objectdetect.js 20.7 KB
Newer Older
nextime's avatar
nextime committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/**
 * Real-time object detector based on the Viola Jones Framework.
 * Compatible to OpenCV Haar Cascade Classifiers (stump based only).
 * 
 * Copyright (c) 2012, Martin Tschirsich

 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 *
 */
var objectdetect = (function() {
	"use strict";
	
	/**
	 * Define system-specific optimal array types (Float32Array if available).
	 */
	var ImageArray, ZeroFilledImageArray;
	
	if (typeof Float32Array !== "undefined") {
		ImageArray = ZeroFilledImageArray = Float32Array;
	} else {
		ZeroFilledImageArray = function(length) {
	    	Array(length);
	    	for (var i = 0; i < length; ++i) this[i] = 0;
	    };
	    ZeroFilledImageArray.prototype = ImageArray = Array;
	}
    	
    var /**
		 * Converts from a 4-channel RGBA source image to a 1-channel grayscale
		 * image. Corresponds to the CV_RGB2GRAY OpenCV color space conversion.
		 * 
		 * @param {Array} src	4-channel 8-bit RGBA source image
		 * @param {Array} [dst] 1-channel 32-bit destination image. If omitted,
		 *                      a new image will be created
		 * @return {Array} 1-channel 32-bit destination image
		 */
		convertRgbaToGrayscale = function(src, dst) {
			var srcLength = src.length;
			if (!dst) { dst = new ImageArray(srcLength >> 2); }
			
			for (var i = 0; i < srcLength; i += 4) {
				dst[i >> 2] = (src[i] * 4899 + src[i + 1] * 9617 + src[i + 2] * 1868 + 8192) >> 14;
			}
			return dst;
		},
		
		/**
		 * Computes the gradient magnitude using a sobel filter after
		 * applying gaussian smoothing (5x5 filter size). Useful for canny
		 * pruning.
		 * 
		 * @param {Array}  src      1-channel source image
		 * @param {Number} srcWidth Width of the source image
		 * @param {Array}  [dst]    1-channel destination image. If omitted,
		 *                          a new image will be created
		 * @return {Array} Destination image
		 */
		buffer = null,
		computeCanny = function(src, srcWidth, srcHeight, dst) {
			var srcLength = src.length;
			if (!dst) { dst = new ImageArray(srcLength); }
			else if (dst === src) { src = new ImageArray(dst); }
			
			// Gaussian filter (size 5, sigma sqrt(2)) horizontal pass:
			if (!buffer) buffer = new ImageArray(srcLength);
			for (var x = 2; x < srcWidth-2; ++x) {
				for (var y = 0; y < srcHeight; ++y) {
					var index = x + y * srcWidth;
					dst[index] =
						0.1117 * src[index - 2] +
						0.2365 * src[index - 1] +
						0.3036 * src[index    ] +
						0.2365 * src[index + 1] +
						0.1117 * src[index + 2];
				}
			}
			
			// Gaussian filter (size 5, sigma sqrt(2)) vertical pass:
			for (var x = 0; x < srcWidth; ++x) {
				for (var y = 2; y < srcHeight-2; ++y) {
					var index = x + y*srcWidth;
					buffer[index] =
						0.1117 * dst[index - (srcWidth << 1)] +
						0.2365 * dst[index -  srcWidth      ] +
						0.3036 * dst[index                  ] +
						0.2365 * dst[index +  srcWidth      ] +
						0.1117 * dst[index + (srcWidth << 1)];
				}
			}
			
			// Compute gradient:
			for(x = 2; x < srcWidth - 2; ++x) {
				for(y = 2; y < srcHeight - 2; ++y) {
					var grad_x =
						-     buffer[x-1 + (y-1) * srcWidth]
						+     buffer[x+1 + (y-1) * srcWidth]
						- 2 * buffer[x-1 + y     * srcWidth]
						+ 2 * buffer[x+1 + y     * srcWidth]
						-     buffer[x-1 + (y+1) * srcWidth]
						+     buffer[x+1 + (y+1) * srcWidth];
					
					var grad_y = 
						      buffer[x-1 + (y-1) * srcWidth]
						+ 2 * buffer[x   + (y-1) * srcWidth]
						+     buffer[x+1 + (y-1) * srcWidth]
						-     buffer[x-1 + (y+1) * srcWidth]
						- 2 * buffer[x   + (y+1) * srcWidth]
						-     buffer[x+1 + (y+1) * srcWidth];
					
					dst[x + y * srcWidth] = 
						(grad_x < 0 ? -grad_x : grad_x) + 
						(grad_y < 0 ? -grad_y : grad_y);
				}
			}
			return dst;
		},

