Commit 74e8c8e0 authored by leonmuller's avatar leonmuller

Work in process to pull out raster data from images in inkscape

parent 498d8c10
#!/usr/bin/python #!/usr/bin/env python
#
# imagetogcode """
# Copyright 2015 Turnkey Tyranny TurnkeyLaserExporter
#
# Changelog : -----------------------------------
# 18 March 2015 : Added image rastering optimisations to remove printing of whitespace. This was a pain in the ass to get right! Maintained by Turnkey Tyranny (https://github.com/TurnkeyTyranny/laser-gcode-exporter-inkscape-plugin)
# Designed to run on Ramps 1.4 + Marlin firmware on a K40 CO2 Laser Cutter.
# Based on think|haus gcode inkscape extension
# Based off the work by Brian Adams Based on a script by Nick Drobchenko from the CNC club
#
# This program is free software: you can redistribute it and/or modify ***
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or Copyright (C) 2009 Nick Drobchenko, nick@cnc-club.ru
# (at your option) any later version. based on gcode.py (C) 2007 hugomatic...
# based on addnodes.py (C) 2005,2007 Aaron Spike, aaron@ekips.org
# This program is distributed in the hope that it will be useful, based on dots.py (C) 2005 Aaron Spike, aaron@ekips.org
# but WITHOUT ANY WARRANTY; without even the implied warranty of based on interp.py (C) 2005 Aaron Spike, aaron@ekips.org
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details. This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# You should have received a copy of the GNU General Public License the Free Software Foundation; either version 2 of the License, or
# along with this program. If not, see <http://www.gnu.org/licenses/> (at your option) any later version.
"""Convert an image file to gcode a Marlin powered laser cutter can understand""" This program is distributed in the hope that it will be useful,
import sys, getopt but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
"""
Changelog 2015-02-01:
* Beginning of the project. Based on a fork from ShinyLaser(https://github.com/ajfoul/thlaser-inkscape-plugin)
Changelog 2015-02-16:
Added an option to export as Marlin or Smoothie Power levels
Changelog 2015-03-07:
Added capability to pick out power, ppm, feedrate etc from the layer names
Added code to support Pulse Per Minute burning or continuous burning. Will default to continuous.
M649 S100 L300 P10 - Set Laser settings to 100 percent power, pulses are each 300ms, and 10 pulses per mm.
G0 : Move to a new location with the laser off.
G1 : Move to a new location with the laser on.
G2 : Move in a Clockwise Arc
G3 : Move in a Counter Clockwise Arc
Name your layer like 10 [feed=600,ppm=40] for 10% power, 600mm per minute cut and 40 pulse per millimetre at 60ms duration
"""
###
### Gcode tools
###
import inkex, simplestyle, simplepath
import cubicsuperpath, simpletransform, bezmisc
import os
import math
import bezmisc
import re
import copy
import sys
import time
import Image import base64
from PIL import Image
import ImageOps import ImageOps
import base64 import getopt
from io import BytesIO
#_ = inkex._
def imagetogcode(image, f):
img = ImageOps.invert(image) ################################################################################
width, height = img.size ###
### Constants
###
################################################################################
f.write("; Image pixel size: "+str(width)+"x"+str(height)+"\n"); VERSION = "1.0.1"
f.write("M649 S11 B2 D0 R0.0846 F6000\nG28\nG0 X70 Y45 F6000\n");
pixels = list(img.getdata()) STRAIGHT_TOLERANCE = 0.0001
pixels = [pixels[i * width:(i + 1) * width] for i in xrange(height)] STRAIGHT_DISTANCE_TOLERANCE = 0.0001
forward = True LASER_ON = "M3 ;turn the laser on" # LASER ON MCODE
LASER_OFF = "M5 ;turn the laser off\n" # LASER OFF MCODE
# def get_chunks(arr, chunk_size = 51):
def get_chunks(arr, chunk_size = 51):
chunks = [ arr[start:start+chunk_size] for start in range(0, len(arr), chunk_size)]
return chunks
# return the last pixel that holds data.
def last_in_list(arr):
end = 0
for i in range(len(arr)):
if (arr[i] > 0):
end = i
return end
# return the last pixel that holds data.
def first_in_list(arr):
end = 0
for i in range(len(arr)):
if (arr[i] == 0):
end = i
if (arr[i] > 0):
break
return end HEADER_TEXT = ""
FOOTER_TEXT = ""
first = True BIARC_STYLE = {
row = pixels[::-1] 'biarc0': simplestyle.formatStyle({ 'stroke': '#88f', 'fill': 'none', 'stroke-width':'1' }),
'biarc1': simplestyle.formatStyle({ 'stroke': '#8f8', 'fill': 'none', 'stroke-width':'1' }),
'line': simplestyle.formatStyle({ 'stroke': '#f88', 'fill': 'none', 'stroke-width':'1' }),
'area': simplestyle.formatStyle({ 'stroke': '#777', 'fill': 'none', 'stroke-width':'0.1' }),
}
# Inkscape group tag
SVG_GROUP_TAG = inkex.addNS("g", "svg")
SVG_PATH_TAG = inkex.addNS('path','svg')
SVG_IMAGE_TAG = inkex.addNS('image')
SVG_LABEL_TAG = inkex.addNS("label", "inkscape")
previousRight = 99999999999
previousLeft = 0
firstRow = True
for index, rowData in enumerate(row): GCODE_EXTENSION = ".g" # changed to be Marlin friendly (ajf)
print "Line "+str(index+1)+" ="
#print rowData
splitRight = 0 options = {}
splitLeft = 0
if(index+1 < len(row)): ################################################################################
# Determine where to split the lines. ###
################################################## ### Common functions
###
################################################################################
#If the left most pixel of the next row is earlier than the current row, then extend.
