# Algorithms file format specification Algorithms spec is the file format used by videostitch-cmd. It uses full [JSON](http://www.json.org/) syntax. Algorithms are simply defined by populating the root object with a few named variables. ## Objects VideoStitch will interpret the following objects. An object is of course free to have other members in addition to these. ### Root videostitch-cmd will interpret the following optional members of the root object:
MemberTypeDefault value
outputPtvlistOptionalIf provided, this value specifies the output ptv file that will contain the results of the "algorithms" and the settings from the input ptv.
The tables below show the members of the "outputPtv"
MemberTypeDefault value
namestringNo DefaultNames of the output ptv.
outputFilelistOptionalAn optional list to specify the format of the final output in the new ptv file.
#### outputFile The "outputFile" contains two optional members.
MemberTypeDefault value
namestringOptionalAn optional string to specify the name of the output file.
typestringOptionalAn optional string to specify the output extension.
An example setting "outputPtv": [ { "name" : "outputFinal.ptv", "outputFile": { "name" : "out-vs", "type" : "jpg" } } ] ### Algorithms Algorithms specify which algorithms to be called from command-line In the tables below, mandatory members are shown in bold. If not set, optional members take a default value specified in the "Default value" column.
MemberTypeDefault value
namestringmaskType of algorithm. One of the types below.
#### "mask" algorithm: The "mask" algorithm optimizes for the blending mask and blending order.
MemberTypeDefault value
list_frameslist[0]The list of frames used for the optimization.
blending_orderbooltrueTo specify whether the blending order is consider or not. If not, the order of inputs will be used as the blending order.
seambooltrueTo specify whether the optimal seams are computed.
An example setting for the "mask" algorithm is: { "algorithms" : [ { "name": "mask", "config" : { "list_frames" : [0], "blending_order" : true, "seam" : true } } ] } #### "autocrop" algorithm: The "autocrop" algorithm detects the crop circle for the fish-eye images. The first frame of the inputs is used for detection.
MemberTypeDefault value
neighborThresholdint40A threshold used for the image binarization step. Indicates the similarity of neighboring pixels to be considered as a connected component.
differenceThresholdint500A threshold used for the binarization step. Indicates the similarity of a pixel to the seed pixel to be considered as a connected component.
fineTuneMarginSizeint100A pre-defined range around the coarse circle's samples to look for the fine scale samples, e.g. 0 indicates that the fine scale samples are the coarse samples, while 100 indicates that the fine scale samples will be searched in the range [-100..100] px around the coarse samples.
scaleRadiusdouble0.98A parameter used to scale the fine scale circle's radius.
circleImageboolfalseWhether to dump an image with the crop circle overlays on top of the original image.
An example setting for the "autocrop" algorithm is: { "algorithms" : [ { "name": "autocrop", "config" : { "neighborThreshold" : 40, "differenceThreshold" : 500, "fineTuneMarginSize" : 100, "circleImage" : false, "scaleRadius" : 0.98 } } ] } #### "calibration" algorithm: The "calibration" algorithm runs a calibration with presets for the rig.
MemberTypeDefault value
configlistOptionalThe list of calibration configuration parameters.
apply_presets_onlyboolOptionalIf true, applies the rig presets to the PanoDefinition without actually calibrating. Meant to obtain a template project definition out of inputs and presets.
improve_modeboolOptionalIf true, calibration will reused past control points found in the JSON tree.
auto_iterate_fovboolOptionalIf true, calibration will try to estimate the FOV of the lens.
single_focalboolOptionalIf true, the optimizer will estimate a single (fu,fv) pair of parameters for all lenses in the rig.
dump_calibration_snapshotsboolOptionalIf true, calibration will dump pictures with control points at various stages of the procedure.
deshuffle_modeboolOptionalIf true, calibration will extract key points and reorder the video inputs using the rig presets, before running the full calibration.
deshuffle_mode_onlyboolOptionalIf true, calibration will extract key points and reorder the video inputs using the rig presets, without running the full calibration.
deshuffle_mode_preserve_readers_orderboolOptionalIf true, deshuffling will preserve the order of input readers in the returned PanoDefinition and reorder the geometries. Otherwise, the deshuffling will keep the order of geometries and reorder the input readers.
use_synthetic_keypointsboolfalseIf true, the calibration algorithm will generate artificial keypoints from the PanoDefinition geometry, to cover the input areas where no real keypoint was extracted and preserve the PanoDefinition geometry.
synthetic_keypoints_grid_widthint5Grid width to generate artificial keypoints in each input picture.
synthetic_keypoints_grid_heightint5Grid height to generate artificial keypoints in each input picture.
cp_extractorlistOptionalThe list of parameters for the control point detector and matcher.
extractorstringOptionalThe name of the control point detector.
matcher_normstringOptionalThe name of the control point matcher.
octavesintOptionalThe number of octaves used for the detection.
sublevelsintegerOptionalThe number of sublevels used for the detection.
thresholddoubleOptionalDetection threshold.
nndr_ratiodoubleOptionalRatio between the first and second best score to claim a right match.
cp_filterlistOptionalParameters for the control point filter, which uses RANSAC.
angle_thresholddoubleOptionalAngle threshold to validate a control point rotated from one lens to the other.
min_ratio_inliersdoubleOptionalMinimum ratio of inliers, before RANSAC.
min_samples_for_fitintegerOptionalMinimum number of control points to run RANSAC.
proba_draw_outlier_free_samplesdoubleOptionalTarget probability to achieve for RANSAC.
decimating_grid_sizedoubleOptionalGrid size for decimation (w.r.t. picture size).
rig listOptionalThe list of rig preset parameters.
namestringMandatoryThe name of the rig presets.
rigcameraslistMandatoryThe list of camera presets.
yaw_meandoubleMandatoryMean value of the yaw rotation angle for the optimizer.
yaw_variancedoubleMandatoryVariance value of the yaw rotation angle for the optimizer.
pitch_meandoubleMandatoryMean value of the pitch rotation angle for the optimizer.
pitch_variancedoubleMandatoryVariance value of the pitch rotation angle for the optimizer.
roll_meandoubleMandatoryMean value of the roll rotation angle for the optimizer.
roll_variancedoubleMandatoryVariance value of the roll rotation angle for the optimizer.
camerastringMandatoryCamera preset name (from the list of cameras).
cameraslistMandatoryThe list of camera(s) presets.
namestringMandatoryThe name of the camera presets.
formatstringMandatoryThe format of the lens projection.
widthintegerMandatoryThe width of the camera pictures.
heightintegerMandatoryThe height of the camera pictures.
fu_meandoubleMandatoryMean value of the horizontal focal for the optimizer.
fu_variancedoubleMandatoryVariance value of the horizontal focal for the optimizer.
fv_meandoubleMandatoryMean value of the vertical focal for the optimizer.
fv_variancedoubleMandatoryVariance value of the vertical focal for the optimizer.
cu_meandoubleMandatoryMean value of the horizontal center of projection for the optimizer.
cu_variancedoubleMandatoryVariance value of the horizontal center of projection for the optimizer.
cv_meandoubleMandatoryMean value of the vertical center of projection for the optimizer.
cv_variancedoubleMandatoryVariance value of the vertical center of projection for the optimizer.
distorta_meandoubleMandatoryMean value of the "a" distortion parameter for the optimizer.
distorta_variancedoubleMandatoryVariance value of "a" distortion parameter for the optimizer.
distortb_meandoubleMandatoryMean value of the "b" distortion parameter for the optimizer.
distortb_variancedoubleMandatoryVariance value of "b" distortion parameter for the optimizer.
distortc_meandoubleMandatoryMean value of the "c" distortion parameter for the optimizer.
distortc_variancedoubleMandatoryVariance value of "c" distortion parameter for the optimizer.
list_frameslistOptionalThe list of frames used for the optimization.
### "calibration\_presets\_maker" algorithm: The "calibration\_presets\_maker" algorithm takes an input PanoDefinition, and creates calibration presets (i.e. "rig" and "cameras" JSON objects) from it, to be used by the "calibration" algorithm. The returned PanoDefinition also contains the calibration presets, and its control point list is cleared.
MemberTypeDefault value
outputstringnoneThe name of the JSON file receiving the results of the algorithm.
namestringMandatoryThe name of the rig presets.
focal_std_dev_value_percentagedouble5.0Standard Deviation of focal parameters, expressed in terms of percentage of the input values.
center_std_dev_width_percentagedouble10.0Standard Deviation of center parameters, expressed in terms of percentage of the width of the input.
distort_std_dev_value_percentagedouble50.0Standard Deviation of distortion parameters, expressed in terms of percentage of the input values.
yaw_std_devdouble5.0Standard Deviation of yaw angles, in degrees.
pitch_std_devdouble5.0Standard Deviation of pitch angles, in degrees.
roll_std_devdouble5.0Standard Deviation of roll angles, in degrees.
translation_x_std_devdouble0.0Standard Deviation of X translations, in meters.
translation_y_std_devdouble0.0Standard Deviation of Y translations, in meters.
translation_z_std_devdouble0.0Standard Deviation of Z translations, in meters.
An example setting for the "calibration\_presets\_maker" algorithm is: { "algorithms" : [ { "name": "calibration_presets_maker", "output": "output_presets.json", "config" : { "name" : "Orah Tetra 4i", "focal_std_dev_value_percentage" : 15.0, "center_std_dev_width_percentage" : 10.0, "distort_std_dev_value_percentage" : 50, "yaw_std_dev" : 1.0, "pitch_std_dev" : 1.0, "roll_std_dev" : 1.0, "translation_x_std_dev" : 0.07, "translation_y_std_dev" : 0.07, "translation_z_std_dev" : 0. } } ] } An example output of the "calibration\_presets\_maker" algorithm is: { "rig" : { "name" : "Orah Tetra", "rigcameras" : [ { "angle_unit" : "degrees", "yaw_mean" : 0, "pitch_mean" : 0, "roll_mean" : 0, "yaw_variance" : 16414, "pitch_variance" : 16414, "roll_variance" : 16414, "camera" : "camera_0" }, ... { "angle_unit" : "degrees", "yaw_mean" : 93.068, "pitch_mean" : -67.2862, "roll_mean" : -68.2285, "yaw_variance" : 16414, "pitch_variance" : 16414, "roll_variance" : 16414, "camera" : "camera_3" } ] }, "cameras" : [ { "name" : "camera_0", "format" : "circular_fisheye_opt", "width" : 1920, "height" : 1440, "fu_mean" : 1035.6, "fu_variance" : 24130.5, "fv_mean" : 1046.15, "fv_variance" : 24624.7, "cu_mean" : 885.214, "cu_variance" : 36864, "cv_mean" : 814.362, "cv_variance" : 36864, "distorta_mean" : 0, "distorta_variance" : 0, "distortb_mean" : -0.401758, "distortb_variance" : 0.0403524, "distortc_mean" : 0, "distortc_variance" : 0 }, ... { "name" : "camera_3", "format" : "circular_fisheye_opt", "width" : 1920, "height" : 1440, "fu_mean" : 1035.6, "fu_variance" : 24130.5, "fv_mean" : 1046.15, "fv_variance" : 24624.7, "cu_mean" : 974.67, "cu_variance" : 36864, "cv_mean" : 690.774, "cv_variance" : 36864, "distorta_mean" : 0, "distorta_variance" : 0, "distortb_mean" : -0.311981, "distortb_variance" : 0.024333, "distortc_mean" : 0, "distortc_variance" : 0 } ] } #### "epipolar" algorithm (experimental, used for debugging purposes): The "epipolar" algorithm takes a calibrated pano definition and a list of frames, of input points and/or matched input points to produce pictures showing: * a spherical grid of points (optional) * the location of points or point pairs * the epipolar curves corresponding to the points or point pairs * the estimated depth of point pairs and outputs on the "Info" logger level the estimated error-free stitching distance. The point pairs can be automatically detected and matched. It also computes the rig minimum stitching distance (i.e. sphere scale) where points seen by at least 2 cameras become visible by only one as a floating metric point value in the output JSON file, and saves a equirectangular gray-level 8 bits picture "output\_min\_stitching\_distance.png" (which size is given by the output panorama size of the input panorama definition) where one intensity value is 1 cm. This scaling can be controlled by the **image\_max\_output\_depth** parameter below.
MemberTypeDefault value
list_frameslist[0]The list of frames used for the optimization.
spherical_grid_radiusdouble0If non-zero, generates a spherical grid of points with this radius.
auto_point_matchingbooltrueIf true, automatically matching points, in addition to the ones provided.
decimating_grid_sizedouble0.04Grid size for decimation of matched points (w.r.t. picture size).
single_pointslistemptyList of single points.
input_indexintmandatoryElement of single_points list: camera input index of a single point.
xfloatmandatoryElement of single_points list: "x" coordinate of a single point in its input.
yfloatmandatoryElement of single_points list: "y" coordinate of a single point in its input.
matched_pointslistemptyList of matched pairs of points.
input_index0intmandatoryElement of matched_points list: camera input index of the first point in pair.
x0floatmandatoryElement of matched_points list: "x" coordinate of the first point in a pair, in its input.
y0floatmandatoryElement of matched_points list: "y" coordinate of the first point in a pair, in its input.
input_index1intmandatoryElement of matched_points list: camera input index of the second point in a pair.
x1floatmandatoryElement of matched_points list: "x" coordinate of the second point in a pair, in its input.
y1floatmandatoryElement of matched_points list: "y" coordinate of the second point in a pair, in its input.
image_max_output_depthfloat2.55Depth value mapped to 255 in the output depth image. Leaving it to 2.55 means that 255 will be mapped to 2.55 meters, i.e. one gray-level is 1 cm.
An example setting for the "epipolar" algorithm is: { "algorithms" : [ { "name": "epipolar", "config" : { "auto_point_selection" : false, "single_points" : [ { "input_index" : 0, "x" : 1000, "y" : 720 }, { "input_index" : 1, "x" : 600, "y" : 600 } ], "matched_points" : [ { "input_index0" : 3, "x0" : 144, "y0" : 445, "input_index1" : 2, "x1" : 76, "y1" : 931 } ], "list_frames" : [ 1, 200 ] } } ] } An example JSON output is: { "minStitchingDistance" : 0.073859989643096924 } #### "scoring" algorithm: The "scoring" algorithm takes a calibrated pano definition and produces a list of scores per frame: a score between 0 and 1, based on the normalized cross correlation of input pairs in overlap in the equirectangular projection, and the ratio of uncovered pixels (i.e. holes in the projection).
MemberTypeDefault value
outputstringnoneThe name of the JSON file receiving the results of the algorithm.
first_frameint0First frame number for the scoring.
last_frameint0Last frame number for the scoring.
An example setting for the "scoring" algorithm is: { "algorithms" : [ { "name": "scoring", "output": "output_scoring.ptv", "config" : { "first_frame" : 0, "last_frame" : 0 } } ] } An example output of the "scoring" algorithm is: [ { "frame_number" : 0, "score" : 0.609535, "uncovered_ratio" : 0.0705967 }, { "frame_number" : 1, "score" : 0.609598, "uncovered_ratio" : 0.0705967 }, { "frame_number" : 2, "score" : 0.609391, "uncovered_ratio" : 0.0705967 } ]