		/**
		 * Computes the integral image of a 1-channel image. Arithmetic
		 * overflow may occur if the integral exceeds the limits for the
		 * destination image values ([0, 2^32-1] for am unsigned 32-bit image).
		 * The integral image is 1 pixel wider both in vertical and horizontal
		 * direction compared to the source image.
		 * 
		 * SAT = Summed Area Table
		 * 
		 * @param {Array}  src       1-channel source image
		 * @param {Number} srcWidth  Width of the source image
		 * @param {Number} srcHeight Height of the source image
		 * @param {Array}  [dst]     1-channel destination image (optional)
		 * @return {Array} Destination image
		 */
		computeSat = function(src, srcWidth, srcHeight, dst) {
			var srcLength = src.length,
				dstWidth = srcWidth + 1;
			
			if (!dst) { dst = new ZeroFilledImageArray(srcLength + dstWidth + srcHeight); }
			
			for (var x = 1; x <= srcWidth; ++x) {
				var column_sum = 0;
				for (var y = 1; y <= srcHeight; ++y) {
					var index = x + y * dstWidth;
					column_sum += src[index - y - dstWidth];
					dst[index] = dst[index - 1] + column_sum;
				}
			}
			return dst;
		},
		
		/**
		 * Computes the squared integral image of a 1-channel image.
		 * @see computeSat()
		 * 
		 * @param {Array}  src       1-channel source image
		 * @param {Number} srcWidth  Width of the source image
		 * @param {Number} srcHeight Height of the source image
		 * @param {Array}  [dst]     1-channel destination image. If omitted, the
		 *                           result is written to src (faster)
		 * @return {Array} Destination image
		 */
		computeSquaredSat = function(src, srcWidth, srcHeight, dst) {
			var srcLength = src.length,
				dstWidth = srcWidth + 1;
		
			if (!dst) { dst = new ZeroFilledImageArray(srcLength + dstWidth + srcHeight); }
			
			for (var x = 1; x <= srcWidth; ++x) {
				var column_sum = 0;
				for (var y = 1; y <= srcHeight; ++y) {
					var index = x + y * dstWidth;
					var val = src[index - y - dstWidth];
					column_sum += val * val;
					dst[index] = dst[index - 1] + column_sum;
				}
			}
			return dst;
		},
		
		/**
		 * Computes the rotated / tilted integral image of a 1-channel image.
		 * @see computeSat()
		 * 
		 * @param {Array}  src       1-channel source image
		 * @param {Number} srcWidth  Width of the source image
		 * @param {Number} srcHeight Height of the source image
		 * @param {Array}  [dst]     1-channel destination image. If omitted, the
		 *                           result is written to src (faster)
		 * @return {Array} Destination image
		 */
		computeRsat = function(src, srcWidth, srcHeight, dst) {
			var srcLength = src.length,
				dstWidth = srcWidth + 1,
				dstLength = srcLength + dstWidth + srcHeight;
			
			if (!dst) { dst = new ZeroFilledImageArray(dstLength); }
				
			// Compute first diagonal integral:
			for (var y = 1; y <= srcHeight; ++y) {
				for (var x = 1; x <= srcWidth; ++x) {
					dst[x + y * dstWidth] = src[x - 1 + y * srcWidth - srcWidth] + dst[x + y * dstWidth - dstWidth - 1];
				}
			}
			
			// Compute second diagonal integral:
			for (var y = 1; y <= srcHeight; ++y) {
				dst[srcWidth + y * dstWidth] += dst[srcWidth + y * dstWidth - dstWidth];
			}
			
			for (var x = srcWidth - 1; x > 0; --x) {
				for (var y = srcHeight; y > 0; --y) {
					dst[x + y * dstWidth] += dst[x + y * dstWidth - dstWidth] + dst[x + 1 + y * dstWidth - dstWidth];
				}
			}
			
			return dst;
		},
		
		/**
		 * Compute area on a SAT.
		 * 
		 * @param {Array}  sat       1-channel integral source image
		 * @param {Number} satWidth  Width of the integral source image
		 * @param {Number} x         Area to evaluate
		 * @param {Number} y         Area to evaluate
		 * @param {Number} width     Area to evaluate
		 * @param {Number} height    Area to evaluate
		 * @return {Number} Area
		 */
		computeSatSum = function(sat, satWidth, x, y, width, height) {
			y *= satWidth;
			height *= satWidth;
			return sat[x         + y         ] -
			       sat[x + width + y         ] -
			       sat[x         + y + height] +
			       sat[x + width + y + height];
		},
		
		/**
		 * Compute area on a RSAT.
		 * @see computeSatSum()
		 * 
		 * @param {Array}  rsat      1-channel integral source image
		 * @param {Number} rsatWidth Width of the integral source image
		 * @param {Number} x         Area to evaluate
		 * @param {Number} y         Area to evaluate
		 * @param {Number} width     Area to evaluate
		 * @param {Number} height    Area to evaluate
		 * @return {Number} Area
		 */
		computeRSatSum = function(rsat, rsatWidth, x, y, width, height) {
			return rsat[x                  + (y                 ) * rsatWidth] -
			       rsat[x + width          + (y + width         ) * rsatWidth] -
			       rsat[x - height         + (y + height        ) * rsatWidth] +
			       rsat[x + width - height + (y + width + height) * rsatWidth];
		},
		
		/**
		 * Equalizes the histogram of an unsigned 1-channel image with values
		 * in range [0, 255]. Corresponds to the equalizeHist OpenCV function.
		 * 
		 * @param {Array} src   1-channel integer source image
		 * @param {Array} [dst] 1-channel destination image. If omitted, the
		 * 	                    result is written to src
		 * @return {Array} Destination image
		 */
		equalizeHistogram = function(src, dst) {
			var srcLength = src.length;
			if (!dst) { dst = src; }
			
			// Compute histogram and histogram sum:
			var hist = new ZeroFilledImageArray(256);
			for (var i = 0; i < srcLength; ++i) {
				++hist[src[i]];
			}
			
			// Compute integral histogram:
			var prev = hist[0];
			for (var i = 1; i < 256; ++i) {
				prev = hist[i] += prev;
			}
			
			// Equalize image:
			var norm = 255 / srcLength;
			for (var i = 0; i < srcLength; ++i) {
				dst[i] = ~~(hist[src[i]] * norm + 0.5);
			}
			return dst;
		},
		
		/**
		 * Evaluates a Haar cascade classifier at a specified scale.
		 * 
		 * @param {Array}  sat	       SAT of the source image
		 * @param {Array}  rsat	       RSAT of the source image
		 * @param {Array}  ssat	       Squared SAT of the source image
		 * @param {Array}  cannySat	   SAT of canny source image or undefined
		 * @param {Number} width       Width of the source image
		 * @param {Number} height      Height of the source image
		 * @param {Number} scale       Scale
		 * @param {Object} cascadeClassifier Haar cascade classifier
		 * @return {Array} Rectangles representing detected object
		 */
		detectSingleScale = function(sat, rsat, ssat, cannySat, width, height, scale, cascadeClassifier) {
			var windowWidth  = ~~(cascadeClassifier.size[0] * scale);
			var windowHeight = ~~(cascadeClassifier.size[1] * scale);
			var stepX = ~~(0.5 * scale + 1.5); // = 2;
			var stepY = ~~(0.5 * scale + 1.5); // = 2;

			var rects = [];
			for (var x = 0; x + windowWidth <= width; x += stepX) {
				for (var y = 0; y + windowHeight <= height; y += stepY) {
					
					var invArea = 1 / (windowWidth * windowHeight);
					
					// Canny test:
					if (cannySat) {
						var edgesDensity = computeSatSum(cannySat, width + 1, x, y, windowWidth, windowHeight) * invArea;
						if (edgesDensity < 20 || edgesDensity > 100) {
							continue;
						}
					}
					
					// Correct?
					var satOffset = x + y * (width + 1);
					var satHeight = windowHeight * (width + 1);

					var mean = (sat[satOffset] -
							    sat[satOffset + windowWidth] -
						        sat[satOffset + satHeight] +
						        sat[satOffset + windowWidth + satHeight]) * invArea;
					
					var variance = (ssat[satOffset] -
						            ssat[satOffset + windowWidth] -
						            ssat[satOffset + satHeight] +
						            ssat[satOffset + windowWidth + satHeight]) * invArea - mean * mean;
					
					var std = variance > 1 ? Math.sqrt(variance) : 1;
					
					// Evaluate cascade classifier: stages
					var complexClassifiers = cascadeClassifier.complexClassifiers;
					var found = true;
					for (var i = 0, iEnd = complexClassifiers.length; i < iEnd; ++i) {
						var complexClassifier = complexClassifiers[i];
						
						// Evaluate complex classifier: trees
						var simpleClassifiers = complexClassifier.simpleClassifiers;
						var complexClassifierThreshold = complexClassifier.threshold;
						var complexClassifierSum = 0;
						
						for (var j = 0, jEnd = simpleClassifiers.length; j < jEnd; ++j) {
							var simpleClassifier = simpleClassifiers[j];
							
							// Evaluate simple classifier: nodes
							var features = simpleClassifier.features;
							var simpleClassifierSum = 0;
							
							if (simpleClassifier.tilted === 1) {
								for (var k = 0, kEnd = features.length; k < kEnd; ++k) {
									var feature = features[k];
									
									// Evaluate feature: rects
									var featureOffset = ~~(x + feature[0] * scale) + ~~(y + feature[1] * scale) * (width + 1);
									var featureWidth  = ~~(feature[2] * scale);
									var featureWidthTimesWidth  = ~~(feature[2] * scale) * (width + 1);
									var featureHeight = ~~(feature[3] * scale);
									var featureHeightTimesWidth = ~~(feature[3] * scale) * (width + 1);
							
									simpleClassifierSum +=
										(rsat[featureOffset] -
										 rsat[featureOffset +  featureWidth + featureWidthTimesWidth] -
										 rsat[featureOffset - featureHeight +  featureHeightTimesWidth] +
										 rsat[featureOffset + featureWidth - featureHeight + featureWidthTimesWidth + featureHeightTimesWidth]) * feature[4];
								}
							} else {
								for (var k = 0, kEnd = features.length; k < kEnd; ++k) {
									var feature = features[k];
									
									// Evaluate feature: rects
									var featureOffset = ~~(x + feature[0] * scale) + ~~(y + feature[1] * scale) * (width + 1);
									var featureWidth  = ~~(feature[2] * scale);
									var featureHeight = ~~(feature[3] * scale) * (width + 1);
									
									simpleClassifierSum +=
										(sat[featureOffset] -
										 sat[featureOffset + featureWidth] -
										 sat[featureOffset + featureHeight] +
										 sat[featureOffset + featureWidth + featureHeight]) * feature[4];
								}
							}

							complexClassifierSum += (simpleClassifierSum * invArea < simpleClassifier.threshold * std) ? simpleClassifier.left_val : simpleClassifier.right_val;
							// Possible optimization if all values are positive:
							// if (complexClassifierSum >= complexClassifierThreshold) break;
						}
						if (complexClassifierSum < complexClassifierThreshold) {
							found = false;
							break;
						}
					}
					if (found) rects.push([x, y, windowWidth, windowHeight]);
				}
			}
			return rects;
		},
		
		/**
		 * Evaluates a Haar cascade classifier at all scales.
		 * 
		 * @param {Array}  sat	       SAT of the source image
		 * @param {Array}  rsat	       RSAT of the source image
		 * @param {Array}  ssat	       Squared SAT of the source image
		 * @param {Array}  cannySat	   SAT of canny source image or undefined
		 * @param {Number} width       Width of the source image
		 * @param {Number} height      Height of the source image
		 * @param {Object} cascadeClassifier Haar cascade classifier
		 * @return {Array} Rectangles representing detected object
		 */
		detectMultiScale = function(sat, rsat, ssat, cannySat, width, height, cascadeClassifier, scaleFactor, scaleMin) {
			var initialWidth = cascadeClassifier.size[0];
			var initialHeight = cascadeClassifier.size[1];

			if (!scaleMin) scaleMin = 1;
			if (!scaleFactor) scaleFactor = 1.2;
			
			var scale = scaleMin;
			var rects = [];
			while (scale * initialWidth < width && scale * initialHeight < height) {
				rects = rects.concat(detectSingleScale(sat, rsat, ssat, cannySat, width, height, scale, cascadeClassifier));
				scale *= scaleFactor;
			}
			return rects;
		},
		
		/**
		 * Evaluates a Haar cascade classifier at increasingly coarser scale.
		 * Stops the evaluation as soon as the first object has been detected.
		 * 
		 * @param {Array}  sat	       SAT of the source image
		 * @param {Array}  rsat	       RSAT of the source image
		 * @param {Array}  ssat	       Squared SAT of the source image
		 * @param {Array}  cannySat	   SAT of canny source image or undefined
		 * @param {Number} width       Width of the source image
		 * @param {Number} height      Height of the source image
		 * @param {Object} cascadeClassifier Haar cascade classifier
		 * @return {Array} Rectangles representing detected object
		 */
		detectFinestScale = function(sat, rsat, ssat, cannySat, width, height, cascadeClassifier) {
			var initialWidth = cascadeClassifier.size[0];
			var initialHeight = cascadeClassifier.size[1];

			var scale = 1;
			var scaleFactor = 1.2;
			var rects = [];
			while (scale * initialWidth < width && scale * initialHeight < height) {
				rects = detectSingleScale(sat, rsat, ssat, cannySat, width, height, scale, cascadeClassifier);
				if (rects[0]) break;
				scale *= scaleFactor;
			}
			return rects;
		},
	    
		/**
		 * Groups rectangles together using a rectilinear distance metric. For
		 * each group of related rectangles, a representative mean rectangle
		 * is returned.
		 * 
		 * @param {Array} rects         Rectangles (Arrays of 4 floats)
		 * @param {Number} minNeighbors 
		 * @return {Array}              Mean rectangles (Arrays of 4 floats)
		 */
		groupRectangles = function(rects, minNeighbors) {
			var rectsLength = rects.length;
			
	    	// Partition rects into similarity classes:
	    	var numClasses = 0;
	    	var labels = new Array(rectsLength);
			for (var i = 0; i < labels.length; ++i) {
				labels[i] = 0;
			}
			
			for (var i = 0; i < rectsLength; ++i) {
				var found = false;
				for (var j = 0; j < i; ++j) {
					
					// Determine similarity:
					var rect1 = rects[i];
					var rect2 = rects[j];
			        var delta = 0.1 * (Math.min(rect1[2], rect2[2]) + Math.min(rect1[3], rect2[3]));
			        if (Math.abs(rect1[0] - rect2[0]) <= delta &&
			        	Math.abs(rect1[1] - rect2[1]) <= delta &&
			        	Math.abs(rect1[0] + rect1[2] - rect2[0] - rect2[2]) <= delta &&
			        	Math.abs(rect1[1] + rect1[3] - rect2[1] - rect2[3]) <= delta) {
						
						labels[i] = labels[j];
						found = true;
						break;
					}
				}
				if (!found) {
					labels[i] = numClasses++;
				}
			}
			
			// Compute average rectangle (group) for each cluster:
			var groups = new Array(numClasses);
			
			for (var i = 0; i < numClasses; ++i) {
				groups[i] = [0, 0, 0, 0, 0];
			}
			
			for (var i = 0; i < rectsLength; ++i) {
				var label = labels[i];
				groups[label][0] += rects[i][0];
				groups[label][1] += rects[i][1];
				groups[label][2] += rects[i][2];
				groups[label][3] += rects[i][3];
				groups[label][4]++;
			}
			
			for (var i = 0; i < numClasses; ++i) {
				var numNeighbors = groups[i][4];
				if (numNeighbors >= minNeighbors) {
					groups[i][0] /= numNeighbors;
					groups[i][1] /= numNeighbors;
					groups[i][2] /= numNeighbors;
					groups[i][3] /= numNeighbors;
				}
			}
			
			// Filter out small rectangles inside larger rectangles:
			var filteredGroups = [];
			for (var i = 0; i < numClasses; ++i) {
		        var r1 = groups[i];
		        
		        for (var j = 0; j < numClasses; ++j) {
		        	if (i === j) continue;
		            var r2 = groups[j];
		            var dx = r2[2] * 0.2;
		            var dy = r2[3] * 0.2;
		            
		            if (r1[0] >= r2[0] - dx &&
		                r1[1] >= r2[1] - dy &&
		                r1[0] + r1[2] <= r2[0] + r2[2] + dx &&
		                r1[1] + r1[3] <= r2[1] + r2[3] + dy) {
		            	
		            	break;
		            }
		        }
		        
		        if (j === numClasses) {
		        	filteredGroups.push(r1);
		        }
		    }
			return filteredGroups;
		};
	
		return {
			equalizeHistogram: equalizeHistogram,
			convertRgbaToGrayscale: convertRgbaToGrayscale,
			computeCanny: computeCanny,
			computeSat: computeSat,
			computeRsat: computeRsat,
			computeSatSum: computeSatSum,
			computeSquaredSat: computeSquaredSat,
			computeRSatSum: computeRSatSum,
			groupRectangles: groupRectangles,
			detectMultiScale: detectMultiScale,
			detectSingleScale: detectSingleScale,
			detectFinestScale: detectFinestScale
		};
})();