if(first_in_list(row[index +1]) > first_in_list(rowData)):
splitLeft = first_in_list(rowData)
else:
splitLeft = first_in_list(row[index +1])
#If the end pixel of the next line is later than the current line, extend. ###
if(last_in_list(row[index +1]) > last_in_list(rowData)): ### Just simple output function for better debugging
splitRight = last_in_list(row[index +1]) ###
else:
splitRight = last_in_list(rowData)
print "Prior Left cut = "+str(splitLeft)+" Right Cut == "+str(splitRight) class Logger(object):
first = True
enabled = True
def __init__(self):
home = os.getenv("HOME") or os.getenv("USERPROFILE")
self.logpath = os.path.join(home, "thlaser.log")
def write(self, s):
if (not self.enabled):
return
if self.first and os.path.isfile(self.logpath):
os.remove(self.logpath)
self.first = False
f = open(self.logpath, "a")
f.write(str(s)+"\n")
f.close()
# The global logger object
logger = Logger()
###
### Point (x,y) operations
###
## Pretty much what it sounds like: defines some arithmetic functions that can be applied to points.
class P:
def __init__(self, x, y=None):
if not y==None:
self.x, self.y = float(x), float(y)
else:
self.x, self.y = float(x[0]), float(x[1])
def __add__(self, other): return P(self.x + other.x, self.y + other.y)
def __sub__(self, other): return P(self.x - other.x, self.y - other.y)
def __neg__(self): return P(-self.x, -self.y)
def __mul__(self, other):
if isinstance(other, P):
return self.x * other.x + self.y * other.y
return P(self.x * other, self.y * other)
__rmul__ = __mul__
def __div__(self, other): return P(self.x / other, self.y / other)
def mag(self): return math.hypot(self.x, self.y)
def unit(self):
h = self.mag()
if h: return self / h
else: return P(0,0)
def dot(self, other): return self.x * other.x + self.y * other.y
def rot(self, theta):
c = math.cos(theta)
s = math.sin(theta)
return P(self.x * c - self.y * s, self.x * s + self.y * c)
def angle(self): return math.atan2(self.y, self.x)
def __repr__(self): return '%f,%f' % (self.x, self.y)
def pr(self): return "%.2f,%.2f" % (self.x, self.y)
def to_list(self): return [self.x, self.y]
###
### Functions to operate with CubicSuperPath
###
def csp_at_t(sp1,sp2,t):
bez = (sp1[1][:],sp1[2][:],sp2[0][:],sp2[1][:])
return bezmisc.bezierpointatt(bez,t)
def cspbezsplit(sp1, sp2, t = 0.5):
s1,s2 = bezmisc.beziersplitatt((sp1[1],sp1[2],sp2[0],sp2[1]),t)
return [ [sp1[0][:], sp1[1][:], list(s1[1])], [list(s1[2]), list(s1[3]), list(s2[1])], [list(s2[2]), sp2[1][:], sp2[2][:]] ]
def cspbezsplitatlength(sp1, sp2, l = 0.5, tolerance = 0.01):
bez = (sp1[1][:],sp1[2][:],sp2[0][:],sp2[1][:])
t = bezmisc.beziertatlength(bez, l, tolerance)
return cspbezsplit(sp1, sp2, t)
def cspseglength(sp1,sp2, tolerance = 0.001):
bez = (sp1[1][:],sp1[2][:],sp2[0][:],sp2[1][:])
return bezmisc.bezierlength(bez, tolerance)
def csplength(csp):
total = 0
lengths = []
for sp in csp:
for i in xrange(1,len(sp)):
l = cspseglength(sp[i-1],sp[i])
lengths.append(l)
total += l
return lengths, total
###
### Distance calculattion from point to arc
###
def between(c,x,y):
return x-STRAIGHT_TOLERANCE<=c<=y+STRAIGHT_TOLERANCE or y-STRAIGHT_TOLERANCE<=c<=x+STRAIGHT_TOLERANCE
def distance_from_point_to_arc(p, arc):
P0,P2,c,a = arc
dist = None
p = P(p)
r = (P0-c).mag()
if r>0 :
i = c + (p-c).unit()*r
alpha = ((i-c).angle() - (P0-c).angle())
if a*alpha<0:
if alpha>0: alpha = alpha-2*math.pi
else: alpha = 2*math.pi+alpha
if between(alpha,0,a) or min(abs(alpha),abs(alpha-a))<STRAIGHT_TOLERANCE :
return (p-i).mag(), [i.x, i.y]
else :
d1, d2 = (p-P0).mag(), (p-P2).mag()
if d1<d2 :
return (d1, [P0.x,P0.y])
else :
return (d2, [P2.x,P2.y])
def get_distance_from_csp_to_arc(sp1,sp2, arc1, arc2, tolerance = 0.001 ): # arc = [start,end,center,alpha]
n, i = 10, 0
d, d1, dl = (0,(0,0)), (0,(0,0)), 0
while i<1 or (abs(d1[0]-dl[0])>tolerance and i<2):
i += 1
dl = d1*1
for j in range(n+1):
t = float(j)/n
p = csp_at_t(sp1,sp2,t)
d = min(distance_from_point_to_arc(p,arc1), distance_from_point_to_arc(p,arc2))
d1 = max(d1,d)
n=n*2
return d1[0]
