# Algorithms file format specification
Algorithms spec is the file format used by videostitch-cmd. It uses full [JSON](http://www.json.org/) syntax. Algorithms are simply defined by populating the root object with a few named variables.
## Objects
VideoStitch will interpret the following objects. An object is of course free to have other members in addition to these.
### Root
videostitch-cmd will interpret the following optional members of the root object:
Member | Type | Default value | |
config | list | Optional | The list of calibration configuration parameters. |
apply_presets_only | bool | Optional | If true, applies the rig presets to the PanoDefinition without actually calibrating. Meant to obtain a template project definition out of inputs and presets. |
improve_mode | bool | Optional | If true, calibration will reused past control points found in the JSON tree. |
auto_iterate_fov | bool | Optional | If true, calibration will try to estimate the FOV of the lens. |
single_focal | bool | Optional | If true, the optimizer will estimate a single (fu,fv) pair of parameters for all lenses in the rig. |
dump_calibration_snapshots | bool | Optional | If true, calibration will dump pictures with control points at various stages of the procedure. |
deshuffle_mode | bool | Optional | If true, calibration will extract key points and reorder the video inputs using the rig presets, before running the full calibration. |
deshuffle_mode_only | bool | Optional | If true, calibration will extract key points and reorder the video inputs using the rig presets, without running the full calibration. |
deshuffle_mode_preserve_readers_order | bool | Optional | If true, deshuffling will preserve the order of input readers in the returned PanoDefinition and reorder the geometries. Otherwise, the deshuffling will keep the order of geometries and reorder the input readers. |
use_synthetic_keypoints | bool | false | If true, the calibration algorithm will generate artificial keypoints from the PanoDefinition geometry, to cover the input areas where no real keypoint was extracted and preserve the PanoDefinition geometry. |
synthetic_keypoints_grid_width | int | 5 | Grid width to generate artificial keypoints in each input picture. |
synthetic_keypoints_grid_height | int | 5 | Grid height to generate artificial keypoints in each input picture. |
cp_extractor | list | Optional | The list of parameters for the control point detector and matcher. |
extractor | string | Optional | The name of the control point detector. |
matcher_norm | string | Optional | The name of the control point matcher. |
octaves | int | Optional | The number of octaves used for the detection. |
sublevels | integer | Optional | The number of sublevels used for the detection. |
threshold | double | Optional | Detection threshold. |
nndr_ratio | double | Optional | Ratio between the first and second best score to claim a right match. |
cp_filter | list | Optional | Parameters for the control point filter, which uses RANSAC. |
angle_threshold | double | Optional | Angle threshold to validate a control point rotated from one lens to the other. |
min_ratio_inliers | double | Optional | Minimum ratio of inliers, before RANSAC. |
min_samples_for_fit | integer | Optional | Minimum number of control points to run RANSAC. |
proba_draw_outlier_free_samples | double | Optional | Target probability to achieve for RANSAC. |
decimating_grid_size | double | Optional | Grid size for decimation (w.r.t. picture size). |
rig | list | Optional | The list of rig preset parameters. |
name | string | Mandatory | The name of the rig presets. |
rigcameras | list | Mandatory | The list of camera presets. |
yaw_mean | double | Mandatory | Mean value of the yaw rotation angle for the optimizer. |
yaw_variance | double | Mandatory | Variance value of the yaw rotation angle for the optimizer. |
pitch_mean | double | Mandatory | Mean value of the pitch rotation angle for the optimizer. |
pitch_variance | double | Mandatory | Variance value of the pitch rotation angle for the optimizer. |
roll_mean | double | Mandatory | Mean value of the roll rotation angle for the optimizer. |
roll_variance | double | Mandatory | Variance value of the roll rotation angle for the optimizer. |
camera | string | Mandatory | Camera preset name (from the list of cameras). |
cameras | list | Mandatory | The list of camera(s) presets. |
name | string | Mandatory | The name of the camera presets. |
format | string | Mandatory | The format of the lens projection. |
width | integer | Mandatory | The width of the camera pictures. |
height | integer | Mandatory | The height of the camera pictures. |
fu_mean | double | Mandatory | Mean value of the horizontal focal for the optimizer. |
fu_variance | double | Mandatory | Variance value of the horizontal focal for the optimizer. |
fv_mean | double | Mandatory | Mean value of the vertical focal for the optimizer. |
fv_variance | double | Mandatory | Variance value of the vertical focal for the optimizer. |
cu_mean | double | Mandatory | Mean value of the horizontal center of projection for the optimizer. |
cu_variance | double | Mandatory | Variance value of the horizontal center of projection for the optimizer. |
cv_mean | double | Mandatory | Mean value of the vertical center of projection for the optimizer. |
cv_variance | double | Mandatory | Variance value of the vertical center of projection for the optimizer. |
distorta_mean | double | Mandatory | Mean value of the "a" distortion parameter for the optimizer. |
distorta_variance | double | Mandatory | Variance value of "a" distortion parameter for the optimizer. |
distortb_mean | double | Mandatory | Mean value of the "b" distortion parameter for the optimizer. |
distortb_variance | double | Mandatory | Variance value of "b" distortion parameter for the optimizer. |
distortc_mean | double | Mandatory | Mean value of the "c" distortion parameter for the optimizer. |
distortc_variance | double | Mandatory | Variance value of "c" distortion parameter for the optimizer. |
list_frames | list | Optional | The list of frames used for the optimization. |
### "calibration\_presets\_maker" algorithm:
The "calibration\_presets\_maker" algorithm takes an input PanoDefinition, and creates calibration presets (i.e.
Member | Type | Default value | |
output | string | none | The name of the JSON file receiving the results of the algorithm. |
name | string | Mandatory | The name of the rig presets. |
focal_std_dev_value_percentage | double | 5.0 | Standard Deviation of focal parameters, expressed in terms of percentage of the input values. |
center_std_dev_width_percentage | double | 10.0 | Standard Deviation of center parameters, expressed in terms of percentage of the width of the input. |
distort_std_dev_value_percentage | double | 50.0 | Standard Deviation of distortion parameters, expressed in terms of percentage of the input values. |
yaw_std_dev | double | 5.0 | Standard Deviation of yaw angles, in degrees. |
pitch_std_dev | double | 5.0 | Standard Deviation of pitch angles, in degrees. |
roll_std_dev | double | 5.0 | Standard Deviation of roll angles, in degrees. |
translation_x_std_dev | double | 0.0 | Standard Deviation of X translations, in meters. |
translation_y_std_dev | double | 0.0 | Standard Deviation of Y translations, in meters. |
translation_z_std_dev | double | 0.0 | Standard Deviation of Z translations, in meters. |
An example setting for the "calibration\_presets\_maker" algorithm is:
{
"algorithms" : [
{
"name": "calibration_presets_maker",
"output": "output_presets.json",
"config" : {
"name" : "Orah Tetra 4i",
"focal_std_dev_value_percentage" : 15.0,
"center_std_dev_width_percentage" : 10.0,
"distort_std_dev_value_percentage" : 50,
"yaw_std_dev" : 1.0,
"pitch_std_dev" : 1.0,
"roll_std_dev" : 1.0,
"translation_x_std_dev" : 0.07,
"translation_y_std_dev" : 0.07,
"translation_z_std_dev" : 0.
}
}
]
}
An example output of the "calibration\_presets\_maker" algorithm is:
{
"rig" : {
"name" : "Orah Tetra",
"rigcameras" : [
{
"angle_unit" : "degrees",
"yaw_mean" : 0,
"pitch_mean" : 0,
"roll_mean" : 0,
"yaw_variance" : 16414,
"pitch_variance" : 16414,
"roll_variance" : 16414,
"camera" : "camera_0"
},
...
{
"angle_unit" : "degrees",
"yaw_mean" : 93.068,
"pitch_mean" : -67.2862,
"roll_mean" : -68.2285,
"yaw_variance" : 16414,
"pitch_variance" : 16414,
"roll_variance" : 16414,
"camera" : "camera_3"
}
]
},
"cameras" : [
{
"name" : "camera_0",
"format" : "circular_fisheye_opt",
"width" : 1920,
"height" : 1440,
"fu_mean" : 1035.6,
"fu_variance" : 24130.5,
"fv_mean" : 1046.15,
"fv_variance" : 24624.7,
"cu_mean" : 885.214,
"cu_variance" : 36864,
"cv_mean" : 814.362,
"cv_variance" : 36864,
"distorta_mean" : 0,
"distorta_variance" : 0,
"distortb_mean" : -0.401758,
"distortb_variance" : 0.0403524,
"distortc_mean" : 0,
"distortc_variance" : 0
},
...
{
"name" : "camera_3",
"format" : "circular_fisheye_opt",
"width" : 1920,
"height" : 1440,
"fu_mean" : 1035.6,
"fu_variance" : 24130.5,
"fv_mean" : 1046.15,
"fv_variance" : 24624.7,
"cu_mean" : 974.67,
"cu_variance" : 36864,
"cv_mean" : 690.774,
"cv_variance" : 36864,
"distorta_mean" : 0,
"distorta_variance" : 0,
"distortb_mean" : -0.311981,
"distortb_variance" : 0.024333,
"distortc_mean" : 0,
"distortc_variance" : 0
}
]
}
#### "epipolar" algorithm (experimental, used for debugging purposes):
The "epipolar" algorithm takes a calibrated pano definition and a list of frames, of input points and/or matched input points to produce pictures showing:
* a spherical grid of points (optional)
* the location of points or point pairs
* the epipolar curves corresponding to the points or point pairs
* the estimated depth of point pairs
and outputs on the "Info" logger level the estimated error-free stitching distance.
The point pairs can be automatically detected and matched.
It also computes the rig minimum stitching distance (i.e. sphere scale) where points seen by at least 2 cameras become visible by only one as a floating metric point value in the output JSON file, and saves a equirectangular gray-level 8 bits picture "output\_min\_stitching\_distance.png" (which size is given by the output panorama size of the input panorama definition) where one intensity value is 1 cm. This scaling can be controlled by the **image\_max\_output\_depth** parameter below.
Member | Type | Default value | |
list_frames | list | [0] | The list of frames used for the optimization. |
spherical_grid_radius | double | 0 | If non-zero, generates a spherical grid of points with this radius. |
auto_point_matching | bool | true | If true, automatically matching points, in addition to the ones provided. |
decimating_grid_size | double | 0.04 | Grid size for decimation of matched points (w.r.t. picture size). |
single_points | list | empty | List of single points. |
input_index | int | mandatory | Element of single_points list: camera input index of a single point. |
x | float | mandatory | Element of single_points list: "x" coordinate of a single point in its input. |
y | float | mandatory | Element of single_points list: "y" coordinate of a single point in its input. |
matched_points | list | empty | List of matched pairs of points. |
input_index0 | int | mandatory | Element of matched_points list: camera input index of the first point in pair. |
x0 | float | mandatory | Element of matched_points list: "x" coordinate of the first point in a pair, in its input. |
y0 | float | mandatory | Element of matched_points list: "y" coordinate of the first point in a pair, in its input. |
input_index1 | int | mandatory | Element of matched_points list: camera input index of the second point in a pair. |
x1 | float | mandatory | Element of matched_points list: "x" coordinate of the second point in a pair, in its input. |
y1 | float | mandatory | Element of matched_points list: "y" coordinate of the second point in a pair, in its input. |
image_max_output_depth | float | 2.55 | Depth value mapped to 255 in the output depth image. Leaving it to 2.55 means that 255 will be mapped to 2.55 meters, i.e. one gray-level is 1 cm. |
An example setting for the "epipolar" algorithm is:
{
"algorithms" : [
{
"name": "epipolar",
"config" : {
"auto_point_selection" : false,
"single_points" : [
{
"input_index" : 0,
"x" : 1000,
"y" : 720
},
{
"input_index" : 1,
"x" : 600,
"y" : 600
}
],
"matched_points" : [
{
"input_index0" : 3,
"x0" : 144,
"y0" : 445,
"input_index1" : 2,
"x1" : 76,
"y1" : 931
}
],
"list_frames" : [
1,
200
]
}
}
]
}
An example JSON output is:
{
"minStitchingDistance" : 0.073859989643096924
}
#### "scoring" algorithm:
The "scoring" algorithm takes a calibrated pano definition and produces a list of scores per frame: a score between 0 and 1, based on the normalized cross correlation of input pairs in overlap in the equirectangular projection, and the ratio of uncovered pixels (i.e. holes in the projection).