
_enable_pin
,
LOW
);
if
(
_rw_pin
!=
255
)
{
digitalWrite
(
_rw_pin
,
LOW
);
}
//put the LCD into 4 bit or 8 bit mode
if
(
!
(
_displayfunction
&
LCD_8BITMODE
))
{
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits
(
0x03
);
delayMicroseconds
(
4500
);
// wait min 4.1ms
// second try
write4bits
(
0x03
);
delayMicroseconds
(
4500
);
// wait min 4.1ms
// third go!
write4bits
(
0x03
);
delayMicroseconds
(
150
);
// finally, set to 4-bit interface
write4bits
(
0x02
);
}
else
{
// this is according to the hitachi HD44780 datasheet
// page 45 figure 23
// Send function set command sequence
command
(
LCD_FUNCTIONSET
|
_displayfunction
);
delayMicroseconds
(
4500
);
// wait more than 4.1ms
// second try
command
(
LCD_FUNCTIONSET
|
_displayfunction
);
delayMicroseconds
(
150
);
// third go
command
(
LCD_FUNCTIONSET
|
_displayfunction
);
}
// finally, set # lines, font size, etc.
command
(
LCD_FUNCTIONSET
|
_displayfunction
);
// turn the display on with no cursor or blinking default
_displaycontrol
=
LCD_DISPLAYON
|
LCD_CURSOROFF
|
LCD_BLINKOFF
;
display
();
// clear it off
clear
();
// Initialize to default text direction (for romance languages)
_displaymode
=
LCD_ENTRYLEFT
|
LCD_ENTRYSHIFTDECREMENT
;
// set the entry mode
command
(
LCD_ENTRYMODESET
|
_displaymode
);
}
/********** high level commands, for the user! */
void
LiquidCrystal
::
clear
()
{
command
(
LCD_CLEARDISPLAY
);
// clear display, set cursor position to zero
delayMicroseconds
(
2000
);
// this command takes a long time!
}
void
LiquidCrystal
::
home
()
{
command
(
LCD_RETURNHOME
);
// set cursor position to zero
delayMicroseconds
(
2000
);
// this command takes a long time!
}
void
LiquidCrystal
::
setCursor
(
uint8_t
col
,
uint8_t
row
)
{
int
row_offsets
[]
=
{
0x00
,
0x40
,
0x14
,
0x54
};
if
(
row
>=
_numlines
)
{
row
=
_numlines
-
1
;
// we count rows starting w/0
}
command
(
LCD_SETDDRAMADDR
|
(
col
+
row_offsets
[
row
]));
}
// Turn the display on/off (quickly)
void
LiquidCrystal
::
noDisplay
()
{
_displaycontrol
&=
~
LCD_DISPLAYON
;
command
(
LCD_DISPLAYCONTROL
|
_displaycontrol
);
}
void
LiquidCrystal
::
display
()
{
_displaycontrol
|=
LCD_DISPLAYON
;
command
(
LCD_DISPLAYCONTROL
|
_displaycontrol
);
}
// Turns the underline cursor on/off
void
LiquidCrystal
::
noCursor
()
{
_displaycontrol
&=
~
LCD_CURSORON
;
command
(
LCD_DISPLAYCONTROL
|
_displaycontrol
);
}
void
LiquidCrystal
::
cursor
()
{
_displaycontrol
|=
LCD_CURSORON
;
command
(
LCD_DISPLAYCONTROL
|
_displaycontrol
);
}
// Turn on and off the blinking cursor
void
LiquidCrystal
::
noBlink
()
{
_displaycontrol
&=
~
LCD_BLINKON
;
command
(
LCD_DISPLAYCONTROL
|
_displaycontrol
);
}
void
LiquidCrystal
::
blink
()
{
_displaycontrol
|=
LCD_BLINKON
;
command
(
LCD_DISPLAYCONTROL
|
_displaycontrol
);
}
// These commands scroll the display without changing the RAM
void
LiquidCrystal
::
scrollDisplayLeft
(
void
)
{
command
(
LCD_CURSORSHIFT
|
LCD_DISPLAYMOVE
|
LCD_MOVELEFT
);
}
void
LiquidCrystal
::
scrollDisplayRight
(
void
)
{
command
(
LCD_CURSORSHIFT
|
LCD_DISPLAYMOVE
|
LCD_MOVERIGHT
);
}
// This is for text that flows Left to Right
void
LiquidCrystal
::
leftToRight
(
void
)
{
_displaymode
|=
LCD_ENTRYLEFT
;
command
(
LCD_ENTRYMODESET
|
_displaymode
);
}
// This is for text that flows Right to Left
void
LiquidCrystal
::
rightToLeft
(
void
)
{
_displaymode
&=
~
LCD_ENTRYLEFT
;
command
(
LCD_ENTRYMODESET
|
_displaymode
);
}
// This will 'right justify' text from the cursor
void
LiquidCrystal
::
autoscroll
(
void
)
{
_displaymode
|=
LCD_ENTRYSHIFTINCREMENT
;
command
(
LCD_ENTRYMODESET
|
_displaymode
);
}
// This will 'left justify' text from the cursor
void
LiquidCrystal
::
noAutoscroll
(
void
)
{
_displaymode
&=
~
LCD_ENTRYSHIFTINCREMENT
;
command
(
LCD_ENTRYMODESET
|
_displaymode
);
}
// Allows us to fill the first 8 CGRAM locations
// with custom characters
void
LiquidCrystal
::
createChar
(
uint8_t
location
,
uint8_t
charmap
[])
{
location
&=
0x7
;
// we only have 8 locations 0-7
command
(
LCD_SETCGRAMADDR
|
(
location
<<
3
));
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
write
(
charmap
[
i
]);
}
}
/*********** mid level commands, for sending data/cmds */
inline
void
LiquidCrystal
::
command
(
uint8_t
value
)
{
send
(
value
,
LOW
);
}
inline
size_t
LiquidCrystal
::
write
(
uint8_t
value
)
{
send
(
value
,
HIGH
);
return
1
;
// assume sucess
}
/************ low level data pushing commands **********/
// write either command or data, with automatic 4/8-bit selection
void
LiquidCrystal
::
send
(
uint8_t
value
,
uint8_t
mode
)
{
digitalWrite
(
_rs_pin
,
mode
);
// if there is a RW pin indicated, set it low to Write
if
(
_rw_pin
!=
255
)
{
digitalWrite
(
_rw_pin
,
LOW
);
}
if
(
_displayfunction
&
LCD_8BITMODE
)
{
write8bits
(
value
);
}
else
{
write4bits
(
value
>>
4
);
write4bits
(
value
);
}
}
void
LiquidCrystal
::
pulseEnable
(
void
)
{
digitalWrite
(
_enable_pin
,
LOW
);
delayMicroseconds
(
1
);
digitalWrite
(
_enable_pin
,
HIGH
);
delayMicroseconds
(
1
);
// enable pulse must be >450ns
digitalWrite
(
_enable_pin
,
LOW
);
delayMicroseconds
(
100
);
// commands need > 37us to settle
}
void
LiquidCrystal
::
write4bits
(
uint8_t
value
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
pinMode
(
_data_pins
[
i
],
OUTPUT
);
digitalWrite
(
_data_pins
[
i
],
(
value
>>
i
)
&
0x01
);
}
pulseEnable
();
}
void
LiquidCrystal
::
write8bits
(
uint8_t
value
)
{
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
pinMode
(
_data_pins
[
i
],
OUTPUT
);
digitalWrite
(
_data_pins
[
i
],
(
value
>>
i
)
&
0x01
);
}
pulseEnable
();
}
Arduino/libraries/LiquidCrystal/LiquidCrystal.h
deleted
100644 → 0
View file @
b68b56b6
#ifndef LiquidCrystal_h
#define LiquidCrystal_h
#include <inttypes.h>
#include "Print.h"
// commands
#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20
#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80
// flags for display entry mode
#define LCD_ENTRYRIGHT 0x00
#define LCD_ENTRYLEFT 0x02
#define LCD_ENTRYSHIFTINCREMENT 0x01
#define LCD_ENTRYSHIFTDECREMENT 0x00
// flags for display on/off control
#define LCD_DISPLAYON 0x04
#define LCD_DISPLAYOFF 0x00
#define LCD_CURSORON 0x02
#define LCD_CURSOROFF 0x00
#define LCD_BLINKON 0x01
#define LCD_BLINKOFF 0x00
// flags for display/cursor shift
#define LCD_DISPLAYMOVE 0x08
#define LCD_CURSORMOVE 0x00
#define LCD_MOVERIGHT 0x04
#define LCD_MOVELEFT 0x00
// flags for function set
#define LCD_8BITMODE 0x10
#define LCD_4BITMODE 0x00
#define LCD_2LINE 0x08
#define LCD_1LINE 0x00
#define LCD_5x10DOTS 0x04
#define LCD_5x8DOTS 0x00
class
LiquidCrystal
:
public
Print
{
public
:
LiquidCrystal
(
uint8_t
rs
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
,
uint8_t
d4
,
uint8_t
d5
,
uint8_t
d6
,
uint8_t
d7
);
LiquidCrystal
(
uint8_t
rs
,
uint8_t
rw
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
,
uint8_t
d4
,
uint8_t
d5
,
uint8_t
d6
,
uint8_t
d7
);
LiquidCrystal
(
uint8_t
rs
,
uint8_t
rw
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
);
LiquidCrystal
(
uint8_t
rs
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
);
void
init
(
uint8_t
fourbitmode
,
uint8_t
rs
,
uint8_t
rw
,
uint8_t
enable
,
uint8_t
d0
,
uint8_t
d1
,
uint8_t
d2
,
uint8_t
d3
,
uint8_t
d4
,
uint8_t
d5
,
uint8_t
d6
,
uint8_t
d7
);
void
begin
(
uint8_t
cols
,
uint8_t
rows
,
uint8_t
charsize
=
LCD_5x8DOTS
);
void
clear
();
void
home
();
void
noDisplay
();
void
display
();
void
noBlink
();
void
blink
();
void
noCursor
();
void
cursor
();
void
scrollDisplayLeft
();
void
scrollDisplayRight
();
void
leftToRight
();
void
rightToLeft
();
void
autoscroll
();
void
noAutoscroll
();
void
createChar
(
uint8_t
,
uint8_t
[]);
void
setCursor
(
uint8_t
,
uint8_t
);
virtual
size_t
write
(
uint8_t
);
void
command
(
uint8_t
);
using
Print
::
write
;
private
:
void
send
(
uint8_t
,
uint8_t
);
void
write4bits
(
uint8_t
);
void
write8bits
(
uint8_t
);
void
pulseEnable
();
uint8_t
_rs_pin
;
// LOW: command. HIGH: character.
uint8_t
_rw_pin
;
// LOW: write to LCD. HIGH: read from LCD.
uint8_t
_enable_pin
;
// activated by a HIGH pulse.
uint8_t
_data_pins
[
8
];
uint8_t
_displayfunction
;
uint8_t
_displaycontrol
;
uint8_t
_displaymode
;
uint8_t
_initialized
;
uint8_t
_numlines
,
_currline
;
};
#endif
Arduino/libraries/LiquidCrystal/keywords.txt
deleted
100644 → 0
View file @
b68b56b6
#######################################
# Syntax Coloring Map For LiquidCrystal
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
LiquidCrystal KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
clear KEYWORD2
home KEYWORD2
print KEYWORD2
setCursor KEYWORD2
cursor KEYWORD2
noCursor KEYWORD2
blink KEYWORD2
noBlink KEYWORD2
display KEYWORD2
noDisplay KEYWORD2
autoscroll KEYWORD2
noAutoscroll KEYWORD2
leftToRight KEYWORD2
rightToLeft KEYWORD2
scrollDisplayLeft KEYWORD2
scrollDisplayRight KEYWORD2
createChar KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment