Commit 03152a21 authored by MagoKimbra's avatar MagoKimbra

Add PID_EXTRUSION_RATE

parent c9fc2819
### Version 4.2.0
* Add PID Extrusion Rate Kc in percent.
* New configuration systems (Now you can create a separate file with all configuration and use it in you FW update)
* New namings for file
* Added more documentation inside configuration file
......
......@@ -169,11 +169,16 @@
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_FUNCTIONAL_RANGE 10 // degC
#define PID_INTEGRAL_DRIVE_MAX PID_MAX // Limit for the integral term
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
//#define PID_ADD_EXTRUSION_RATE
#define LPQ_MAX_LEN 50
// HotEnd{HE0,HE1,HE2,HE3}
#define DEFAULT_Kp {40, 40, 40, 40} // Kp for E0, E1, E2, E3
#define DEFAULT_Ki {07, 07, 07, 07} // Ki for E0, E1, E2, E3
#define DEFAULT_Kd {60, 60, 60, 60} // Kd for E0, E1, E2, E3
#define DEFAULT_Kc {100, 100, 100, 100} // heating power = Kc * (e_speed)
/***********************************************************************/
......
......@@ -195,7 +195,7 @@
* M250 - Set LCD contrast C<contrast value> (value 0..63)
* M280 - Set servo position absolute. P: servo index, S: angle or microseconds
* M300 - Play beep sound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D
* M301 - Set PID parameters P I D and C
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D
......@@ -489,6 +489,10 @@ unsigned long printer_usage_seconds;
boolean chdkActive = false;
#endif
#if ENABLED(PIDTEMP) && ENABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len = 20;
#endif
//===========================================================================
//================================ Functions ================================
//===========================================================================
......@@ -5899,25 +5903,44 @@ inline void gcode_M226() {
#if ENABLED(PIDTEMP)
/**
* M301: Set PID parameters P I D
* M301: Set PID parameters P I D (and optionally C, L)
*
* P[float] Kp term
* I[float] Ki term (unscaled)
* D[float] Kd term (unscaled)
*
* With PID_ADD_EXTRUSION_RATE:
*
* C[float] Kc term
* L[float] LPQ length
*/
inline void gcode_M301() {
// multi-hotend PID patch: M301 updates or prints a single hotend's PID values
// default behaviour (omitting E parameter) is to update for hotend 0 only
int e = code_seen('E') ? code_value() : 0; // hotend being updated
int e = code_seen('H') ? code_value() : 0; // hotend being updated
if (e < HOTENDS) { // catch bad input value
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
#if ENABLED(PID_ADD_EXTRUSION_RATE)
if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
if (code_seen('L')) lpq_len = code_value();
NOMORE(lpq_len, LPQ_MAX_LEN);
#endif
updatePID();
ECHO_SMV(OK, "e:", e);
ECHO_MV(" p:", PID_PARAM(Kp, e));
ECHO_MV(" i:", unscalePID_i(PID_PARAM(Ki, e)));
ECHO_EMV(" d:", unscalePID_d(PID_PARAM(Kd, e)));
ECHO_MV(" d:", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
ECHO_MV(" c:", PID_PARAM(Kc, e));
#endif
ECHO_E;
}
else {
ECHO_LM(ER, MSG_INVALID_EXTRUDER);
......
......@@ -10,7 +10,6 @@ void idle(bool ignore_stepper_queue = false);
void manage_inactivity(bool ignore_stepper_queue=false);
void FlushSerialRequestResend();
void ok_to_send();
......@@ -172,6 +171,10 @@ extern int fanSpeed;
extern void IDLE_OOZING_retract(bool retracting);
#endif
#if ENABLED(PIDTEMP) && ENABLED(PID_ADD_EXTRUSION_RATE)
extern int lpq_len;
#endif
#if ENABLED(FWRETRACT)
extern bool autoretract_enabled;
extern bool retracted[EXTRUDERS]; // extruder[n].retracted
......
......@@ -29,10 +29,10 @@
*
*/
#define EEPROM_VERSION "V24"
#define EEPROM_VERSION "V25"
/**
* V24 EEPROM Layout:
* V25 EEPROM Layout:
*
* ver
* M92 XYZ E0 ... axis_steps_per_unit X,Y,Z,E0 ... (per extruder)
......@@ -77,10 +77,11 @@
* M145 S2 F gumPreheatFanSpeed
*
* PIDTEMP:
* M301 E0 PID Kp[0], Ki[0], Kd[0]
* M301 E1 PID Kp[1], Ki[1], Kd[1]
* M301 E2 PID Kp[2], Ki[2], Kd[2]
* M301 E3 PID Kp[3], Ki[3], Kd[3]
* M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0]
* M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1]
* M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2]
* M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3]
* M301 L lpq_len
*
* PIDTEMPBED:
* M304 PID bedKp, bedKi, bedKd
......@@ -199,13 +200,19 @@ void Config_StoreSettings() {
EEPROM_WRITE_VAR(i, gumPreheatFanSpeed);
#if ENABLED(PIDTEMP)
for (int e = 0; e < HOTENDS; e++) {
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
for (int h = 0; h < HOTENDS; h++) {
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, h));
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, h));
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, h));
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, h));
}
#endif
#if DISABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len = 20;
#endif
EEPROM_WRITE_VAR(i, lpq_len);
#if ENABLED(PIDTEMPBED)
EEPROM_WRITE_VAR(i, bedKp);
EEPROM_WRITE_VAR(i, bedKi);
......@@ -336,13 +343,19 @@ void Config_RetrieveSettings() {
EEPROM_READ_VAR(i, gumPreheatFanSpeed);
#if ENABLED(PIDTEMP)
for (int8_t e = 0; e < HOTENDS; e++) {
EEPROM_READ_VAR(i, PID_PARAM(Kp, e));
EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
for (int8_t h = 0; h < HOTENDS; h++) {
EEPROM_READ_VAR(i, PID_PARAM(Kp, h));
EEPROM_READ_VAR(i, PID_PARAM(Ki, h));
EEPROM_READ_VAR(i, PID_PARAM(Kd, h));
EEPROM_READ_VAR(i, PID_PARAM(Kc, h));
}
#endif // PIDTEMP
#if DISABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len;
#endif
EEPROM_READ_VAR(i, lpq_len);
#if ENABLED(PIDTEMPBED)
EEPROM_READ_VAR(i, bedKp);
EEPROM_READ_VAR(i, bedKi);
......@@ -420,14 +433,15 @@ void Config_ResetDefault() {
float tmp6[] = DEFAULT_Kp;
float tmp7[] = DEFAULT_Ki;
float tmp8[] = DEFAULT_Kd;
float tmp9[] = DEFAULT_Kc;
#endif // PIDTEMP
#if ENABLED(HOTEND_OFFSET_X) && ENABLED(HOTEND_OFFSET_Y)
float tmp9[] = HOTEND_OFFSET_X;
float tmp10[] = HOTEND_OFFSET_Y;
float tmp10[] = HOTEND_OFFSET_X;
float tmp11[] = HOTEND_OFFSET_Y;
#else
float tmp9[] = {0};
float tmp10[] = {0};
float tmp11[] = {0};
#endif
for (int8_t i = 0; i < 3 + EXTRUDERS; i++) {
......@@ -459,14 +473,14 @@ void Config_ResetDefault() {
else
max_e_jerk[i] = tmp5[max_i - 1];
#if HOTENDS > 1
max_i = sizeof(tmp9) / sizeof(*tmp9);
max_i = sizeof(tmp10) / sizeof(*tmp10);
if(i < max_i)
hotend_offset[X_AXIS][i] = tmp9[i];
hotend_offset[X_AXIS][i] = tmp10[i];
else
hotend_offset[X_AXIS][i] = 0;
max_i = sizeof(tmp10) / sizeof(*tmp10);
max_i = sizeof(tmp11) / sizeof(*tmp11);
if(i < max_i)
hotend_offset[Y_AXIS][i] = tmp10[i];
hotend_offset[Y_AXIS][i] = tmp11[i];
else
hotend_offset[Y_AXIS][i] = 0;
#endif // HOTENDS > 1
......@@ -535,11 +549,15 @@ void Config_ResetDefault() {
#endif
#if ENABLED(PIDTEMP)
for (int8_t e = 0; e < HOTENDS; e++) {
Kp[e] = tmp6[e];
Ki[e] = scalePID_i(tmp7[e]);
Kd[e] = scalePID_d(tmp8[e]);
for (int8_t h = 0; h < HOTENDS; h++) {
Kp[h] = tmp6[h];
Ki[h] = scalePID_i(tmp7[h]);
Kd[h] = scalePID_d(tmp8[h]);
Kc[h] = tmp9[h];
}
#if ENABLED(PID_ADD_EXTRUSION_RATE)
lpq_len = 20; // default last-position-queue size
#endif
// call updatePID (similar to when we have processed M301)
updatePID();
#endif // PIDTEMP
......@@ -752,12 +770,19 @@ void Config_ResetDefault() {
ECHO_LM(DB, "PID settings:");
}
#if ENABLED(PIDTEMP)
for (int e = 0; e < HOTENDS; e++) {
ECHO_SMV(DB, " M301 E", e);
ECHO_MV(" P", PID_PARAM(Kp, e));
ECHO_MV(" I", unscalePID_i(PID_PARAM(Ki, e)));
ECHO_EMV(" D", unscalePID_d(PID_PARAM(Kd, e)));
for (int h = 0; h < HOTENDS; h++) {
ECHO_SMV(DB, " M301 H", h);
ECHO_MV(" P", PID_PARAM(Kp, h));
ECHO_MV(" I", unscalePID_i(PID_PARAM(Ki, h)));
ECHO_MV(" D", unscalePID_d(PID_PARAM(Kd, h)));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
ECHO_MV(" C", PID_PARAM(Kc, h));
#endif
ECHO_E;
}
#if ENABLED(PID_ADD_EXTRUSION_RATE)
ECHO_SMV(DB, " M301 L", lpq_len);
#endif
#endif
#if ENABLED(PIDTEMPBED)
ECHO_SMV(DB, " M304 P", bedKp); // for compatibility with hosts, only echos values for E0
......
......@@ -179,6 +179,7 @@
#define MSG_KP " Kp: "
#define MSG_KI " Ki: "
#define MSG_KD " Kd: "
#define MSG_KC " Kc: "
#define MSG_B "B:"
#define MSG_T "T:"
#define MSG_AT "@:"
......@@ -191,6 +192,7 @@
#define MSG_PID_DEBUG_PTERM " pTerm "
#define MSG_PID_DEBUG_ITERM " iTerm "
#define MSG_PID_DEBUG_DTERM " dTerm "
#define MSG_PID_DEBUG_CTERM " cTerm "
#define MSG_INVALID_EXTRUDER_NUM " - Invalid extruder number !"
#define MSG_HEATER_BED "bed"
......
......@@ -123,6 +123,12 @@ static volatile bool temp_meas_ready = false;
static float pTerm[HOTENDS];
static float iTerm[HOTENDS];
static float dTerm[HOTENDS];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
static float cTerm[HOTENDS];
static long last_position[EXTRUDERS];
static long lpq[LPQ_MAX_LEN];
static int lpq_ptr = 0;
#endif
//int output;
static float pid_error[HOTENDS];
static float temp_iState_min[HOTENDS];
......@@ -160,7 +166,7 @@ static unsigned char soft_pwm[HOTENDS];
#endif
#if ENABLED(PIDTEMP)
float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS], Kc[HOTENDS];
#endif //PIDTEMP
// Init min and max temp with extreme values to prevent false errors during startup
......@@ -390,8 +396,8 @@ void autotempShutdown() {
void updatePID() {
#if ENABLED(PIDTEMP)
for (int e = 0; e < HOTENDS; e++) {
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
for (int h = 0; h < HOTENDS; h++) {
temp_iState_max[h] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,h);
}
#endif
#if ENABLED(PIDTEMPBED)
......@@ -484,13 +490,13 @@ void checkExtruderAutoFans() {
//
// Temperature Error Handlers
//
inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
inline void _temp_error(int h, const char *serial_msg, const char *lcd_msg) {
static bool killed = false;
if (IsRunning()) {
ECHO_S(ER);
PS_PGM(serial_msg);
ECHO_M(MSG_STOPPED_HEATER);
if (e >= 0) ECHO_EV((int)e); else ECHO_EM(MSG_HEATER_BED);
if (h >= 0) ECHO_EV((int)h); else ECHO_EM(MSG_HEATER_BED);
#if ENABLED(ULTRA_LCD)
lcd_setalertstatuspgm(lcd_msg);
#endif
......@@ -506,63 +512,97 @@ inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
#endif
}
void max_temp_error(uint8_t e) {
_temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
void max_temp_error(uint8_t h) {
_temp_error(h, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
}
void min_temp_error(uint8_t e) {
_temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
void min_temp_error(uint8_t h) {
_temp_error(h, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
}
float get_pid_output(int e) {
float get_pid_output(int h) {
float pid_output;
#if ENABLED(PIDTEMP)
#if ENABLED(PID_OPENLOOP)
pid_output = constrain(target_temperature[e], 0, PID_MAX);
pid_output = constrain(target_temperature[h], 0, PID_MAX);
#else
pid_error[e] = target_temperature[e] - current_temperature[e];
dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
temp_dState[e] = current_temperature[e];
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
pid_error[h] = target_temperature[h] - current_temperature[h];
dTerm[h] = K2 * PID_PARAM(Kd,h) * (current_temperature[h] - temp_dState[h]) + K1 * dTerm[h];
temp_dState[h] = current_temperature[h];
if (pid_error[h] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[e] = true;
pid_reset[h] = true;
}
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
else if (pid_error[h] < -PID_FUNCTIONAL_RANGE || target_temperature[h] == 0) {
pid_output = 0;
pid_reset[e] = true;
pid_reset[h] = true;
}
else {
if (pid_reset[e]) {
temp_iState[e] = 0.0;
pid_reset[e] = false;
if (pid_reset[h]) {
temp_iState[h] = 0.0;
pid_reset[h] = false;
}
pTerm[h] = PID_PARAM(Kp,h) * pid_error[h];
temp_iState[h] += pid_error[h];
temp_iState[h] = constrain(temp_iState[h], temp_iState_min[h], temp_iState_max[h]);
iTerm[h] = PID_PARAM(Ki,h) * temp_iState[h];
pid_output = pTerm[h] + iTerm[h] - dTerm[h];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
cTerm[h] = 0;
#if ENABLED(SINGLENOZZLE)
long e_position = st_get_position(E_AXIS);
if (e_position > last_position[active_extruder]) {
lpq[lpq_ptr++] = e_position - last_position[active_extruder];
last_position[active_extruder] = e_position;
} else {
lpq[lpq_ptr++] = 0;
}
if (lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[0] = (lpq[lpq_ptr] / axis_steps_per_unit[E_AXIS + active_extruder]) * Kc[0];
pid_output += cTerm[0] / 100.0;
#else
if (h == active_extruder) {
long e_position = st_get_position(E_AXIS);
if (e_position > last_position[h]) {
lpq[lpq_ptr++] = e_position - last_position[h];
last_position[h] = e_position;
} else {
lpq[lpq_ptr++] = 0;
}
if (lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[h] = (lpq[lpq_ptr] / axis_steps_per_unit[E_AXIS + active_extruder]) * Kc[h];
pid_output += cTerm[h] / 100.0;
}
pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
#endif // SINGLENOZZLE
#endif // PID_ADD_EXTRUSION_RATE
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
if (pid_output > PID_MAX) {
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
if (pid_error[h] > 0) temp_iState[h] -= pid_error[h]; // conditional un-integration
pid_output = PID_MAX;
}
else if (pid_output < 0) {
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
if (pid_error[h] < 0) temp_iState[h] -= pid_error[h]; // conditional un-integration
pid_output = 0;
}
}
#endif //PID_OPENLOOP
#endif // PID_OPENLOOP
#if ENABLED(PID_DEBUG)
ECHO_SMV(DB, MSG_PID_DEBUG, e);
ECHO_MV(MSG_PID_DEBUG_INPUT, current_temperature[e]);
ECHO_SMV(DB, MSG_PID_DEBUG, h);
ECHO_MV(MSG_PID_DEBUG_INPUT, current_temperature[h]);
ECHO_MV(MSG_PID_DEBUG_OUTPUT, pid_output);
ECHO_MV(MSG_PID_DEBUG_PTERM, pTerm[e]);
ECHO_MV(MSG_PID_DEBUG_ITERM, iTerm[e]);
ECHO_EMV(MSG_PID_DEBUG_DTERM, dTerm[e]);
#endif //PID_DEBUG
ECHO_MV(MSG_PID_DEBUG_PTERM, pTerm[h]);
ECHO_MV(MSG_PID_DEBUG_ITERM, iTerm[h]);
ECHO_MV(MSG_PID_DEBUG_DTERM, dTerm[h]);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
ECHO_MV(MSG_PID_DEBUG_CTERM, cTerm[h]);
#endif
ECHO_E;
#endif // PID_DEBUG
#else /* PID off */
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
pid_output = (current_temperature[h] < target_temperature[h]) ? PID_MAX : 0;
#endif
return pid_output;
......@@ -632,30 +672,30 @@ void manage_heater() {
#endif
// Loop through all hotends
for (int e = 0; e < HOTENDS; e++) {
for (int h = 0; h < HOTENDS; h++) {
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
thermal_runaway_protection(&thermal_runaway_state_machine[h], &thermal_runaway_timer[h], current_temperature[h], target_temperature[h], h, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
#endif
float pid_output = get_pid_output(e);
float pid_output = get_pid_output(h);
// Check if temperature is within the correct range
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
soft_pwm[h] = current_temperature[h] > minttemp[h] && current_temperature[h] < maxttemp[h] ? (int)pid_output >> 1 : 0;
// Check if the temperature is failing to increase
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
// Is it time to check this extruder's heater?
if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
if (watch_heater_next_ms[h] && ms > watch_heater_next_ms[h]) {
// Has it failed to increase enough?
if (degHotend(e) < watch_target_temp[e]) {
if (degHotend(h) < watch_target_temp[h]) {
// Stop!
_temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
_temp_error(h, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
}
else {
// Start again if the target is still far off
start_watching_heater(e);
start_watching_heater(h);
}
}
......@@ -828,8 +868,8 @@ static void updateTemperaturesFromRawValues() {
#if ENABLED(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = read_max6675();
#endif
for (uint8_t e = 0; e < HOTENDS; e++) {
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
for (uint8_t h = 0; h < HOTENDS; h++) {
current_temperature[h] = analog2temp(current_temperature_raw[h], h);
}
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
......@@ -932,12 +972,12 @@ void tp_init() {
#endif
// Finish init of mult hotends arrays
for (int e = 0; e < HOTENDS; e++) {
for (int h = 0; h < HOTENDS; h++) {
// populate with the first value
maxttemp[e] = maxttemp[0];
maxttemp[h] = maxttemp[0];
#if ENABLED(PIDTEMP)
temp_iState_min[e] = 0.0;
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
temp_iState_min[h] = 0.0;
temp_iState_max[h] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,h);
#endif //PIDTEMP
#if ENABLED(PIDTEMPBED)
temp_iState_min_bed = 0.0;
......@@ -945,6 +985,12 @@ void tp_init() {
#endif // PIDTEMPBED
}
#if ENABLED(PID_ADD_EXTRUSION_RATE)
for (int e = 0; e < EXTRUDERS; e++) {
last_position[e] = 0;
}
#endif
#if HAS(HEATER_0)
SET_OUTPUT(HEATER_0_PIN);
#endif
......
......@@ -62,12 +62,12 @@ extern float current_temperature_bed;
#endif
#if ENABLED(PIDTEMP)
extern float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
extern float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS], Kc[HOTENDS];
#define PID_PARAM(param, e) param[e] // use macro to point to array value
#endif
#if ENABLED(PIDTEMPBED)
extern float bedKp,bedKi,bedKd;
extern float bedKp, bedKi, bedKd;
#endif
#if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment