Make all debug and progress messages conditional on --debug flag

parent f315edea
......@@ -30,7 +30,7 @@ import time
import uuid
from .comm import SocketCommunicator, Message
from .models import get_model
from .config import get_system_prompt_content, get_comm_type, get_backend_worker_port
from .config import get_system_prompt_content, get_comm_type, get_backend_worker_port, get_debug
# Set PyTorch CUDA memory management
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
......@@ -186,7 +186,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': 'Initializing analysis job'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 5% - Initializing analysis job")
if get_debug():
print(f"PROGRESS: Job {job_id} - 5% - Initializing analysis job")
torch.cuda.empty_cache()
total_tokens = 0
......@@ -205,7 +206,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': f'Model {model_path.split("/")[-1]} loaded successfully'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 8% - Model loaded successfully")
if get_debug():
print(f"PROGRESS: Job {job_id} - 8% - Model loaded successfully")
# Get system prompt
print(f"DEBUG: Retrieving system prompt for job {job_id}")
......@@ -231,7 +233,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': f'Extracted {total_frames} frames'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 10% - Extracted {total_frames} frames")
if get_debug():
print(f"PROGRESS: Job {job_id} - 10% - Extracted {total_frames} frames")
descriptions = []
......@@ -248,7 +251,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': f'Processing frame {i+1}/{total_frames} at {ts:.1f}s'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - {progress_percent}% - Processing frame {i+1}/{total_frames}")
if get_debug():
print(f"PROGRESS: Job {job_id} - {progress_percent}% - Processing frame {i+1}/{total_frames}")
# Check for cancellation
if job_id and check_job_cancelled(job_id):
......@@ -283,7 +287,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': f'Completed frame {i+1}/{total_frames} ({progress_percent}%)'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - {progress_percent}% - Completed frame {i+1}/{total_frames}")
if get_debug():
print(f"PROGRESS: Job {job_id} - {progress_percent}% - Completed frame {i+1}/{total_frames}")
if output_dir:
import shutil
......@@ -300,7 +305,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': 'Generating video summary'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 85% - Generating video summary")
if get_debug():
print(f"PROGRESS: Job {job_id} - 85% - Generating video summary")
# Check for cancellation before summary
if job_id and check_job_cancelled(job_id):
......@@ -339,7 +345,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': 'Analysis completed'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 100% - Analysis completed")
if get_debug():
print(f"PROGRESS: Job {job_id} - 100% - Analysis completed")
result = f"Frame Descriptions:\n" + "\n".join(descriptions) + f"\n\nSummary:\n{summary}"
return result, total_tokens
......@@ -355,7 +362,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': 'Starting image analysis'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 20% - Starting image analysis")
if get_debug():
print(f"PROGRESS: Job {job_id} - 20% - Starting image analysis")
# Check for cancellation before processing image
if job_id and check_job_cancelled(job_id):
......@@ -371,7 +379,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': 'Processing image with AI model'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 50% - Processing image with AI model")
if get_debug():
print(f"PROGRESS: Job {job_id} - 50% - Processing image with AI model")
result, tokens = analyze_single_image(media_path, full_prompt, model)
total_tokens += tokens
......@@ -386,7 +395,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': 'Finalizing analysis results'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 90% - Finalizing analysis results")
if get_debug():
print(f"PROGRESS: Job {job_id} - 90% - Finalizing analysis results")
# Send final progress update
if comm:
......@@ -397,7 +407,8 @@ def analyze_media(media_path, prompt, model_path, interval=10, job_id=None, comm
'message': 'Image analysis completed successfully'
})
comm.send_message(progress_msg)
print(f"PROGRESS: Job {job_id} - 100% - Image analysis completed successfully")
if get_debug():
print(f"PROGRESS: Job {job_id} - 100% - Image analysis completed successfully")
torch.cuda.empty_cache()
return result, total_tokens
......@@ -434,7 +445,8 @@ def worker_process(backend_type: str):
model_path = data.get('model_path', 'Qwen/Qwen2.5-VL-7B-Instruct')
interval = data.get('interval', 10)
job_id = message.msg_id # Use message ID for job identification
print(f"PROGRESS: Job {message.msg_id} accepted - Starting analysis")
if get_debug():
print(f"PROGRESS: Job {message.msg_id} accepted - Starting analysis")
print(f"DEBUG: Starting analysis of {media_path} with model {model_path} for job {job_id}")
result, tokens_used = analyze_media(media_path, prompt, model_path, interval, job_id, comm)
print(f"DEBUG: Analysis completed for job {message.msg_id}, used {tokens_used} tokens")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment