// Copyright (c) 2012-2017 VideoStitch SAS // Copyright (c) 2018 stitchEm #include "geometryProcessingUtils.hpp" #include "pngutil.hpp" #include <opencv2/imgproc.hpp> #include <algorithm> #include <random> #include <functional> #ifndef NDEBUG #include "debugUtils.hpp" #endif namespace VideoStitch { namespace Util { int GeometryProcessing::norm2(const cv::Vec3b a, const cv::Vec3b b) { const int diffX = int(a[0]) - int(b[0]); const int diffY = int(a[1]) - int(b[1]); const int diffZ = int(a[2]) - int(b[2]); return diffX * diffX + diffY * diffY + diffZ * diffZ; } int GeometryProcessing::norm2(const cv::Point a, const cv::Point b) { const int diffX = a.x - b.x; const int diffY = a.y - b.y; return diffX * diffX + diffY * diffY; } float GeometryProcessing::norm2(const cv::Point2f a, const cv::Point2f b) { const float diffX = a.x - b.x; const float diffY = a.y - b.y; return diffX * diffX + diffY * diffY; } int GeometryProcessing::norm2(const unsigned char a, const unsigned char b) { int diff = int(a) - int(b); return diff * diff; } float GeometryProcessing::length(const cv::Point a, const cv::Point b) { return std::sqrt((float)norm2(a, b)); } float GeometryProcessing::lengthSqr(const cv::Point2f a, const cv::Point2f b) { return (float)norm2(a, b); } float GeometryProcessing::length(const cv::Point2f a, const cv::Point2f b) { return (float)std::sqrt(lengthSqr(a, b)); } bool GeometryProcessing::insideImage(const cv::Point& point, const cv::Mat& image) { return (point.x >= 0 && point.x < image.cols && point.y >= 0 && point.y < image.rows); } bool GeometryProcessing::insideImage(const cv::Point& point, const cv::Size& imageSize) { return (point.x >= 0 && point.x < imageSize.width && point.y >= 0 && point.y < imageSize.height); } bool GeometryProcessing::pointInsideCircle(const cv::Point2d p, const cv::Point3d circle) { const double dx_sqr = (p.x - circle.x) * (p.x - circle.x); const double dy_sqr = (p.y - circle.y) * (p.y - circle.y); return dx_sqr + dy_sqr <= circle.z * circle.z; } bool GeometryProcessing::onBorder(const cv::Point point, const cv::Size size) { if (point.x != 0 && point.x != size.width - 1 && point.y != 0 && point.y != size.height - 1) { return false; } else { return true; } } bool GeometryProcessing::pointInVector(const cv::Point p, const std::vector<cv::Point>* points) { if (points == nullptr) { return false; } for (auto point : *points) { if (p == point) { return true; } } return false; } void GeometryProcessing::getUniformSampleOnCircle(const size_t sampleCount, const cv::Size imageSize, const cv::Point3d& inputCircle, std::vector<cv::Point>& points) { // http://mathworld.wolfram.com/CirclePointPicking.html std::random_device rd; std::mt19937 gen(rd()); gen.seed(0); std::uniform_real_distribution<double> disX1(-1.0, 1.0); std::uniform_real_distribution<double> disX2(-1.0, 1.0); while (points.size() < sampleCount) { const double x1 = disX1(gen); const double x2 = disX2(gen); const double sum_sq = x1 * x1 + x2 * x2; if (sum_sq < 1.0) { const double x = (x1 * x1 - x2 * x2) / sum_sq; const double y = 2 * x1 * x2 / sum_sq; const cv::Point scaledPoint((int)(x * inputCircle.z + inputCircle.x), (int)(y * inputCircle.z + inputCircle.y)); if (Util::GeometryProcessing::insideImage(scaledPoint, imageSize)) { points.push_back(scaledPoint); } } } } std::vector<cv::Point2f> GeometryProcessing::getUniformSampleOnPolygon(const std::vector<cv::Point>& polygon, const size_t sampleCount) { std::vector<cv::Point2f> sampledPoints; if (polygon.size() < 3) { return sampledPoints; } float polygonSize = getPolygonPerimeter(polygon); float s = 0.0f; float dx = polygonSize / (sampleCount - 1); size_t index = 0; size_t i = 0; float x = 0.0f; while (i < sampleCount && index < polygon.size()) { const float t = s; s += length(polygon[index], polygon[(index + 1) % polygon.size()]); while (x <= s && i < sampleCount) { cv::Point2f sampledPoint = cv::Point2f(polygon[index]) * (1.0f - (x - t) / (s - t)) + cv::Point2f(polygon[(index + 1) % polygon.size()]) * ((x - t) / (s - t)); sampledPoints.push_back(sampledPoint); x += dx; i++; } index++; } return sampledPoints; } Status GeometryProcessing::findNearestPair(const std::vector<cv::Point2f>& point0s, const std::vector<cv::Point2f>& point1s, cv::Vec2i& nearestPair) { // https://en.wikipedia.org/wiki/Closest_pair_of_points_problem if (!point0s.size() || !point1s.size()) { return {Origin::GeometryProcessingUtils, ErrType::InvalidConfiguration, "One of the input arrays is empty."}; } nearestPair = cv::Vec2i(-1, -1); std::vector<std::tuple<int, int, cv::Point2f>> points; std::vector<cv::Vec2i> setCounts; for (size_t i = 0; i < point0s.size(); i++) { points.push_back(std::make_tuple(0, (int)i, point0s[i])); } for (size_t i = 0; i < point1s.size(); i++) { points.push_back(std::make_tuple(1, (int)i, point1s[i])); } // Sort increasing of x std::sort(points.begin(), points.end(), [](const std::tuple<int, int, cv::Point2f>& a, const std::tuple<int, int, cv::Point2f>& b) -> bool { return std::get<2>(a).x < std::get<2>(b).x; }); if (points.size() > 0) { setCounts.push_back(cv::Vec2i(0, 0)); for (size_t i = 0; i < points.size(); i++) { const cv::Vec2i lastCount = setCounts.back(); if (std::get<0>(points[i]) == 0) { setCounts.push_back(cv::Vec2i(lastCount[0] + 1, lastCount[1])); } else { setCounts.push_back(cv::Vec2i(lastCount[0], lastCount[1] + 1)); } } } cv::Vec2i indices; findNearestPair(0, (int)points.size() - 1, setCounts, points, indices); nearestPair = cv::Vec2i(std::get<1>(points[indices[0]]), std::get<1>(points[indices[1]])); return Status::OK(); } bool GeometryProcessing::isValidRange(const int l, const int r, const std::vector<cv::Vec2i>& setCounts) { if (l >= r || l < 0 || r + 1 >= ((int)setCounts.size())) { return false; } if (setCounts[r + 1][0] == setCounts[l][0] || setCounts[r + 1][1] == setCounts[l][1]) { return false; } return true; } float GeometryProcessing::findNearestPair(const int l, const int r, const std::vector<cv::Vec2i>& setCounts, const std::vector<std::tuple<int, int, cv::Point2f>>& points, cv::Vec2i& nearestPair) { // There is only 1 single set in this range, can't compute the min distance if (!isValidRange(l, r, setCounts)) { return -1; } if (r == l + 1) { if (std::get<0>(points[l]) != std::get<0>(points[r])) { nearestPair[std::get<0>(points[l])] = l; nearestPair[std::get<0>(points[r])] = r; return (float)cv::norm(std::get<2>(points[l]) - std::get<2>(points[r])); } else { return -1; } } // Make sure that divide the set into 2 and at least 1 of them is valid int m = -1; for (int k = (l + r) / 2 - 1; k <= (l + r) / 2 + 1; k++) { if (isValidRange(l, k, setCounts) || isValidRange(k + 1, r, setCounts)) { m = k; break; } } if (m < 0) { return -1; } cv::Vec2i nearestPairLeft; const float minLeft = findNearestPair(l, m, setCounts, points, nearestPairLeft); cv::Vec2i nearestPairRight; const float minRight = findNearestPair(m + 1, r, setCounts, points, nearestPairRight); float minDistance = std::numeric_limits<float>::max(); if (minRight < 0 || (minLeft < minRight && minLeft >= 0)) { minDistance = minLeft; nearestPair = nearestPairLeft; } else { minDistance = minRight; nearestPair = nearestPairRight; } // Find the min distance from a point on the left side to a point on the right side int i = m; while ((i >= l) && (std::get<2>(points[m]).x - std::get<2>(points[i]).x < minDistance)) { int j = m + 1; while ((j <= r) && (std::get<2>(points[j]).x - std::get<2>(points[m]).x < minDistance)) { if (std::get<0>(points[i]) != std::get<0>(points[j])) { float dist = (float)cv::norm(std::get<2>(points[i]) - std::get<2>(points[j])); if (dist < minDistance) { minDistance = dist; nearestPair[std::get<0>(points[i])] = i; nearestPair[std::get<0>(points[j])] = j; } } j++; } i--; } return minDistance; } cv::Rect2f GeometryProcessing::getBoundingRect(const std::vector<cv::Point2f>& points) { if (points.size() == 0) { return cv::Rect2f(0, 0, 0, 0); } cv::Point2f pointMin = points[0]; cv::Point2f pointMax = points[0]; for (auto point : points) { if (point.x < pointMin.x) pointMin.x = point.x; if (point.y < pointMin.y) pointMin.y = point.y; if (point.x > pointMax.x) pointMax.x = point.x; if (point.y > pointMax.y) pointMax.y = point.y; } return cv::Rect2f(pointMin.x, pointMin.y, pointMax.x - pointMin.x, pointMax.y - pointMin.y); } float GeometryProcessing::contourMatching(const int x, const std::vector<cv::Point2f>& point0sOld, const int y, const std::vector<cv::Point2f>& point1sOld, std::vector<int>& matchIndices) { // Shift both array to x and y accordingly std::vector<cv::Point2f> point0s; point0s.insert(point0s.end(), point0sOld.begin() + x, point0sOld.end()); if (x > 0) { point0s.insert(point0s.end(), point0sOld.begin(), point0sOld.begin() + x); } std::vector<cv::Point2f> point1s; point1s.insert(point1s.end(), point1sOld.begin() + y, point1sOld.end()); if (y > 0) { point1s.insert(point1s.end(), point1sOld.begin(), point1sOld.begin() + y); } // Get the bounding box of the points cv::Rect2f rect = getBoundingRect(point0s) | getBoundingRect(point1s); std::function<cv::Point2f(cv::Point2f)> scaleFunction = [&rect](cv::Point2f p) { return cv::Point2f((p.x - rect.x) / rect.width, (p.y - rect.y) / rect.height); }; // Normalize the points' coordinate std::transform(point0s.begin(), point0s.end(), point0s.begin(), scaleFunction); std::transform(point1s.begin(), point1s.end(), point1s.begin(), scaleFunction); // Find the correspondence points std::vector<float> costs(point1s.size()); std::vector<float> prevCosts(point1s.size()); std::vector<float> contour1_distance(point1s.size()); std::vector<std::vector<int>> prevMatch; for (size_t i = 0; i < point0s.size(); i++) { prevMatch.push_back(std::vector<int>(point1s.size(), -1)); } contour1_distance[0] = 0.0f; for (size_t i = 1; i < point1s.size(); i++) { contour1_distance[i] = contour1_distance[i - 1] + length(point1s[i], point1s[i - 1]); } std::fill(prevCosts.begin(), prevCosts.end(), std::numeric_limits<float>::max()); prevCosts[0] = (float)cv::norm(point0s[0] - point1s[0]); // Use dynamic programming to find the best boundary matching from contour 0 in contour 1 // For better performance, this part should be implemented in CUDA const float same_pair_cost = 5.0f; // This cost is used to penalize assigning the same point in contour 1 const float stride_cost = 0.01f; // This cost is used to penalize assigning "distance" points in contour 1 to neighbor points in contour 0. for (size_t i = 1; i < point0s.size(); i++) { /* NOTE: This is the full version of the optimized code below. The two should give identical results const int maxDistance = 20; for (int j = 0; j < (int) point1s.size(); j++) { costs[j] = prevCosts[j] + same_pair_cost; prevMatch[i][j] = (int) j; const int minIndex = std::max( 0, j - maxDistance); for (int t = j - 1; t >= minIndex; t--) { const float cost = prevCosts[t] + stride_cost*(contour1_distance[j] - contour1_distance[t]); if (cost < costs[j]) { costs[j] = cost; prevMatch[i][j] = t; } } costs[j] += length(point0s[i], point1s[j]); } */ /* This part is the optimized version of the commented code above */ size_t bestPrevJ = 0; for (size_t j = 0; j < point1s.size(); j++) { // Update best cost float bestPrevCost = prevCosts[bestPrevJ] + stride_cost * (contour1_distance[j] - contour1_distance[bestPrevJ]); if (j >= 1) { float currentCost = prevCosts[j - 1] + stride_cost * (contour1_distance[j] - contour1_distance[j - 1]); if (currentCost < bestPrevCost) { bestPrevCost = currentCost; bestPrevJ = j - 1; } } float sameCost = prevCosts[j] + same_pair_cost; if (sameCost < bestPrevCost || bestPrevJ == j) { costs[j] = sameCost + length(point0s[i], point1s[j]); prevMatch[i][j] = (int)j; } else { costs[j] = bestPrevCost + length(point0s[i], point1s[j]); prevMatch[i][j] = (int)bestPrevJ; } } prevCosts = costs; } // Find the path by tracing back if (point0s.size()) { matchIndices.resize(point0s.size()); int j = (int)point1s.size() - 1; for (int i = (int)point0s.size() - 1; i >= 0; i--) { matchIndices[(x + i) % point0s.size()] = (y + j) % point1s.size(); if (prevMatch[i][j]) { j = prevMatch[i][j]; } } } return costs[point1s.size() - 1] / point0s.size(); } float GeometryProcessing::contourMatching(const std::vector<cv::Point2f>& point0s, const std::vector<cv::Point2f>& point1s, std::vector<int>& matchIndices, const bool nearestStartingPoint) { // Find the two nearest points, they are the starting point for both contour if (nearestStartingPoint) { cv::Vec2i nearestPair; findNearestPair(point0s, point1s, nearestPair); const int x = nearestPair[0]; const int y = nearestPair[1]; return contourMatching(x, point0s, y, point1s, matchIndices); } else { return std::numeric_limits<float>::max(); } } template <typename T> Status GeometryProcessing::findImageContours(const cv::Size size, const std::vector<T>& data, const T bitMask, std::vector<std::vector<cv::Point>>& contours, const int method) { if (size.width * size.height != (int)data.size()) { return {Origin::Input, ErrType::InvalidConfiguration, "Corrupted input for finding image contour"}; } std::vector<unsigned char> image; for (size_t i = 0; i < data.size(); i++) { image.push_back((data[i] & bitMask) ? 255 : 0); } cv::Mat src_gray(size, CV_8UC1, &image[0]); /// Find contours std::vector<cv::Vec4i> hierarchy; cv::findContours(src_gray, contours, hierarchy, CV_RETR_EXTERNAL, method, cv::Point(0, 0)); return Status::OK(); } template Status GeometryProcessing::findImageContours<uint32_t>(const cv::Size size, const std::vector<uint32_t>& data, const uint32_t bitMask, std::vector<std::vector<cv::Point>>& contours, const int method); template Status GeometryProcessing::findImageContours<unsigned char>(const cv::Size size, const std::vector<unsigned char>& data, const unsigned char bitMask, std::vector<std::vector<cv::Point>>& contours, const int method); Status GeometryProcessing::drawPolygon(const cv::Size size, const std::vector<cv::Point2f>& points, std::vector<unsigned char>& mask) { return drawPolygon(size, convertPoint2fToPoint(points), mask); } Status GeometryProcessing::drawPolygon(const cv::Size size, const std::vector<cv::Point>& points, std::vector<unsigned char>& mask) { std::vector<std::vector<cv::Point>> round_points; round_points.push_back(points); return drawPolygon(size, round_points, mask); } Status GeometryProcessing::drawPolygon(const cv::Size size, const std::vector<std::vector<cv::Point>>& points, std::vector<unsigned char>& mask) { cv::Mat img(size, CV_8UC1); img.setTo(0); std::vector<cv::Point*> contours(points.size()); std::vector<int> countours_n(points.size()); for (size_t i = 0; i < points.size(); i++) { contours[i] = (cv::Point*)(&points[i][0]); countours_n[i] = (int)points[i].size(); } cv::fillPoly(img, (const cv::Point**)&contours[0], (const int*)&countours_n[0], (int)points.size(), cv::Scalar(255)); // @NOTE: This is a hack. I still don't why openCV draws nothing around the image boundaries // As a hack, I draw all the poly-line with width = 2. // --> All polygon's boundaries are 1 pixel bigger than they actually are cv::polylines(img, (const cv::Point**)&contours[0], (const int*)&countours_n[0], (int)points.size(), true, cv::Scalar(255), 2); mask.resize(size.width * size.height, 0); for (int j = 0; j < img.cols; j++) for (int i = 0; i < img.rows; i++) { mask[i * size.width + j] = img.at<unsigned char>(cv::Point(j, i)); } return Status::OK(); } Status GeometryProcessing::dumpContourMatch(const std::string& filename, const int width, const int height, const std::vector<cv::Point2f>& point0s, const std::vector<cv::Point2f>& point1s, const std::vector<int>& matchIndices) { cv::Mat drawing = cv::Mat::zeros(height, width, CV_8UC4); for (size_t i = 0; i < matchIndices.size(); i++) { if (i % 3 == 0) { cv::line(drawing, point0s[i], point1s[matchIndices[i]], cv::Scalar(255, 255, 255, 255), 1); } cv::circle(drawing, point0s[i], 2, cv::Scalar(255, 0, 0, 255)); cv::circle(drawing, point1s[matchIndices[i]], 2, cv::Scalar(0, 255, 0, 255)); } if (!Util::PngReader::writeRGBAToFile(filename.c_str(), width, height, drawing.data)) { return {Origin::GeometryProcessingUtils, ErrType::RuntimeError, "Failed to dump result to file"}; } return Status::OK(); } std::vector<std::vector<cv::Point>> GeometryProcessing::convertPoint2fToPoint(const std::vector<cv::Point2f>& points) { std::vector<std::vector<cv::Point>> round_points; std::vector<cv::Point> round_point; for (size_t i = 0; i < points.size(); i++) { round_point.push_back(cv::Point(points[i])); } round_points.push_back(round_point); return round_points; } float GeometryProcessing::getPolygonPerimeter(const std::vector<cv::Point>& polygon) { float p = 0.0f; for (size_t i = 0; i < polygon.size(); i++) { p += length(polygon[i], polygon[(i + 1) % polygon.size()]); } return p; } Status GeometryProcessing::dumpPoints(const std::string& filename, const int width, const int height, const std::vector<cv::Point2f>& points) { cv::Mat drawing = cv::Mat::zeros(height, width, CV_8UC1); for (size_t i = 0; i < points.size(); i++) { cv::Scalar color = cv::Scalar((unsigned)(255.0f * i / points.size())); cv::circle(drawing, cv::Point(points[i]), 1, color); } cv::Mat image = cv::Mat::zeros(height, width, CV_8UC3); applyColorMap(drawing, image, cv::COLORMAP_JET); if (!Util::PngReader::writeBGRToFile(filename.c_str(), width, height, image.data)) { return {Origin::GeometryProcessingUtils, ErrType::RuntimeError, "Failed to dump result to file"}; } return Status::OK(); } Status GeometryProcessing::dumpContourToPngFile(const std::string& filename, const int width, const int height, const std::vector<std::vector<cv::Point>>& contours) { /// Draw contours cv::Mat drawing = cv::Mat::zeros(height, width, CV_8UC1); for (size_t i = 0; i < contours.size(); i++) { for (size_t j = 0; j < contours[i].size(); j++) { cv::line(drawing, contours[i][j], contours[i][(j + 1) % contours[i].size()], 3); } } cv::Mat image = cv::Mat::zeros(height, width, CV_8UC3); applyColorMap(drawing, image, cv::COLORMAP_JET); if (!Util::PngReader::writeBGRToFile(filename.c_str(), width, height, image.data)) { return {Origin::GeometryProcessingUtils, ErrType::RuntimeError, "Failed to dump result to file"}; } return Status::OK(); } } // namespace Util } // namespace VideoStitch