################################################################################
###
### Biarc function
###
### Calculates biarc approximation of cubic super path segment
### splits segment if needed or approximates it with straight line
###
################################################################################
def biarc(sp1, sp2, z1, z2, depth=0,):
def biarc_split(sp1,sp2, z1, z2, depth):
if depth<options.biarc_max_split_depth:
sp1,sp2,sp3 = cspbezsplit(sp1,sp2)
l1, l2 = cspseglength(sp1,sp2), cspseglength(sp2,sp3)
if l1+l2 == 0 : zm = z1
else : zm = z1+(z2-z1)*l1/(l1+l2)
return biarc(sp1,sp2,depth+1,z1,zm)+biarc(sp2,sp3,depth+1,z1,zm)
else: return [ [sp1[1],'line', 0, 0, sp2[1], [z1,z2]] ]
P0, P4 = P(sp1[1]), P(sp2[1])
TS, TE, v = (P(sp1[2])-P0), -(P(sp2[0])-P4), P0 - P4
tsa, tea, va = TS.angle(), TE.angle(), v.angle()
if TE.mag()<STRAIGHT_DISTANCE_TOLERANCE and TS.mag()<STRAIGHT_DISTANCE_TOLERANCE:
# Both tangents are zerro - line straight
return [ [sp1[1],'line', 0, 0, sp2[1], [z1,z2]] ]
if TE.mag() < STRAIGHT_DISTANCE_TOLERANCE:
TE = -(TS+v).unit()
r = TS.mag()/v.mag()*2
elif TS.mag() < STRAIGHT_DISTANCE_TOLERANCE:
TS = -(TE+v).unit()
r = 1/( TE.mag()/v.mag()*2 )
else:
r=TS.mag()/TE.mag()
TS, TE = TS.unit(), TE.unit()
tang_are_parallel = ((tsa-tea)%math.pi<STRAIGHT_TOLERANCE or math.pi-(tsa-tea)%math.pi<STRAIGHT_TOLERANCE )
if ( tang_are_parallel and
((v.mag()<STRAIGHT_DISTANCE_TOLERANCE or TE.mag()<STRAIGHT_DISTANCE_TOLERANCE or TS.mag()<STRAIGHT_DISTANCE_TOLERANCE) or
1-abs(TS*v/(TS.mag()*v.mag()))<STRAIGHT_TOLERANCE) ):
# Both tangents are parallel and start and end are the same - line straight
# or one of tangents still smaller then tollerance
# Both tangents and v are parallel - line straight
return [ [sp1[1],'line', 0, 0, sp2[1], [z1,z2]] ]
c,b,a = v*v, 2*v*(r*TS+TE), 2*r*(TS*TE-1)
if v.mag()==0:
return biarc_split(sp1, sp2, z1, z2, depth)
asmall, bsmall, csmall = abs(a)<10**-10,abs(b)<10**-10,abs(c)<10**-10
if asmall and b!=0: beta = -c/b
elif csmall and a!=0: beta = -b/a
elif not asmall:
discr = b*b-4*a*c
if discr < 0: raise ValueError, (a,b,c,discr)
disq = discr**.5
beta1 = (-b - disq) / 2 / a
beta2 = (-b + disq) / 2 / a
if beta1*beta2 > 0 : raise ValueError, (a,b,c,disq,beta1,beta2)
beta = max(beta1, beta2)
elif asmall and bsmall:
return biarc_split(sp1, sp2, z1, z2, depth)
alpha = beta * r
ab = alpha + beta
P1 = P0 + alpha * TS
P3 = P4 - beta * TE
P2 = (beta / ab) * P1 + (alpha / ab) * P3
def calculate_arc_params(P0,P1,P2):
D = (P0+P2)/2
if (D-P1).mag()==0: return None, None
R = D - ( (D-P0).mag()**2/(D-P1).mag() )*(P1-D).unit()
p0a, p1a, p2a = (P0-R).angle()%(2*math.pi), (P1-R).angle()%(2*math.pi), (P2-R).angle()%(2*math.pi)
alpha = (p2a - p0a) % (2*math.pi)
if (p0a<p2a and (p1a<p0a or p2a<p1a)) or (p2a<p1a<p0a) :
alpha = -2*math.pi+alpha
if abs(R.x)>1000000 or abs(R.y)>1000000 or (R-P0).mag<options.min_arc_radius :
return None, None
else :
return R, alpha
R1,a1 = calculate_arc_params(P0,P1,P2)
R2,a2 = calculate_arc_params(P2,P3,P4)
if R1==None or R2==None or (R1-P0).mag()<STRAIGHT_TOLERANCE or (R2-P2).mag()<STRAIGHT_TOLERANCE : return [ [sp1[1],'line', 0, 0, sp2[1], [z1,z2]] ]
d = get_distance_from_csp_to_arc(sp1,sp2, [P0,P2,R1,a1],[P2,P4,R2,a2])
if d > options.biarc_tolerance and depth<options.biarc_max_split_depth : return biarc_split(sp1, sp2, z1, z2, depth)
else: else:
splitLeft = first_in_list(rowData) if R2.mag()*a2 == 0 : zm = z2
splitRight = last_in_list(rowData) else : zm = z1 + (z2-z1)*(R1.mag()*a1)/(R2.mag()*a2+R1.mag()*a1)
return [ [ sp1[1], 'arc', [R1.x,R1.y], a1, [P2.x,P2.y], [z1,zm] ], [ [P2.x,P2.y], 'arc', [R2.x,R2.y], a2, [P4.x,P4.y], [zm,z2] ] ]
################################################################################
###
### Inkscape helper functions
###
################################################################################
# Returns true if the given node is a layer
def is_layer(node):
return (node.tag == SVG_GROUP_TAG and
node.get(inkex.addNS("groupmode", "inkscape")) == "layer")
def get_layers(document):
layers = []
root = document.getroot()
for node in root.iterchildren():
if (is_layer(node)):
# Found an inkscape layer
layers.append(node)
return layers
def parse_layer_name(txt):
params = {}
try:
n = txt.index("[")
except ValueError:
layerName = txt.strip()
else:
layerName = txt[0:n].strip()
args = txt[n+1:].strip()
if (args.endswith("]")):
args = args[0:-1]
for arg in args.split(","):
try:
(field, value) = arg.split("=")
except:
raise ValueError("Invalid argument in layer '%s'" % layerName)
if (field == "feed" or field == "ppm"):
try:
value = float(value)
except:
raise ValueError("Invalid layer name '%s'" % value)
params[field] = value
logger.write("%s == %s" % (field, value))
#Positive direction return (layerName, params)
if forward:
print "Forward!"
#Split the right side. ################################################################################
########################################### ###
### Gcode tools class
###
################################################################################
#Don't split more than the start of the last row as we print in reverse for alternate lines
splitLeft = previousLeft
previousRight = splitRight
#Negative direction
else:
print "Backward!"
#Split the left side.
###########################################
#Don't split more than the end of the last row as we print in reverse for alternate lines class Gcode_tools(inkex.Effect):
splitRight = previousRight
previousLeft = splitLeft
def __init__(self):
inkex.Effect.__init__(self)
outdir = os.getenv("HOME") or os.getenv("USERPROFILE")
if (outdir):
outdir = os.path.join(outdir, "Desktop")
else:
outdir = os.getcwd()
self.OptionParser.add_option("-d", "--directory", action="store", type="string", dest="directory", default=outdir, help="Directory for gcode file")
self.OptionParser.add_option("-f", "--filename", action="store", type="string", dest="file", default="-1.0", help="File name")
self.OptionParser.add_option("-u", "--Xscale", action="store", type="float", dest="Xscale", default="1.0", help="Scale factor X")
self.OptionParser.add_option("-v", "--Yscale", action="store", type="float", dest="Yscale", default="1.0", help="Scale factor Y")
self.OptionParser.add_option("-x", "--Xoffset", action="store", type="float", dest="Xoffset", default="0.0", help="Offset along X")
self.OptionParser.add_option("-y", "--Yoffset", action="store", type="float", dest="Yoffset", default="0.0", help="Offset along Y")
# added move (laser off) feedrate and laser intensity; made all int rather than float - (ajf)
self.OptionParser.add_option("-m", "--Mfeed", action="store", type="int", dest="Mfeed", default="2000", help="Default Move Feed rate in unit/min")
self.OptionParser.add_option("-p", "--feed", action="store", type="int", dest="feed", default="300", help="Default Cut Feed rate in unit/min")
self.OptionParser.add_option("-l", "--laser", action="store", type="int", dest="laser", default="10", help="Default Laser intensity (0-100 %)")
self.OptionParser.add_option("-b", "--homebefore", action="store", type="inkbool", dest="homebefore", default=True, help="Home all beofre starting (G28)")
self.OptionParser.add_option("-a", "--homeafter", action="store", type="inkbool", dest="homeafter", default=False, help="Home X Y at end of job")
self.OptionParser.add_option("", "--biarc-tolerance", action="store", type="float", dest="biarc_tolerance", default="1", help="Tolerance used when calculating biarc interpolation.")
self.OptionParser.add_option("", "--biarc-max-split-depth", action="store", type="int", dest="biarc_max_split_depth", default="4", help="Defines maximum depth of splitting while approximating using biarcs.")
self.OptionParser.add_option("", "--unit", action="store", type="string", dest="unit", default="G21 (All units in mm)\n", help="Units")
self.OptionParser.add_option("", "--function", action="store", type="string", dest="function", default="Curve", help="What to do: Curve|Area|Area inkscape")
self.OptionParser.add_option("", "--tab", action="store", type="string", dest="tab", default="", help="Means nothing right now. Notebooks Tab.")
self.OptionParser.add_option("", "--generate_not_parametric_code",action="store", type="inkbool", dest="generate_not_parametric_code", default=False,help="Generated code will be not parametric.")
self.OptionParser.add_option("", "--double_sided_cutting",action="store", type="inkbool", dest="double_sided_cutting", default=False,help="Generate code for double-sided cutting.")
self.OptionParser.add_option("", "--draw-curves", action="store", type="inkbool", dest="drawCurves", default=False,help="Draws curves to show what geometry was processed")
self.OptionParser.add_option("", "--logging", action="store", type="inkbool", dest="logging", default=False, help="Enable output logging from the plugin")
self.OptionParser.add_option("", "--loft-distances", action="store", type="string", dest="loft_distances", default="10", help="Distances between paths.")
self.OptionParser.add_option("", "--loft-direction", action="store", type="string", dest="loft_direction", default="crosswise", help="Direction of loft's interpolation.")
self.OptionParser.add_option("", "--loft-interpolation-degree",action="store", type="float", dest="loft_interpolation_degree", default="2", help="Which interpolation use to loft the paths smooth interpolation or staright.")
self.OptionParser.add_option("", "--min-arc-radius", action="store", type="float", dest="min_arc_radius", default="0.0005", help="All arc having radius less than minimum will be considered as straight line")
self.OptionParser.add_option("", "--mainboard", action="store", type="string", dest="mainboard", default="ramps", help="Mainboard")
def parse_curve(self, path):
# if self.options.Xscale!=self.options.Yscale:
# xs,ys = self.options.Xscale,self.options.Yscale
# self.options.Xscale,self.options.Yscale = 1.0, 1.0
# else :
xs,ys = 1.0,1.0
# ### Sort to reduce Rapid distance
# np = [p[0]]
# del p[0]
# while len(p)>0:
# end = np[-1][-1][1]
# dist = None
# for i in range(len(p)):
# start = p[i][0][1]
#
# dist = max( ( -( ( end[0]-start[0])**2+(end[1]-start[1])**2 ) ,i) , dist )
# np += [p[dist[1]][:]]
# del p[dist[1]]
# p = np[:]
lst = []
for subpath in path:
lst.append(
[[subpath[0][1][0]*xs, subpath[0][1][1]*ys], 'move', 0, 0]
)
for i in range(1,len(subpath)):
sp1 = [ [subpath[i-1][j][0]*xs, subpath[i-1][j][1]*ys] for j in range(3)]
sp2 = [ [subpath[i ][j][0]*xs, subpath[i ][j][1]*ys] for j in range(3)]
lst += biarc(sp1,sp2,0,0)
lst.append(
[[subpath[-1][1][0]*xs, subpath[-1][1][1]*ys], 'end', 0, 0]
)
return lst
def draw_curve(self, curve, group=None, style=BIARC_STYLE):
if group==None:
group = inkex.etree.SubElement( self.biarcGroup, SVG_GROUP_TAG )
s, arcn = '', 0
for si in curve:
if s!='':
if s[1] == 'line':
inkex.etree.SubElement( group, SVG_PATH_TAG,
{
'style': style['line'],
'd':'M %s,%s L %s,%s' % (s[0][0], s[0][1], si[0][0], si[0][1]),
'comment': str(s)
}
)
elif s[1] == 'arc':
arcn += 1
sp = s[0]
c = s[2]
a = ( (P(si[0])-P(c)).angle() - (P(s[0])-P(c)).angle() )%(2*math.pi) #s[3]
if s[3]*a<0:
if a>0: a = a-2*math.pi
else: a = 2*math.pi+a
r = math.sqrt( (sp[0]-c[0])**2 + (sp[1]-c[1])**2 )
a_st = ( math.atan2(sp[0]-c[0],- (sp[1]-c[1])) - math.pi/2 ) % (math.pi*2)
if a>0:
a_end = a_st+a
else:
a_end = a_st*1
a_st = a_st+a
inkex.etree.SubElement( group, inkex.addNS('path','svg'),
{
'style': style['biarc%s' % (arcn%2)],
inkex.addNS('cx','sodipodi'): str(c[0]),
inkex.addNS('cy','sodipodi'): str(c[1]),
inkex.addNS('rx','sodipodi'): str(r),
inkex.addNS('ry','sodipodi'): str(r),
inkex.addNS('start','sodipodi'): str(a_st),
inkex.addNS('end','sodipodi'): str(a_end),
inkex.addNS('open','sodipodi'): 'true',
inkex.addNS('type','sodipodi'): 'arc',
'comment': str(s)
})
s = si
def check_dir(self):
if (os.path.isdir(self.options.directory)):
if (os.path.isfile(self.options.directory+'/header')):
f = open(self.options.directory+'/header', 'r')
self.header = f.read()
f.close()
else:
self.header = HEADER_TEXT
if (os.path.isfile(self.options.directory+'/footer')):
f = open(self.options.directory+'/footer','r')
self.footer = f.read()
f.close()
else:
self.footer = FOOTER_TEXT
else:
inkex.errormsg(("Directory does not exist!"))
return
# Turns a list of arguments into gcode-style parameters (eg (1, 2, 3) -> "X1 Y2 Z3"),
# taking scaling, offsets and the "parametric curve" setting into account
def make_args(self, c):
c = [c[i] if i<len(c) else None for i in range(6)]
if c[5] == 0:
c[5] = None
# next few lines generate the stuff at the front of the file - scaling, offsets, etc (adina)
if self.options.generate_not_parametric_code:
s = ["X", "Y", "Z", "I", "J", "K"]
s1 = ["","","","","",""]
# my replacement that hopefully makes sense (adina, june 22 2010)
m = [self.options.Xscale, -self.options.Yscale, 1,
self.options.Xscale, -self.options.Yscale, 1]
a = [self.options.Xoffset, self.options.Yoffset, 0, 0, 0, 0]
else:
s = ["X", "Y", "Z", "I", "J", "K"]
s1 = ["", "", "", "", "", ""]
m = [1, -1, 1, 1, -1, 1]
a = [0, 0, 0, 0, 0, 0]
a[1] += self.pageHeight
#I think this is the end of generating the header stuff (adina, june 22 2010)
args = []
for i in range(6):
if c[i]!=None:
value = self.unitScale*(c[i]*m[i]+a[i])
args.append(s[i] + ("%f" % value) + s1[i])
return " ".join(args)
def generate_gcode(self, curve, depth, laserPower, altfeed=None, altppm=None):
gcode = ''
#Setup our feed rate, either from the layer name or from the default value.
if (altfeed):
# Use the "alternative" feed rate specified
cutFeed = "F%i" % altfeed
else:
if self.options.generate_not_parametric_code:
cutFeed = "F%i" % self.options.feed
else:
cutFeed = "F%i" % self.options.feed
#Exception to the rule : Don't split the left of the first row. #Setup our pulse per millimetre option, if applicable
if(firstRow): #B: laser firing mode (0 = continuous, 1 = pulsed, 2 = raster)
splitLeft = (previousLeft) if (altppm):
# Use the "alternative" ppm - L60000 is 60ms
ppmValue = "L60000 P%.2f B1 D0" % altppm
else:
#Set the laser firing mode to continuous.
ppmValue = "B0 D0"
cwArc = "G02"
ccwArc = "G03"
# The geometry is reflected, so invert the orientation of the arcs to match
if (self.flipArcs):
(cwArc, ccwArc) = (ccwArc, cwArc)
# The 'laser on' and 'laser off' m-codes get appended to the GCODE generation
lg = 'G00'
for i in range(1,len(curve)):
s, si = curve[i-1], curve[i]
#G00 : Move with the laser off to a new point
if s[1] == 'move':
#Turn off the laser if it was on previously.
if lg != "G00":
gcode += LASER_OFF + "\n"
gcode += "G00" + " " + self.make_args(si[0]) + " F%i" % self.options.Mfeed + "\n"
lg = 'G00'
elif s[1] == 'end':
lg = 'G00'
#G01 : Move with the laser turned on to a new point
elif s[1] == 'line':
#No longer needed because G01, G02 and G03 will be forced in marlin to automatically fire the laser.
#If the laser was turned off, turn it back on.
#if lg == "G00":
# gcode += LASER_ON + "\n"
gcode += "G01 " + "S%.2f " % laserPower + self.make_args(si[0]) + " %s " % cutFeed + "%s" % ppmValue + "\n"
lg = 'G01'
#G02 and G03 : Move in an arc with the laser turned on.
elif s[1] == 'arc':
#No longer needed because G01, G02 and G03 will be forced in marlin to automatically fire the laser.
#If the laser was turned off, turn it back on.
#if lg == "G00":
# gcode += LASER_ON + "\n"
dx = s[2][0]-s[0][0]
dy = s[2][1]-s[0][1]
if abs((dx**2 + dy**2)*self.options.Xscale) > self.options.min_arc_radius:
r1 = P(s[0])-P(s[2])
r2 = P(si[0])-P(s[2])
if abs(r1.mag() - r2.mag()) < 0.001:
if (s[3] > 0):
gcode += cwArc
else:
gcode += ccwArc
gcode += " " + "S%.2f " % laserPower + self.make_args(si[0] + [None, dx, dy, None]) + " %s " % cutFeed + "%s" % ppmValue + "\n"
firstRow = False else:
print "After : Left cut = "+str(splitLeft)+" Right Cut == "+str(splitRight) r = (r1.mag()+r2.mag())/2
if (s[3] > 0):
gcode += cwArc
else:
gcode += ccwArc
gcode += " " + "S%.2f " % laserPower + self.make_args(si[0]) + " R%f" % (r*self.options.Xscale) + " %s " % cutFeed + "%s" % ppmValue + "\n"
row2 = rowData[(splitLeft+1):(splitRight+1)] lg = cwArc
print row2 #The arc is less than the minimum arc radius, draw it as a straight line.
else:
gcode += "G01 " + "S%.2f " % laserPower + self.make_args(si[0]) + " %s " % cutFeed + "%s" % ppmValue + "\n"
lg = 'G01'
#The end of the layer.
if si[1] == 'end':
gcode += LASER_OFF
return gcode
def tool_change(self):
# Include a tool change operation
gcode = TOOL_CHANGE % (self.currentTool+1)
# Select the next available tool
self.currentTool = (self.currentTool+1) % 32
return gcode
################################################################################
###
### Curve to Gcode
###
################################################################################
def effect_curve(self, selected):
selected = list(selected)
# Set group
if self.options.drawCurves and len(selected)>0:
self.biarcGroup = inkex.etree.SubElement( selected[0].getparent(), SVG_GROUP_TAG )
options.Group = self.biarcGroup
# Recursively compiles a list of paths that are decendant from the given node
self.skipped = 0
def compile_paths(node, trans):
# Apply the object transform, along with the parent transformation
mat = node.get('transform', None)
if mat:
mat = simpletransform.parseTransform(mat)
trans = simpletransform.composeTransform(trans, mat)
if node.tag == SVG_PATH_TAG:
# This is a path object
if (not node.get("d")): return []
csp = cubicsuperpath.parsePath(node.get("d"))
if (trans):
simpletransform.applyTransformToPath(trans, csp)
return csp
elif node.tag == SVG_GROUP_TAG:
# This node is a group of other nodes
path = []
for child in node.iterchildren():
path += compile_paths(child, trans)
return path
else:
#inkex.errormsg( )
#visit https://www.python.org/downloads/ and download python 2.7.9
#Install it
#In the folder : C:\Program Files\Inkscape you will need to rename the folder "Python" to "Python-old" so it uses the new system install instead.
#pip install wheel
#From http://www.lfd.uci.edu/~gohlke/pythonlibs/#pil , download "Pillow-2.7.0-cp27-none-win32.whl"
#pip install Pillow-2.7.0-cp27-none-win32.whl
#You're good to go!
#Export the image data.
width = int(float(node.get("width")))
height = int(float(node.get("height")))
data = str((node.get(inkex.addNS('href','xlink')) )).replace("data:image/jpeg;base64,","")
im = Image.open(BytesIO(base64.b64decode(data))).convert('L')
img = ImageOps.invert(im)
pixels = list(im.getdata())
pixels = [pixels[i * width:(i + 1) * width] for i in xrange(height)]
#if(index == 5): inkex.errormsg( str(pixels))
# raise Exception('End')
if not forward: inkex.errormsg("skipping " + str(node.tag))
result_row = row2[::-1] self.skipped += 1
else: return []
result_row = row2
# Compile a list of layers in this document. We compile a list of only the layers
# we need to use, so we can know ahead of time whether to put tool change
# operations between them.
layers = []
for layer in reversed(get_layers(self.document)):
for node in layer.iterchildren():
if (node in selected):
layers.append(layer)
break
for chunk in get_chunks(result_row,51): layers = list(reversed(get_layers(self.document)))
if first:
if forward: # Loop over the layers and objects
f.write("\nG7 $1 ") gcode = ""
# f.write("G7 $1\nG7 ") for layer in layers:
label = layer.get(SVG_LABEL_TAG).strip()
if (label.startswith("#")):
# Ignore everything selected in this layer
for node in layer.iterchildren():
if (node in selected):
selected.remove(node)
continue
# Parse the layer label text, which consists of the layer name followed
# by an optional number of arguments in square brackets.
try:
(layerName, layerParams) = parse_layer_name(label)
except ValueError,e:
inkex.errormsg(str(e))
return
# Check if the layer specifies an alternative (from the default) feed rate
altfeed = layerParams.get("feed", None)
altppm = layerParams.get("ppm", None)
logger.write("layer %s" % layerName)
if (layerParams):
logger.write("layer params == %s" % layerParams)
pathList = []
# Apply the layer transform to all objects within the layer
trans = layer.get('transform', None)
trans = simpletransform.parseTransform(trans)
for node in layer.iterchildren():
if (node in selected):
logger.write("node %s" % str(node.tag))
selected.remove(node)
pathList += compile_paths(node, trans)
else: else:
f.write("\nG7 $0 ") logger.write("skipping node %s" % node)
# f.write("G7 $0\nG7 ")
first = not first if (not pathList):
logger.write("no objects in layer")
continue
curve = self.parse_curve(pathList)
#Determind the power of the laser that this layer should be cut at.
#If the layer is not named as an integer value then default to the laser intensity set at the export settings.
#Fetch the laser power from the export dialog box.
laserPower = self.options.laser
if (int(layerName) > 0 and int(layerName) <= 100):
laserPower = int(layerName)
else :
laserPower = self.options.laser
#Switch between smoothie power levels and ramps+marlin power levels
#ramps and marlin expect 0 to 100 while smoothie wants 0.0 to 1.0
if (self.options.mainboard == 'smoothie'):
laserPower = float(laserPower) / 100
# If there are several layers, start with a tool change operation
#Turnkey : Always output the layer header for information.
if (len(layers) > 0):
gcode += LASER_OFF+"\n"
size = 60
gcode += ";(%s)\n" % ("*"*size)
gcode += (";(***** Layer: %%-%ds *****)\n" % (size-19)) % (layerName)
gcode += (";(***** Laser Power: %%-%ds *****)\n" % (size-25)) % (laserPower)
gcode += (";(***** Feed Rate: %%-%ds *****)\n" % (size-23)) % (altfeed)
gcode += (";(***** Pulse Rate: %%-%ds *****)\n" % (size-24)) % (altppm)
gcode += ";(%s)\n" % ("*"*size)
gcode += ";(MSG,Starting layer '%s')\n\n" % layerName
# Move the laser into the starting position (so that way it is positioned
# for testing the power level, if the user wants to change that).
arg = curve[0]
pt = arg[0]
#gcode += "G00 " + self.make_args(pt) + "\n"
if (self.options.drawCurves):
self.draw_curve(curve)
#Generate the GCode for this layer
gcode += self.generate_gcode(curve, 0, laserPower, altfeed=altfeed, altppm=altppm)
# If there are any objects left over, it's because they don't belong
# to any inkscape layer (bug in inkscape?). Output those now.
if (selected):
pathList = []
# Use the identity transform (eg no transform) for the root objects
trans = simpletransform.parseTransform("")
for node in selected:
pathList += compile_paths(node, trans)
if (pathList):
curve = self.parse_curve(pathList)
if (self.options.drawCurves):
self.draw_curve(curve)
gcode += "\n;(*** Root objects ***)\n"
#Fetch the laser power from the export dialog box.
laserPower = self.options.laser
#Switch between smoothie power levels and ramps+marlin power levels
#ramps and marlin expect 0 to 100 while smoothie wants 0.0 to 1.0
if (self.options.mainboard == 'smoothie'):
laserPower = float(laserPower) / 100
gcode += self.generate_gcode(curve, 0, laserPower)
if self.options.homeafter:
gcode += "\n\nG00 X0 Y0 F4000 ; home"
return gcode
def effect(self):
global options
options = self.options
selected = self.selected.values()
root = self.document.getroot()
self.pageHeight = float(root.get("height", None))
self.flipArcs = (self.options.Xscale*self.options.Yscale < 0)
self.currentTool = 0
self.filename = options.file.strip()
if (self.filename == "-1.0" or self.filename == ""):
inkex.errormsg(("Please select an output file name."))
return
if (not self.filename.lower().endswith(GCODE_EXTENSION)):
# Automatically append the correct extension
self.filename += GCODE_EXTENSION
logger.enabled = self.options.logging
logger.write("thlaser script started")
logger.write("output file == %s" % self.options.file)
if len(selected)<=0:
inkex.errormsg(("This extension requires at least one selected path."))
return
self.check_dir()
gcode = self.header;
if (self.options.unit == "mm"):
self.unitScale = 0.282222
gcode += "G21 ; All units in mm\n"
elif (self.options.unit == "in"):
self.unitScale = 0.011111
gcode += "G20 ; All units in in\n"
else: else:
f.write ("G7 ") inkex.errormsg(("You must choose mm or in"))
return
b64 = base64.b64encode("".join(chr(y) for y in chunk)) if not self.options.generate_not_parametric_code:
f.write("L"+str(len(b64))+" ") gcode += """
f.write("D"+b64+ "\n") ; Default Cut Feedrate %i mm per minute
forward = not forward ; Default Move Feedrate %i mm per minute
first = not first ; Default Laser Intensity %i percent\n""" % (self.options.feed, self.options.Mfeed, self.options.laser)
f.write("M5 \n"); if self.options.homebefore:
def main(argv): gcode += "G28 ; home all\n\n"
inputfile = None
def showhelp(): #if self.options.function == 'Curve':
print "imagetogcode: Process an input image to gcode for a Marlin laser cutter." gcode += self.effect_curve(selected)
print
print "Usage: imagetogcode -i <input file> -o [output file]" if (self.options.double_sided_cutting):
gcode += "\n\n;(MSG,Please flip over material)\n\n"
# Include a tool change operation
gcode += self.tool_change()
logger.write("*** processing mirror image")
self.options.Yscale *= -1
self.flipArcs = not(self.flipArcs)
self.options.generate_not_parametric_code = True
self.pageHeight = 0
gcode += self.effect_curve(selected)
outputfile = None
try:
opts, args = getopt.getopt(argv, "hi:o:", ["input=", "output="])
except getopt.GetoptError:
showhelp()
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
showhelp()
sys.exit()
if opt in ('-i', '--input'):
inputfile = arg
elif opt in ('-o', '--output'):
outputfile = arg
if inputfile is None:
showhelp()
sys.exit(2)
try:
image = Image.open(inputfile).convert('L')
except IOError:
print "Unable to open image file."
sys.exit(2)
if outputfile is None:
gcode = sys.stdout
else:
try: try:
gcode = open(outputfile, "w") f = open(self.options.directory+'/'+self.options.file, "w")
except IOError: f.write(gcode + self.footer)
print "Unable to open output file." f.close()
except:
inkex.errormsg(("Can not write to specified file!"))
return
imagetogcode(image, gcode) if (self.skipped > 0):
inkex.errormsg(("Warning: skipped %d object(s) because they were not paths. Please convert them to paths using the menu 'Path->Object To Path'" % self.skipped))
e = Gcode_tools()
e.affect()
if __name__ == "__main__":
main(sys.argv[1:])
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment